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Stability and Stabilisation Through Envelopes for
Retarded and Neutral Time-Delay Systems
Caetano B. Cardeliquio, André R. Fioravanti, Catherine Bonnet and Silviu-Iulian Niculescu.

Abstract—This paper deals with a new approach to develop an
envelope that engulfs all poles of a time-delay system. Through
LMIs we are able to determine envelopes for retarded and neutral
time-delay systems. The envelopes proposed are not only tighter
than the ones in the literature but, with our procedure, they can
also be applied to verify the stability of the system and design
state-feedback controllers which cope with design requirements
regarding α− stability.

Index Terms—Neutral-type, Retarded-type, Stabilisation, Sta-
bility, State-Feedback, Time-delay systems

I. I NTRODUCTION

Time-delay systems have instigated an increasingly interest
from the control community. The main reason is that they are
intrinsically coupled with almost every dynamical system.This
is due to delays originated from transport, processing time,
sampling, propagation time on networked systems, among
others. Sometimes it is not possible to neglect those delays
because they may cause bad performance or even instability.
Stability for time-delay systems was discussed, among others,
in [1], [2] and [3].

For the stabilisation through state feedback, delay-
independent controllers can be devised using Riccati equations
[4], [5], whereas the delay-dependent case was designed
by means of Lyapunov-Krasoviskii functionals in [6]–[8]. A
controller design approach through a finite LTI comparison
system was developed in [9]. The use of an envelope that
ensures that all poles are contained inside it was discussed
in [1]. Different types of envelopes were also discussed in
[10] and [11]. In any case, to the best of our knowledge, no
methods utilising envelopes were developed to test stability
nor to design controllers. In fact, in general, the envelope
extends to the right half-plane and therefore, it only provides a
region where the poles are allowed to be without any guarantee
about the stability of the system. In this work we provide a
different analysis for the use of envelopes. Instead of using a
singular value approach, such as in [1], our method is based
on Linear Matrix Inequalities (LMIs). We are able to provide
a new procedure to test stability for both retarded and neutral
time-delay systems. Furthermore, it allows to cope with some
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project requirements designing a state-feedback controller that
guaranteesα-stability.

Notation. Matrices are denoted by capital letters, whilst
small letters represent scalars and vectors. For real matrices
or vectors the symbol (′) indicates transpose and for complex
matrices or vectors the symbol (∗) denotes conjugate trans-
pose. The determinant of a matrixA is indicated bydet(A).
The sets of real, integer and natural numbers including zero
are denoted byR, Z andN, respectively. Floor is defined as
⌊x⌋ = max{m ∈ Z | m ≤ x}, x ∈ R. ℜ(.) is the real part of a
complex number. A left eigenvector is defined as a row vector
xL satisfyingxLA = λLxL, whereλL is a left eigenvalue of
the matrixA. For partitioned matrices the symbol• represents
each one of its Hermitian blocks. The inducedp-norm of a
matrix A is given by ‖A‖p, A ∈ Cn×m. Finally, X > 0
(X ≥ 0) denotes that the symmetric matrixX is positive
definite (positive semi-definite).

II. RETARDED SYSTEMS

Consider the retarded linear time-delay system withN

delays, whose minimal realisation is given by

ẋ(t) =
N
∑

i=0

Aix (t− τi) , (1)

wherex(t) ∈ Rn is the state variable,0 = τ0 < τ1 < · · · < τN
are the delays andAi ∈ R

n×n for all i ∈ {0, . . . , N}. This
system is exponentially stable if and only if all roots of its
characteristic equation

det

(

sI −
N
∑

i=0

Aie
−sτi

)

= 0 (2)

are in the open left half-plane [12].
The following Proposition introduces an envelope that en-

gulfs all of its poles.
Proposition 1: Let λ be any real number. If there exist

matricesT = T ′ > 0, Qi = Q′
i > 0, for all i ∈ {0, . . . , N}

and a scalarµ that satisfy

µT ≥
N
∑

i=0

AiQiA
′
ie

−2λτi (3)

and










T T . . . T

• Q0 0

• • . . . 0
• • • QN











≥ 0, (4)
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then any characteristic roots0 of equation (2) such thats0 =
λ+ ω verifies

|s0| ≤
√
µ. (5)

