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Stability and Stabilisation Through Envelopes for
Retarded and Neutral Time-Delay Systems

Caetano B. Cardeliquio, André R. Fioravanti, CatherinefBz and Silviu-lulian Niculescu.

Abstract—This paper deals with a new approach to develop an project requirements designing a state-feedback coetriblht
envelope that engulfs all poles of a time-delay system. Thugh guarantees:-stability.

LMIs we are able to determine envelopes for retarded and neugl Notation. Matrices are denoted by capital letters, whilst

time-delay systems. The envelopes proposed are not only higr Il lett t | d ¢ = | tri
than the ones in the literature but, with our procedure, they can small lefters represent scalars and veclors. For real geatri

also be applied to verify the stability of the system and degh Or vectors the symbolindicates transpose and for complex
state-feedback controllers which cope with design requinments matrices or vectors the symbot)(denotes conjugate trans-

regarding a — stability. pose. The determinant of a matrik is indicated bydet(A).
Index Terms—Neutral-type, Retarded-type, Stabilisation, Sta- The sets of real, integer and natural numbers including zero
bility, State-Feedback, Time-delay systems are denoted bR, Z andN, respectively. Floor is defined as
|z] = max{m € Z | m < z},x € R. R(.) is the real part of a
I. INTRODUCTION complex number. A left eigenvector is defined as a row vector

xy, satisfyingzp A = Apxr, where)y is a left eigenvalue of

Time-delay systems ha_ve |nst|gat¢d an mcrgasmgly '8terfhe matrixA. For partitioned matrices the symbeotepresents
from the control community. The main reason is that they ae -h one of its Hermitian blocks. The inducechorm of a
intrinsically coupled with almost every dynamical systéarhis matrix A is given by|[All,, A € C™™. Finally, X > 0
is due to delays originated from transport, processing ,tim > 0) denotes that thz symmetric matrix is' positive
sampling, propagation time on networked systems, amo%firﬁte (positive semi-definite).
others. Sometimes it is not possible to neglect those delays
because they may cause bad performance or even instability.
Stability for time-delay systems was discussed, amongrsthe Il. RETARDED SYSTEMS
in [1], [2] and [3]. Consider the retarded linear time-delay system with

For the stabilisation through state feedback, delagelays, whose minimal realisation is given by
independent controllers can be devised using Riccati eamsat
[4], [B], whereas the delay-dependent case was designed
by means of Lyapunov-Krasoviskii functionals in [6]-[8]. A
controller design approach through a finite LTI comparison
system was developed in][9]. The use of an envelope thifierez(t) € R™ is the state variabl®, =70 <71 <--- <7y
ensures that all poles are contained inside it was discusé€él the delays andl; € R"*" for all i € {0,..., N}. This
in [I]. Different types of envelopes were also discussed fystem is exponentially stable if and only if all roots of its
[10] and [11]. In any case, to the best of our knowledge, rharacteristic equation
methods utilising envelopes were developed to test stabili N

det ( I - ) =0

N
B(t) = A (t—m), 1)
i=0

nor to design controllers. In fact, in general, the envelope
extends to the right half-plane and therefore, it only pdegia

region where the poles are allowed to be without any guaean%ere in the open left half-plan& T12].

about the stability of the system. In this work we provide a The following Proposition introduces an envelope that en
different analysis for the use of envelopes. Instead ofguain ts all of its golesp P

singular value approach, such as|in [1], our method is base o i .
on Linear Matrix Inequalities (LMIs). We are able to provide rpposmon 1; Let A be ar}y real ”“mb?r- If there exist
a new procedure to test stability for both retarded and abutmatr'ceST =1" >0, _Qi =@ >0, forallie{0,...,N}
time-delay systems. Furthermore, it allows to cope with esonfimd a scalay; that satisfy

)
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then any characteristic roet of equation[(R) such that; = Let us analyse the envelope obtained from the eigenvalue

