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Abstract. The periodogram function is widely used to estimate the spectral density of
time series processes and it is well-known that this function is also very sensitive to outliers.
In this context, this paper deals with robust estimation functions to estimate the spectral
density of univariate and periodic time series with short and long-memory properties. The
two robust periodogram functions discussed and compared here were previously explicitly
and analytically derived in Fajardo et al. (2018), Reisen et al. (2017) and Fajardo et al.
(2009) in the case of long-memory processes. The first two references introduce the robust
periodogram based on M−regression estimator. The third reference is based on the robust
autocovariance function introduced in Ma and Genton (2000) and studied theoretically and
empirically in Lévy-Leduc et al. (2011). Here, the theoretical results of these estimators are
discussed in the case of short and long-memory univariate time series and periodic processes.
A special attention is given to the M− periodogram for short-memory processes. In this case,
Theorem 1 and Corollary 1 derive the asymptotic distribution of this spectral estimator. As
the application of the methodologies, robust estimators for the parameters of AR, ARFIMA
and PARMA processes are discussed. Their finite sample size properties are addressed and
compared in the context of absence and presence of atypical observations. Therefore, the
contributions of this paper come to fill some gaps in the literature of modeling univariate
and periodic time series to handle additive outliers.

Time series, M -estimation, QN -estimation, long-memory, periodic processes, robustness.

1 Introduction

It is well known that outlying observations may completely destroy most of the standard estimators
and several authors developed robust approaches in order to mitigate the impact of additive
outliers, specially in time series models which is the process considered in this paper. However,
most of the work is devoted to the robust estimation of the location, scale and other statistical
tools. In this direction, the classical periodogram is the natural estimator of the spectral density
of a time series and recent studies indicate that the periodogram is highly sensitive to the presence
of outliers, and, thus, it becomes useless in any sub-sequential analysis. As a viable approach to
attenuate this issue, the M−regression method applied to build alternative spectral estimators
given in Fajardo et al. (2018) and Reisen et al. (2017)) and the QN−periodogram introduced in
Fajardo et al. (2009) are some methodologies proposed recently in the literature of time series to
handle additive outliers.

The M -periodogram is discussed in Fajardo et al. (2018) and Reisen et al. (2017) for the
long-memory time series. The short-range process was still an open problem and is one main
contribution of this paper. The asymptotic property of the M−periodogram is derived for the
process which is identified to have short-memory property such as an ARMA model (Theorem 1).
As a second contribution of this paper, the recent results given Fajardo et al. (2018) and Reisen
et al. (2017), for long-memory model, are summarized and these methods are compared empirically
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with QN−periodogram and the classical periodogram which is widely used in modelling time series
data. Here, these methods are empirically studied and compared in time series with and without
additive outliers with the aim to verify their finite sample size robustness properties, that is, to
verify their capacity to accommodate the additive outlier’s effect.

The use of M− and QN−periodograms in periodic ARMA (PARMA) models is also discussed
here in the context of handling atypical or aberrant observations (additive outliers). This becomes
the third contribution of this paper.

This paper is organized as follows: Section 2 discusses robust periodograms based onM−regression
method and QN function for short and long-memory time series. Section 3 presents some simu-
lation results for the methods discussed in Section 2. Section 4 gives some applications of the
alternative periodograms in short and long-memory and periodic processes.

2 Robust periodograms

Let {Yt}t∈Z be a second order stationary process. Since this paper deals with short and long-
memory processes, additional assumptions on the process {Yt}t∈Z will be given in the sequel
of the paper. For a sample {Y1, Y2, ..., YN}, the classical periodogram function, at the Fourier
frequency λj = 2πj/N, j = 1, . . . , [N/2], is defined as

IN (λj) =
1

2πN

∣∣∣∣∣
N∑
k=1

Yk exp(ikλj)

∣∣∣∣∣
2

. (1)

Next subsections deal with alternative periodogram functions which present similar performance
(from theoretical and empirical meaning) to IN (λ), λ ∈ (−π, π), but with robustness property
against additive outliers and asymmetric and heavy-tail distributions.

2.1 M-periodogram

One alternative way to derive the periodogram function IN (λj) is based on the Least Square (LS)
estimates of a two-dimensional vector β′ = (β(1), β(2)) in the linear regression model

Yi = c′Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R2 , (2)

where εi denotes the deviation of Yi from c′Niβ and E(εi) = 0 and E(ε2i ) <∞. In the sequel (εi) is
assumed to be a function of a stationary Gaussian process, see (10) for a precise definition. Then,

β̂LS
N (λj) = Arg min

β∈R2

N∑
i=1

(Yi − c′Ni(λj)β)2 , (3)

where
c′Ni(λj) = (cos(iλj) sin(iλj)) . (4)

The solution of (3) is

β̂LS
N (λj) = (C ′C)−1C ′Y , (5)

where Y = (Y1, . . . , YN )′, C and C ′C are defined by

C =


cos(λj) sin(λj)
cos(2λj) sin(2λj)