Proof: The following inequality is always true, which is easily
verifiable applying Schur’s complement

[

AiQiA
′
ie

−2λτi •
A′

ie
−(λ−ω)τi Q−1

i

]

≥ 0. (6)

Adding them for alli ∈ {0, . . . , N} leads to












N
∑

i=0

AiQiA
′
ie

−2λτi •
N
∑

i=0

A′
ie

−(λ−ω)τi

N
∑

i=0

Q−1
i













≥ 0, (7)

where we can apply Schur’s complement and utilise (3) to get

µT ≥ Σ

(

N
∑

i=0

Q−1
i

)−1

Σ∗, (8)

whereΣ ,
∑N

i=0 Aie
−(λ+ω)τi .

Notice that from (4)

T ≥
N
∑

i=0

TQ−1
i T. (9)

Now, multiplying (9), through the left and through the right,
by T−1 and taking the inverse on both sides of the inequality,
we get

T ≤
(

N
∑

i=0

Q−1
i

)−1

. (10)

Then, using this result in (8), it implies that

µT ≥ ΣTΣ∗. (11)

Finally, let s0 = λ + jω be an eigenvalue ofΣ associated
with a right-eigenvectorv. It is well known, [13] and [14],
that left and right eigenvalues are equal. Hence,s0 is also an
eigenvalue ofΣ associated with a left-eigenvectorxL, with
dimension1×n. In this case, we can multiply inequality (11)
to the left byxL and to the right by its conjugated transpose,
x∗
L, obtaining

µxLTx
∗
L ≥ xLΣTΣ

∗x∗
L (12)

and sincexL 6= 0 andT > 0,

µ ≥ (λ+ ω)(λ− ω), (13)

leading to

|s0| ≤
√
µ, (14)

which concludes the proof. �

This result produces a better envelope than previous works
such as [1]. This will be proved in the next Lemma and
evidenced in Example 1.

Let us analyse the envelope obtained from the eigenvalue
approach to hereafter introduce a Lemma that compares it with
the LMI approach. The envelope in [1] is given by

|s0| ≤
N
∑

i=0

‖Ai‖2 e−λτi , (15)

which is equivalent, see [15], to|s0| ≤ ν, where ν is the
optimal solution of the following optimisation problem

min
ν,νi

ν,

subject to ν ≥
N
∑

i=0

νi,

ν2i I ≥ A′
iAie

−2λτi , (16)

for all i ∈ {0, . . . , N}.andνi ≥ 0, for all i ∈ {0, . . . , N}.
The next Lemma shows that the envelope in [1] is a

particular case of the class of envelopes defined by Proposition
1.

Lemma 1: Let s0 = λ + ω be a characteristic solution of
equation (2) and letν and νi be the optimal solution of the
optimisation problem (16). Then (3) and (4) are both satisfied
with the particular choice ofT = ν−1I, Qi = ν−1

i I and
µ = ν2.

Proof: From Schur Complement, (4) is equivalent to

T ≥
N
∑

i=0

TQ−1
i T. (17)

It is easy to see that (17) is satisfied wheneverT = ν−1I

andQi = ν−1
i I.

Applying the same substitutions on (3), we get

µν−1I ≥
N
∑

i=0

Aiν
−1
i A′

ie
−2λτi (18)

and remembering thatµ = ν2, we have

N
∑

i=0

νiI ≥
N
∑

i=0

Aiν
−1
i A′

ie
−2λτi , (19)

which satisfies the conditions in (16). �

Therefore, the envelope in [1] is a particular case of Propo-
sition 1 for specific choices ofT , Qi andµ. Having flexibility
on those three variables allows the proposed new envelope to
provide tighter (or at least equal) bounds than the envelope
aforementioned.

A. Implementation

First of all, let us introduce the definition of closeness of
an envelope. Letµ and λ be defined by Proposition 1 and
let λ ∈ [λmin, λmax]. If there is a pointλ∗ in this interval
such thatµ = (λ∗)2, we defineλ∗ + ε, with ε > 0 arbitrarily
small, as the closure point of the envelope. This means that
the envelope lies completely on the left side of the vertical
line ℜ(s) = λ∗ + ε. Furthermore, we say that the envelope is
closed wheneverµ < λ2.
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The choice ofλmin is completely free. In [10], a simple
bound for the rightmost root of (2) was given, which can easily
be generalised toN delays:

ℜ(s) ≤ µ(A0) +

N
∑

i=1

‖Ai‖ = ℓ, (20)

whereµ(.) is a matrix measure, see [10] and [16]. We suggest
to takeλmax = 2|ℓ|.