A + jw verifies approach to hereafter introduce a Lemma that comparedit wit
50| < /- (5) the LMI approach. The envelope in/[1] is given by
Prqqf. Thefollqwmg |neq,ual|ty is always true, which is easily Iso| < Z | Aglla e, (15)
verifiable applying Schur’'s complement =
AQiAle=T o >0 ©6) which is equivalent, see [15], thsg| < v, wherev is the
Ale=(A—pw)m QL =™ optimal solution of the following optimisation problem
Adding them for alli € {0,..., N} leads to r5111/n v,
N N
D AQi A . subjectto v > Z vi,
=0 >0 (7) =0
N N = 2 ’ —2X7;
ZAQQ*(A*JUJ)H Z Qz_l vl > AjAqe ) (16)
i=0 i=0 for all i € {0,...,N}.andy; >0, for all i € {0,...,N}.

where we can apply Schur's complement and util@e (3) to get' € Next Lemma shows that the envelope iin [1] is a
particular case of the class of envelopes defined by Praoposit

N -1 .
ul > % <Z Qi1> >, (8) Lemma 1: Let sp = A + jw be a characteristic solution of
i=0 equation [[(R) and let andv; be the optimal solution of the
optimisation problem{16). Thefl(3) arld (4) are both satisfie

A N o= (A tgw)Ti
whereX =3 Ae ' with the particular choice off = v='I, Q; = u{ll and

Notice that from[(4) =12
N Proof: From Schur Complemen{](4) is equivalent to
T>3 TQ'T. © N
i=0 T> Z TQ;'T. 17)
Now, multiplying (9), through the left and through the right i=0
by T—! and taking the inverse on both sides of the inequality, It is easy to see thal{1L7) is satisfied wheneVer v—11
we get ) andQ; = v; 'I.
N - Applying the same substitutions dnl (3), we get
T < <Z QF ) : (10) N
=0 T ZAiuflAge_z)‘” (18)
Then, using this result i {8), it implies that =0
T > ST (11) and remembering that = v?, we have
N N
Finally, let so = A + jw be an eigenvalue of associated ZV'I > ZA-V»’lA’-e*”” (19)
with a right-eigenvecton. It is well known, [13] and [[14], e A SR ’
that left and right eigenvalues are equal. Hengeis also an
g g q s which satisfies the conditions if_(16). O

eigenvalue ofY associated with a left-eigenvector,, with
dimensionl x n. In this case, we can multiply inequalify (11)

. . . Therefore, the envelope inl[1] is a particular case of Propo-
to the left b and to the right by its conjugated transpose,, . a X : o
= obtainin)gEL ght by ug P sition[d for specific choices df, Q; andu. Having flexibility
L

on those three variables allows the proposed new envelope to

prpTry 2 e XTX g (12) provide tighter (or at least equal) bounds than the envelope
and sincer;, # 0 andT > 0, aforementioned.
p= A+ gw)A = jw), (13) A, Implementation
leading to First of all, let us introduce the definition of closeness of
|so| < VI, (14) an envelope. Lejx and A be defined by Proposition 1 and
B let A € [Amin, Amax. If there is a pointA* in this interval
which concludes the proof. O such thaty = (A\*)2, we define* + ¢, with £ > 0 arbitrarily

small, as the closure point of the envelope. This means that
This result produces a better envelope than previous wotke envelope lies completely on the left side of the vertical
such as|[[ll]. This will be proved in the next Lemma antine ®(s) = A* + . Furthermore, we say that the envelope is
evidenced in Example 1. closed wheneven < \2.