...
...

cos(Nλj) sin(Nλj)

 (6)

and

C ′C =

( ∑N
k=1 cos(kλj)

2
∑N
k=1 cos(kλj) sin(kλj)∑N

k=1 cos(kλj) sin(kλj)
∑N
k=1 sin(kλj)

2

)
=
N

2
Id2 (7)
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where Id2 is the identity matrix 2 by 2. Hence,

β̂LS
N (λj) =

2

N
C ′Y =

2

N

(
N∑
k=1

Yk cos(kλj)

N∑
k=1

Yk sin(kλj)

)′
= (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′. (8)

In view of (1),

IN (λj) =
N

8π
‖β̂LS

N (λj)‖2=
N

8π

(
(β̂

LS,(1)
N (λj))

2 + (β̂
LS,(2)
N (λj))

2
)

=: ILSN (λj) , (9)

where ‖·‖ denotes the classical Euclidean norm and β̂LS
N (λj) = (β̂

LS,(1)
N (λj), β̂

LS,(2)
N (λj))

′ is the
least square estimates of β′ = (β(1), β(2)) see, for example, Fajardo et al. (2018) and Reisen et al.
(2017) and references therein. Note that IN (λj) (9) can be derived for different choices of εi,
i = 1, . . . , N .

It is supposed here that
εi = G(ηi) . (10)

In (10), G is a non null real-valued and skew symmetric measurable function (i.e. G(−x) = −G(x),
for all x) and (ηi)i≥1 is a stationary Gaussian process with zero mean and unit variance. Additional
assumptions of (ηi)i≥1 will be given in the sequel of the paper.

Let ψ(.) be a function satisfying the following assumptions.

(A1) 0 < E[ψ2(ε1)] <∞ .

(A2) The function ψ is absolutely continuous with its almost everywhere derivative ψ′ satisfying
E[|ψ′(ε1)|] <∞ and such that the function z 7→ E[|ψ′(ε1 − z)− ψ′(ε1)|] is continuous at zero.

(A3) ψ is nondecreasing, E[ψ′(ε1)] > 0 and E[ψ′(ε1)2] <∞.

(A4) ψ is skew symmetric, i.e. ψ(−x) = −ψ(x), for all x.

It is now introduced the M -periodogram based on the M -estimator β̂M
N of the parameter β defined

in Equation (2). The M -estimator β̂M
N = (β̂

(1)
N , β̂

(2)
N )′ is defined as the solution (t1, t2) of

N∑
i=1

cos(iλj)ψ(Yi − cos(iλj)t1) = 0 and

N∑
i=1

sin(iλj)ψ(Yi − sin(iλj)t2) = 0. (11)

β̂
(1)
N and β̂

(2)
N can be also seen as the minimizers with respect to t1 and t2, respectively, of∣∣∣∣∣

N∑
i=1

cos(iλj)ψ(Yi − cos(iλj)t1)

∣∣∣∣∣ and

∣∣∣∣∣
N∑
i=1

sin(iλj)ψ(Yi − sin(iλj)t2)

∣∣∣∣∣ , (12)

where ψ satisfies the same assumptions as in Koul and Surgailis (2000). By analogy to (9), the
robust periodogram IMN (λj) at λj = 2πj/N, j = 1, . . . , [N/2], is defined by

IMN (λj) =
N

8π
‖β̂M

N (λj)‖2=
N

8π

(
(β̂

(1)
N (λj))

2 + (β̂
(2)
N (λj))

2
)
. (13)

2.1.1 M−Periodogram in short-memory processes In this subsection the asymptotic prop-
erties of β̂M

N are established in the short-range dependence framework. For this, the following
assumptions are introduced. This result helps to establish the theoretical properties of the robust
periodogram IMN given in Corollary 1.

(A5) Let ηt, t ∈ Z, be i.i.d. standard Gaussian random variables and let aj be real numbers such
that

∑
j≥0|aj |<∞ and a0 = 1. Then,

εi =
∑
j≥0

ajηi−j .
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(A6) ψ is the Huber function that is ψ(x) = max[min(x, c),−c], for all x in R, where c is a positive
constant.

Theorem 1. Assume that (A5) and (A6) hold and that β = 0 in (2) so that Yi = εi. Then, for

any fixed j, β̂M
N defined by (12) satisfies√

N

2
(F (c)− F (−c))β̂M

N (λj)
d−→ N

(
0,∆(j)

)
, N →∞ ,

where F is the c.d.f. of ε1 and

∆(j) =
∑
k∈Z

E{ψ(ε0)ψ(εk)}
(

cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)
.

Theorem 1 is proved in Section 5.

Corollary 1. Under the assumptions of Theorem 1, IMN (λj) defined in (13) satisfies for any fixed
j,

IMN (λj)
d−→ X2 + Y 2

4π(F (c)− F (−c))2
, as N →∞ ,

where

X ∼ N

(
0,
∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)

)
, Y ∼ N

(
0,
∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)

)

and
Cov(X,Y ) =

∑
k∈Z

E{ψ(ε0)ψ(εk)} sin(kλj).