The following propositions illustrate, respectively, howto
depict the envelope and how one can use the envelope to
analyse the stability of a time delay system. Also, it shows
the behaviour of the envelope as a function ofλ.

Proposition 2: Let λ ∈ [λmin, λmax] and letµ be given by
(3). If µ ≥ λ2 then the envelope on the complex plane is
defined by the set of points (λ, ω) whereω = ±

√

µ− λ2. If
for a particularλ∗, µ∗ < (λ∗)2 then the envelope is closed
for everyλ > λ∗.
Proof: From equation (14) we have thatλ2 + ω2 ≤ µ which
directly implies thatω = ±

√

µ− λ2, for µ ≥ λ2. Obviously,
(λ, ω) belongs to the envelope. Now, suppose that for a certain
λ∗, we haveµ∗ < (λ∗)2. As AiQiA

′
i ≥ 0 ande−2λτi is non-

increasing, we have thatµ < µ∗ for every λ > λ∗ which
means, by definition, that the envelope is closed. �

Proposition 3: Let λ0 ∈ R andµ = λ2
0−ε, for someε > 0.

If there existT,Qi > 0, for all i ∈ {0, . . . , N} such that (3)
and (4) are both satisfied, then the envelope lies entirely on
the left side of the vertical axis crossingλ0.
Proof: From (14) we have that ifλ + ω is a root of the
system, then

|λ+ ω| ≤
√

λ2
0 − ε, (21)

which can be rewritten as

λ2 + ω2 ≤ λ2
0 − ε. (22)

Notice that this expression is never going to be satisfied
with λ ≥ λ0, which implies that it cannot exist parts of the
envelope to the right side of the vertical axis passing through
λ0. �

The computational procedure to obtain the envelope is
summarized in the Algorithm 1. The minimization ofµ, for the
retarded case, is achieved through the traditional generalised
eigenvalue minimisation under LMI constraints, [17]. For
the neutral case, which will be discussed further ahead, the
minimisation of µ is done through a linear search, i.e., we
choose aµ0 using the generalised eigenvalue problem (gevp)
and proceed through a linear search onµ checking on each
step the feasibility of the LMIs. Since LMIs are convex and
gevp is quasi-convex, there is no need for initial values for
convergence to the optimal solution.

In spite of the fact that this envelope is tighter than [1],
for λ = 0, it follows from (3) thatµ ≥ 0, and therefore,
the envelope is never closed on the left half-plane, which
implies that stability cannot be assessed with the envelopein
this present form. To circumvent this, we propose a change of
coordinates through the new variables = z − d, with d > 0

Algorithm 1: Envelope Procedure
Data: System MatricesAi, Delaysτi
Initialise: Define a real interval[λmin, λmax] for λ
and a stepp, 0 < p ≤ (λmax − λmin)
Let κ ∈ N

For eachκ ∈
{

0, · · · ,
⌊

λmax − λmin

p

⌋}

Defineλκ = λmin + κp

Minimise µκ subject to (3) and (4)
If µκ ≥ λ2

κ then
ωκ ←

√

µκ − λ2
κ

Else
End Procedure

End If
Return Qiκ, Tκ, µκ andωκ

End For

and hereafter calculate the envelope forz. With this change
of variables, (2) becomes

det

(

zI − (A0 + dI)−
N
∑

i=1

Aie
−zτiedτi

)

= 0, (23)

allowing us to work with an equivalent problem on the new
parameters

Ã0 = A0 + dI,

Ãi = Aie
dτi, for all i ∈ {1, . . . , N}. (24)

On the z-plan the envelope will remain open forλ = 0,
however, if it is closed beforez = d, it will be closed before
the origin on thes-plan, guaranteeing stability for the original
system.

Example 1: Consider the following system matrices
[

A0 A1

]

=

[

0 1 0 0.5413

−2 −3 −1.0827 −1.6240

]

.