The choice ofAmin is completely free. In[[10], a simple Algorithm 1: Envelope Procedure
bound for the rightmost root of{2) was given, which can gasil pata: System Matricesd;, Delaysr;

be generalised t&V delays: Initialise: Define a real interval\,,in, Amaz] for A
N and a step, 0 < p < (Amaz — Amin)
R(s) < p(Ao) + Z [Aill = ¢, (20) LetxeN N A
i=1 For eachk € 40,--- | {7J}
wherep(.) is a matrix measure, see [10] and[16]. We suggestDefine \,, = Ain + kp P
to take Amax = 2[¢|. Minimise p,. subject to [(B) and{4)
The following propositions illustrate, respectively, hda If p. > A2 then
depict the envelope and how one can use the envelope to Wi < A/t — A2
analyse the stability of a time delay system. Also, it shows Else
the behaviour of the envelope as a function\of End Procedure
Proposition 2: Let A € [Amin, Amay @nd lety be given by End If

@). If © > A\? then the envelope on the complex plane is Return Qiy, Ty, tt andwy
defined by the set of points\(w) wherew = ++/u — A2. If End For

for a particular\*, u* < (\*)? then the envelope is closed
for every \ > \*.

Proof: From equation[{14) we have that + w? < p which and hereafter calculate the envelope forWith this change
directly implies thato = ++/; — A2, for ;1 > A2, Obviously, of variables, [(R) becomes

(A, w) belongs to the envelope. Now, suppose that for a certain N
A, we havep* < (A*)2. As A;Q; A} > 0 ande=2*"i is non- det <z1 — (Ao +dI) — Z Aiez”ed”> =0, (23)
increasing, we have that < p* for every A > A* which i=1
means, by definition, that the envelope is closed. O allowing us to work with an equivalent problem on the new
parameters

Proposition 3: Let \g € R andu = A3 —¢, for somes > 0. Ao = Ay + dI
If there existT,Q; > 0, for all € {0,..., N} such that[(B) 00 ’
and [3) are both satisfied, then the envelope lies entirely on A; = A, foralli e {1,...,N}. (24)
the left side of the vertical axis crossing. On the z-plan the envelope will remain open for = 0,
Proof: From [14) we have that if\ + jw is a root of the however, if it is closed before = d, it will be closed before
system, then the origin on thes-plan, guaranteeing stability for the original

Al < /32—, (21) system.

Example 1: Consider the following system matrices
which can be rewritten as

[A 4 } 0 1 0  0.5413
2 2 2 = .
M +w <A} -e (22) o1t —2 -3 | -1.0827 —1.6240

Notice that this expression is never going to be satisfiedApplying Algorithm 1, for , = 1, to this system, we
with A > )g, which implies that it cannot exist parts of thecalculate the envelope and compare the result with referenc
envelope to the right side of the vertical axis passing tghou[I]. Figure[1 shows this comparison and it also illustrates
Ao- OO0 the behaviour of the envelope for different valuesdofAn

interesting remark is that fof = 3 we achieved a tighter

The computational procedure to obtain the envelope émvelope closer to the poles and we can also see that the point
summarized in the Algorithm 1. The minimization@ffor the where the envelope ends is on the left side of the plane. This
retarded case, is achieved through the traditional gesedal allows us to use the envelope as a stability criteria as will
eigenvalue minimisation under LMI constraints, |[17]. Fobe seen in the stabilisation section. All system poles hede a
the neutral case, which will be discussed further ahead, ttiwoughout this work were calculated via QPmMR/[18] and [19]
minimisation of i is done through a linear search, i.e., we
choose gug using the generalised eigenvalue problem (gevp)
and proceed through a linear search jorchecking on each B. Stability
step the feasibility of the LMIs. Since LMIs are convex and There are two types of stability that can be analysed and
gevp is quasi-convex, there is no need for initial values fabtained using the envelope.
convergence to the optimal solution. 1) Delay independent stability: Proposition[B shows that

In spite of the fact that this envelope is tighter thah [1}he existence of a solution fofl(3) and (4), for the modified
for A = 0, it follows from (3) thaty > 0, and therefore, system[(24), withy = d? — ¢ and\ = d, for somed > 0 and
the envelope is never closed on the left half-plane, which> 0 implies that the original systeril(1) is stable. Note also
implies that stability cannot be assessed with the enveiopethat, for A = d, after the change of variablds{24), all terms of
this present form. To circumvent this, we propose a changeinéquality [3) that have delays cancel each other. Thisieapl
coordinates through the new variable= z — d, with d > 0 that the criteria is delay independent.




80

Ref [1]

d=0 60 -
d=1.5

d=3

40

20 -

-20

-40

-60 -

-80

Fig. 1: Envelopes for different values dfand from previous Fig. 2: a-stability, « = 1
work in the literature

Theorem 1. Consider the time-delay systein [26). If there
exist matrice’ =7 > 0,Q; =Q; >0,Y; Vi € {0,...,N}

2) Delay dependent «o-stability: Is it possible to go one
) y cep “ y P 2 and positive scalarg, ¢, with ;1 = d*> — e, A = d, such that

step further and design a controller that guarantestability.

Making the change of variables= s + d, with d = d* + «, uT (AoQo +BoYU) oMo (ANQN +BNYN) o= ATN
d* > 0, a > 0, it implies that if an envelope lies completely | Qo
befored* on the z-plane, then it will lies completely on the . . 0 =0
left side of the vertical linék(s) = —« on thes-plan. . . R On
For this case, with: = (d*)? — ¢ and\ = d*, (@) becomes 5 (28)
and [3) are all satisfied, wher#; is given by [2%) andB; =
N Bed™i for all i € {0,..., N}, then the state-feedback control
uT > AOQOAIO + ZAiQiA§€2“”- (25) law (21), where the controller matrices are given Ry =
] Y;Q; ', stabilises the system.

Proof: Applying Schur's complement if_(28) we get exactly

Now the criteria is delay dependent. Furthermore[df (25) &) with A; + A; + B;K;, which completes the proof. O
satisfied fora = o* andr; = 77 foralli € {1--- N} then it
will remain «o-stable for allr; < 7*. Example 2: Taking the matrices—A, and —A;, from

- Example 1, withr = 0.4 and B = [0 1]/, the uncontrolled
system is unstable with poles 8194 and2.4125. Choosing
a=1,d =31, XA =d—- «a and applying Theorerl 1 we
achievea-stability as can be seen in Figure 2. The gains for

C. Sate-feedback for Retarded systems the controller are

We now address the stabilisation problem. Consider tHeK, | K1 | = [ 230.1100 —41.5189 | —1.0849 —4.8371 ].
system We can also impose, for exampl&; = 0 and still achieve
N a-stability. In that casek, = [298.9831 — 43.7406).
(t) =) A (t =)+ Bult), (26)  Using [20) for the change of variables, i.€.= (Ay) +
=0 [|A1]], we get

which we want to be controlled by means of a state feedba¢kK, | K1 | =[ 35.2114 —15.2267 | —1.0869 —4.5434 ].

control law ) ) _
which has not only a smaller gain norm but also a tighter

N envelope as can be seen in the Fidure 3.
u(t) = Z Kix(t—1;) € R™, (27) Remark 1: Results presented here are in some sense
i=0 complementary to those obtained from Lyapunov-Krasowiski

functionals. In general, Lyapunov-Krasoviskii method® ar
to be designed through LMlIs. This controller copes withble to cope with a larger class of systems, such as time-
project requirements, i.ex-stability, and adds a certain degreearying delays([26] and [27], as well as providing guaradtee
of robustness to the closed-loop system. As will be shown therformance metrics such &$., [28]. On the other hand,
controller can be memoryless, i.d(; «+ 0, Vi € {1,..., N} results built on frequency methods are more restricted with
or can even use only some of the delayed states. respect to the class of systems they may be applied, but are



then any characteristic roeg of equation[(3D) such that =
A + jw verifies

60 1 o] < /1. (33)

80

o Proof: The following inequality is always true, which is easily

20¢ 1 verifiable applying Schur’'s complement
ol « | HQhH/872)\Th,

[ ]
> 0.
Snge—()\—jw)Th |SO|2Q}:1 >0 (34)