Applying Algorithm 1, for τ1 = 1, to this system, we
calculate the envelope and compare the result with reference
[1]. Figure 1 shows this comparison and it also illustrates
the behaviour of the envelope for different values ofd. An
interesting remark is that ford = 3 we achieved a tighter
envelope closer to the poles and we can also see that the point
where the envelope ends is on the left side of the plane. This
allows us to use the envelope as a stability criteria as will
be seen in the stabilisation section. All system poles here and
throughout this work were calculated via QPmR, [18] and [19].

B. Stability

There are two types of stability that can be analysed and
obtained using the envelope.

1) Delay independent stability: Proposition 3 shows that
the existence of a solution for (3) and (4), for the modified
system (24), withµ = d2 − ε andλ = d, for somed > 0 and
ε > 0 implies that the original system (1) is stable. Note also
that, forλ = d, after the change of variables (24), all terms of
inequality (3) that have delays cancel each other. This implies
that the criteria is delay independent.



4

-4 -3 -2 -1 0 1 2 3
-50

-40

-30

-20

-10

0

10

20

30

40

50

Ref [1]
d=0
d=1.5
d=3

Fig. 1: Envelopes for different values ofd and from previous
work in the literature

2) Delay dependent α-stability: Is it possible to go one
step further and design a controller that guaranteesα-stability.
Making the change of variablesz = s+ d, with d = d∗ + α,
d∗ > 0, α > 0, it implies that if an envelope lies completely
befored∗ on thez-plane, then it will lies completely on the
left side of the vertical lineℜ(s) = −α on thes-plan.

For this case, withµ = (d∗)2− ε andλ = d∗, (3) becomes

µT ≥ Ã0Q0Ã
′
0 +

N
∑

i=1

AiQiA
′
ie

2ατi . (25)

Now the criteria is delay dependent. Furthermore, if (25) is
satisfied forα = α∗ andτi = τ∗i for all i ∈ {1 · · ·N} then it
will remain α-stable for allτi ≤ τ∗i .

C. State-feedback for Retarded systems

We now address the stabilisation problem. Consider the
system

ẋ(t) =
N
∑

i=0

Aix (t− τi) + Bu(t), (26)

which we want to be controlled by means of a state feedback
control law

u(t) =

N
∑

i=0

Kix (t− τi) ∈ R
m, (27)

to be designed through LMIs. This controller copes with
project requirements, i.e.,α-stability, and adds a certain degree
of robustness to the closed-loop system. As will be shown the
controller can be memoryless, i.e.,Ki ← 0, ∀i ∈ {1, . . . , N}
or can even use only some of the delayed states.

-8 -6 -4 -2 0 2 4 6
-80

-60

-40

-20

0

20

40

60

80

Fig. 2: α-stability, α = 1

Theorem 1: Consider the time-delay system (26). If there
exist matricesT = T ′ > 0, Qi = Q′

i > 0, Yi ∀i ∈ {0, . . . , N}
and positive scalarsd, ε, with µ = d2 − ε, λ = d, such that












µT
(

Ã0Q0 +B0Y0

)

e−λτ0 . . .
(

ÃNQN +BNYN

)

e−λτN

• Q0 0

• • . . . 0
• • • QN













≥ 0

(28)
and (4) are all satisfied, wherẽAi is given by (24) andBi =
Bedτi for all i ∈ {0, . . . , N}, then the state-feedback control
law (27), where the controller matrices are given byKi =
YiQ

−1
i , stabilises the system.

Proof: Applying Schur’s complement in (28) we get exactly
(3) with Ai ← Ãi +BiKi, which completes the proof. �

Example 2: Taking the matrices−A0 and −A1, from
Example 1, withτ = 0.4 andB = [0 1]′, the uncontrolled
system is unstable with poles at1.3194 and2.4125. Choosing
α = 1, d = 31, λ = d − α and applying Theorem 1 we
achieveα-stability as can be seen in Figure 2. The gains for
the controller are
[

K0 K1

]

=
[

230.1100 −41.5189 −1.0849 −4.8371
]

.

We can also impose, for example,K1 = 0 and still achieve
α-stability. In that caseK0 = [298.9831 − 43.7406].