-20
Multiplying both sides bydiag(./, \/L_) and then adding
o
the result to[(I7) we get

N

-40

-60 -

80 ‘ ZAiQiA;ef2ATT7 + ,uHQhH/efw‘Th .
-8 6 4 2 0 2 4 6 = N R
Z A;e*(A*Jw)Ti + SSH/E—(A—;W)T,I ZQ:1 I %le
Fig. 3: a-stability, o = 1 = = (35)
where we can apply Schur's complement and utilisé 0
h ly Schur’ | t and utilise (31) t
get
able to provide information on the position of poles, and N o Isol? oy -
therefore on performance metrics which are more directly pT >3y Q7+ u Q, DI (36)
related to them. =0
whereY £ Zf;o Aje~ Ot g0 He~ (M Haw)mh - Further-
[1l. NEUTRAL SYSTEMS more, from [(32) we have that
. N
Our goal here is to develop the envelopes for neutral-type 1 Isol? .. 1
systems. Consider the neutral time-delay linear systerh wit r> ZTQi T+ U TQ,'T, (37)
N + 1 delays, whose minimal realisation is given by o =0
which implies
N
-1
()= Ax({t—7)+Hi(t—1), (29) N sol2
2 < (Lot 2o 39)
=0

wherez(t) € R" is the state variabl®, =7 <7 < --- < 7n
and 7, are the delaysA; € R™*", for all ¢ € {0,...,N}
and H are real matrices. One sufficient condition for the ul > XTY*. (39)

exponential stability of this system is that all roots of the o
characteristic equation Proceeding in the same manner as the retarded case, mul-

tiplying the inequality [(3P) to the left by:;, and to the right
< N ) by 2% , wherez, is the left-eigenvector of associated to the
det =0,

Therefore, using this result with {836), it implies that

sI = Aje™*™ — sHe ™™ (30) eigenvalues, leads to
=0
are on the left side of a vertical link(s) = —a, with o > 0 [sol < V. (40)
[20]. The following Proposition generalises the envelope f O
neutral systems.
Proposition 4: Let A be any real number. If there exist One difficulty on applying this method lies on the necessity
matricesT = T' > 0, Q; = Q, > 0,Vi € {0,...,N}, of knowing |sp| to implement the LMI[(3R). Nevertheless, as

Qn = Qj}, > 0 and a scalay such that a consequence of the resplt> |so|?, we have thaﬁ%|2 >1,
N implying that whenever
uT > Z AiQiALe™ N 4y HQpH e 2A (32) T T T T
i=0 e Qo 0 0
and SIS T T e o .. 0 0]>0 (41)
* @00 A
* e . QON 8 >0, (32) s satisfied, ther[(32_) is also true. He_nce, one can[ude (41_) in
. . . . #Qh !ace of [(32) to obtain the results derived from the Proposti
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Fig. 4: Envelopes for different values df- Neutral-type Fig. 5: State-feedback# = 7, =2

A. Implementation 1}, Y;, Vi € {0,...,N}, Qn = @), > 0 and positive scalars
Now, we can make one more time the change of variablgs:, with 4 = d? — ¢, A = d, such that

s =z —d, with d > 0 and calculate the envelope for z. After

this, (30) becomes

wl (AOQ(J + B0Y0> e An11Qns1e ™ HQpe ™

. Qo 0 0
. N41 ) . . -
det (ZI — Ay = Y ApeTT - zHe) 0, 42 |. . S o ooE
k=1 . ° ° . lQh
where ~ ~ )
Ao = Ao+ dI and [32) are all satisfied, wher®l and A; for all i €
0TSt {0,...,N + 1} are given by [[4B) andB; = Bei™ for

A; = Ajed™ Vi€ {0,..., N},
ANJrl = —dHedTh',

all i € {0,...,N}, then the state-feedback controllér](27)
obtained with the gain matricds; = Y;»Qi‘l Vi e {0,...,N}
stabilises the system.

] dr,
H = He™, Proof: Applying Schur's complement if (47) withl < H
TN41 = Th- (43) andA; « A, + B;K; Vi€ {0,...,N}, we get
This allows us to perform the same technique used for N ~ ~
retarded systems. It remains valid, for the neutral case, th pT' > ZAiQiA’ie*”” +AN+1QN+1A’N+16’2’\T’L
conclusions of subsections II-B and 1I-C regarding delay i=0
independent stability and delay dependerdtability. + pHQuH' e~ 2 ™
Example 3: Consider the matrices N
A4 — [FL7073 0.6856/—2.5026 —1.05407 4, > AQiAe N+ pHQpH' e, (48)
[AolA1] [ 0.2279 —0.6368| —0.1856 —1.5715} (44) =0
and which is exactly [(3ll) completing the proof. O

0.0558  0.0360
[H]= {0.2747 —0.1084} : (45)

Figure[4 illustrates the envelopes far = 7, = 0.5.

The stabilisation of neutral delay systems is much more
involved than the one of retarded systems due to the possible
presence of an infinite number of poles in the right half-
B. State-feedback for Neutral systems plane. We already know from [25] (in the particular case of

) . _ commensurate delays) that no solution will be provided by

We can now adapt the previous result in devise a procedyi§sqreni if there is a chain of poles clustering the imaginar

able to design a state-feedback control lawl (27) for thealine,yis in the right half-plane.

neutral time-delay system
N

B(t) =Y A (t—7) + Hi (t — ) + Buf(t).

=0

Example 4: For the matriced (44) an@_(45), seel[21].1[22],
[23] and [24], the upper bound for the delay was given as

(46) 0.8418. Applying Theoreni 2, we designed the following con-

troller Ko = [—37.7924 — 20.7712], K| = [5.3363 3.7375]

Theorem 2: Consider the time-delay systef [46). If theravhich guarantees stability for all delays. We illustrate th

exist matricesT’ =T >0, Q;, =Q; >0,¥i € {0,...,N +

envelope forr; = 7, = 2 in Figure[®.



IV. CONCLUSIONS [23] M. Parlaki, Improved robust stability criteria and @gs of robust sta-
] bilizing controller for uncertain linear time-delay systs, International
In this paper we developed a new strategy, based on the Journal of Robust and Nonlinear Control 16 (2006) 599-636.

use of envelopes, to study stability and to design feedbd@fl J- Sun, G. P. Liu, J. Chen, Delay-dependent stabilitgt atabilization
of neutral time-delay systems, International Journal obd®b and

controllers for linear time-delay systems. We have also pro  nonjinear Control 19 (2009) 1364-1375.
vided a new method able to calculate those envelopes throuzg L. H. V. Nguyen, C. Bonnet, Stabilization of fractionaéutral systems

LMIs. Furthermore, this new method is able to cope both with ¥ O”E(Zdoe'a§’ and a chain of poles asymptotic to the imagimas,
ICFDA, (2014).

retarded and neutral delay systems. For retar(_:ied-typerayst [26] W. Kwon, B. Koo, S.M. Lee, Novel Lyapunov-Krasovskii rfational
the method was shown to be less conservative than standard with delay-dependent matrix for stability of time-varyidglay systems,

results from the literature, such as the eigenvalue appréas Applied Mathematics and Computation 320 (2018) 149-157.
[27] B. Zhou, Construction of strict Lyapunov-Krasovskiirictionals for

neUtraljtype systems, t_he ?nVelOpe. _deSign is ?ntir.el)'i"mQ time-varying time-delay systems, Automatica 107, (20183-397.
portraying a novel contribution. Additional work is stileeded [28] E. Fridman, U. Shaked, Delay-dependent stability @dg, control:

in order to better establish robustness properties of thtaade Cz%%séa”%agg time-varying delays, International JourfigCantrol, 76
and to deal with the output feedback and the filter design (2003) 48-60.
problems.
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