Using (20) for the change of variables, i.e.,d = µ(A0) +
‖A1‖, we get
[

K0 K1

]

= [ 35.2114 −15.2267 −1.0869 −4.5434 ] .

which has not only a smaller gain norm but also a tighter
envelope as can be seen in the Figure 3.

Remark 1: Results presented here are in some sense
complementary to those obtained from Lyapunov-Krasoviskii
functionals. In general, Lyapunov-Krasoviskii methods are
able to cope with a larger class of systems, such as time-
varying delays [26] and [27], as well as providing guaranteed
performance metrics such asH∞ [28]. On the other hand,
results built on frequency methods are more restricted with
respect to the class of systems they may be applied, but are
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Fig. 3: α-stability, α = 1

able to provide information on the position of poles, and
therefore on performance metrics which are more directly
related to them.

III. N EUTRAL SYSTEMS

Our goal here is to develop the envelopes for neutral-type
systems. Consider the neutral time-delay linear system with
N + 1 delays, whose minimal realisation is given by

ẋ(t) =

N
∑

i=0

Aix (t− τi) +Hẋ (t− τh) , (29)

wherex(t) ∈ Rn is the state variable,0 = τ0 < τ1 < · · · < τN
and τh are the delays,Ai ∈ Rn×n, for all i ∈ {0, . . . , N}
and H are real matrices. One sufficient condition for the
exponential stability of this system is that all roots of the
characteristic equation

det

(

sI −
N
∑

i=0

Aie
−sτi − sHe−sτh

)

= 0, (30)

are on the left side of a vertical lineℜ(s) = −α, with α > 0
[20]. The following Proposition generalises the envelope for
neutral systems.

Proposition 4: Let λ be any real number. If there exist
matricesT = T ′ > 0, Qi = Q′

i > 0, ∀i ∈ {0, . . . , N},
Qh = Q′

h > 0 and a scalarµ such that

µT ≥
N
∑

i=0

AiQiA
′
ie

−2λτi + µHQhH
′e−2λτh (31)

and
















T T . . . T T

• Q0 0 0

• • . . . 0 0
• • • QN 0

• • • • µ

|s0|2
Qh

















> 0, (32)

then any characteristic roots0 of equation (30) such thats0 =
λ+ ω verifies

|s0| ≤
√
µ. (33)

Proof: The following inequality is always true, which is easily
verifiable applying Schur’s complement

[

HQhH
′e−2λτh •

s∗0H
′e−(λ−ω)τh |s0|2Q−1

h

]

≥ 0. (34)

Multiplying both sides bydiag(
√
µ,

1√
µ
) and then adding

the result to (7) we get












N
∑

i=0

AiQiA
′

ie
−2λτi + µHQhH

′

e
−2λτh •

N
∑

i=0

A
′

ie
−(λ−ω)τi + s

∗

0H
′

e
−(λ−ω)τh

N
∑

i=0

Q
−1
i +

|s0|
2

µ
Q

−1
h













≥ 0,

(35)

where we can apply Schur’s complement and utilise (31) to
get

µT ≥ Σ

(

N
∑

i=0

Q−1
i +

|s0|2
µ

Q−1
h

)−1

Σ∗, (36)

whereΣ ,
∑N

i=0 Aie
−(λ+ω)τi + s0He−(λ+ω)τh. Further-

more, from (32) we have that

T >

N
∑

i=0

TQ−1
i T +

|s0|2
µ

TQ−1
h T, (37)

which implies

T <

(

N
∑

i=0

Q−1
i +

|s0|2
µ

Q−1
h

)−1

. (38)

Therefore, using this result with (36), it implies that

µT ≥ ΣTΣ∗. (39)

Proceeding in the same manner as the retarded case, mul-
tiplying the inequality (39) to the left byxL and to the right
by x∗

L, wherexL is the left-eigenvector ofΣ associated to the
eigenvalues0, leads to

|s0| ≤
√
µ. (40)

�

One difficulty on applying this method lies on the necessity
of knowing |s0| to implement the LMI (32). Nevertheless, as
a consequence of the resultµ ≥ |s0|2, we have that

µ

|s0|2
≥ 1,

implying that whenever














T T . . . T T

• Q0 0 0

• • . . . 0 0
• • • QN 0
• • • • Qh















> 0 (41)

is satisfied, then (32) is also true. Hence, one can use (41) in
place of (32) to obtain the results derived from the Propostion
4.
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Fig. 4: Envelopes for different values ofd - Neutral-type

A. Implementation

Now, we can make one more time the change of variables
s = z − d, with d > 0 and calculate the envelope for z. After
this, (30) becomes

det

(

zI − Ã0 −
N+1
∑

k=1

Ãke
−zτk − zH̃e−zτh

)

= 0, (42)

where

Ã0 = A0 + dI,

Ãi = Aie
dτi , ∀i ∈ {0, . . . , N},

ÃN+1 = −dHedτh,

H̃ = Hedτh,

τN+1 = τh. (43)

This allows us to perform the same technique used for
retarded systems. It remains valid, for the neutral case, the
conclusions of subsections II-B and II-C regarding delay
independent stability and delay dependentα-stability.

Example 3: Consider the matrices

[A0 A1 ] =
[−1.7073 0.6856 −2.5026 −1.0540

0.2279 −0.6368 −0.1856 −1.5715
]

(44)

and
[H ] =

[

0.0558 0.0360
0.2747 −0.1084

]

. (45)

Figure 4 illustrates the envelopes forτ1 = τh = 0.5.

B. State-feedback for Neutral systems

We can now adapt the previous result in devise a procedure
able to design a state-feedback control law (27) for the linear
neutral time-delay system

ẋ(t) =

N
∑

i=0

Aix (t− τi) +Hẋ (t− τh) +Bu(t). (46)

Theorem 2: Consider the time-delay system (46). If there
exist matricesT = T ′ > 0, Qi = Q′

i > 0, ∀i ∈ {0, . . . , N +
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Fig. 5: State-feedback -τ1 = τh = 2

1}, Yi, ∀i ∈ {0, . . . , N}, Qh = Q′
h > 0 and positive scalars

d, ε, with µ = d2 − ε, λ = d, such that


















µT
(

Ã0Q0 +B0Y0

)

e−λτ0 . . . ÃN+1QN+1e
−λτh H̃Qhe

−λτh

• Q0 0 0

• • . . . 0 0
• • • QN+1 0

• • • • 1

µ
Qh



















≥ 0

(47)
and (32) are all satisfied, wherẽH and Ãi for all i ∈
{0, . . . , N + 1} are given by (43) andBi = Bedτi for
all i ∈ {0, . . . , N}, then the state-feedback controller (27)
obtained with the gain matricesKi = YiQ

−1
i ∀i ∈ {0, . . . , N}

stabilises the system.
Proof: Applying Schur’s complement in (47) withH ← H̃

andAi ← Ãi +BiKi ∀i ∈ {0, . . . , N}, we get

µT ≥
N
∑

i=0

AiQiA
′
ie

−2λτi + ÃN+1QN+1Ã
′
N+1e

−2λτh

+ µHQhH
′e−2λτh

≥
N
∑

i=0

AiQiA
′
ie

−2λτi + µHQhH
′e−2λτh , (48)

which is exactly (31) completing the proof. �

The stabilisation of neutral delay systems is much more
involved than the one of retarded systems due to the possible
presence of an infinite number of poles in the right half-
plane. We already know from [25] (in the particular case of
commensurate delays) that no solution will be provided by
Theorem 2 if there is a chain of poles clustering the imaginary
axis in the right half-plane.

Example 4: For the matrices (44) and (45), see [21], [22],
[23] and [24], the upper bound for the delay was given as
0.8418. Applying Theorem 2, we designed the following con-
troller K0 = [−37.7924 − 20.7712], K1 = [5.3363 3.7375]
which guarantees stability for all delays. We illustrate the
envelope forτ1 = τh = 2 in Figure 5.
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IV. CONCLUSIONS

In this paper we developed a new strategy, based on the
use of envelopes, to study stability and to design feedback
controllers for linear time-delay systems. We have also pro-
vided a new method able to calculate those envelopes through
LMIs. Furthermore, this new method is able to cope both with
retarded and neutral delay systems. For retarded-type systems,
the method was shown to be less conservative than standard
results from the literature, such as the eigenvalue approach. For
neutral-type systems, the envelope design is entirely original
portraying a novel contribution. Additional work is still needed
in order to better establish robustness properties of the method
and to deal with the output feedback and the filter design
problems.
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