The proof of Corollary 1 is a straightforward consequence of Theorem 1 and (13).

2.1.2 M-periodogram for long-memory processes Now, consider the following assumption
for (ηi)i≥1 in the case of long-memory process. The results in this subsection are well detailed in
Fajardo et al. (2018).

(A7) (ηi)i≥1 is a stationary zero-mean Gaussian process with covariances ρ(k) = E(η1ηk+1) satisfy-
ing:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where the function L is slowly varying at infinity and is positive for large k. Recall that a
slowly varying function L(x), x > 0 is such that L(xt)/L(x) → 1, as x → ∞ for any t > 0.
Constants and logarithms are example of slowly varying functions.
Moreover, the spectral density f of (ηi)i≥1 can be expressed as:

f(λ) = |1− exp(−iλ)|−2df∗(λ) , (14)

where d ∈ (0, 1/2) and f∗ is an even, positive, continuous function on (−π, π], bounded above
and bounded away from zero.

Note that
D = 1− 2d , (15)

where D is defined in Assumption (A7) and d is the standard long-memory parameter notation
given in the literature of long-memory models. The fact that (ηi)i≥1 is required to satisfy (A7)
essentially means that both L(x), x ≥ 1 and f∗(λ), λ in (−π, π] satisfy some smoothness properties.
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Theorem 2. Assume that (A7), (A1), (A2), (A3) and (A4) hold and that β = 0 in (2) so that

Yi = εi. Then, for any fixed j, β̂M
N (λj) defined by (12) satisfies√

N

2
β̂M
N (λj) =

J1
E[ψ′(ε1)]

{√
2

N

N∑
i=1

(
cos(iλj)
sin(iλj)

)
ηi

}
+ op(N

(1−D)/2) , as N →∞ , (16)

where J1 = E[ψ(G(η))η] 6= 0, η being a standard Gaussian random variable and D = 1 − 2d.
Moreover,

ND/2β̂M
N (λj)

d−→ N
(

0,
J2
1

(E[ψ′(ε1)])2
Γ̃

)
, N →∞ , (17)

where

Γ̃ = lim
N→∞

4

N2−D

∑
1≤k,`≤N

cNk(λj)c
T
N`(λj)ρ(k − `) (18)

= 8π × (2πj)−2df∗(0)

(
L1 0
0 L2

)
. (19)

In Relation (18), the vector cNk(λj) is defined in (4),

L1 =
1

π

∫
R

sin2(λ/2)

(2πj − λ)2

∣∣∣∣ λ2πj
∣∣∣∣−2d dλ− 1

π

∫
R

sin2(λ/2)

(2πj − λ)(2πj + λ)

∣∣∣∣ λ2πj
∣∣∣∣−2d dλ , (20)

and

L2 =
1

π

∫
R

sin2(λ/2)

(2πj − λ)2

∣∣∣∣ λ2πj
∣∣∣∣−2d dλ+

1

π

∫
R

sin2(λ/2)

(2πj − λ)(2πj + λ)

∣∣∣∣ λ2πj
∣∣∣∣−2d dλ . (21)

Corollary 2. Under the assumptions of Theorem 2, the periodogram IMN defined in (13) satisfies

ND−1IMN (λj)
d−→ (Z2

1 + Z2
2 ) , as N →∞ , (22)

where (Z1, Z2) is a zero-mean uncorrelated Gaussian vector with covariance matrix equal to

J2
1

8π(E[ψ′(ε1)])2
Γ̃ , (23)

with Γ̃ defined in (18).

Theorem 2 and Corollary 2 are proved in Fajardo et al. (2018).

2.2 QN -periodogram

Another possible approach to obtain the classical periodogram (1) is to write it in terms of the
sample autocovariance function

IN (λj) =
1

2π

N−1∑
h=−(N−1)

γ̂(h) cos(hλj), (24)

where λj = 2πj/N, j = 1, . . . , [N/2] and γ̂(h) is the classical sample autocovariance function for a
sample {Y1, ..., YN} .

A straightforward approach to robustify 24 is to plug in a robust autocovariance function
replacing the classical one. This methodology is now addressed.

For a sample x1, ..., xN Rousseeuw and Croux (1993) proposed a robust scale estimator function
QN (·) which is based on the τth order statistic of

(
N
2

)
distances {|xj − xk|, j < k}, and can be

written as
QN (x) = κ× {|xj − xk|; j < k}(τ), (25)



6 Reisen et al.

where κ is a constant used to guarantee consistency (κ = 2.2191 for the Gaussian distribution)
and τ = b(

(
N
2

)
+ 2)/4c+ 1. The above function can be evaluated using the algorithm proposed by

Croux and Rousseeuw (1992), which is computationally efficient.
Based on QN (·), Ma and Genton (2000) proposed a highly robust estimator for the autoco-

variance function:

γ̂QN (h) =
1

4

[
Q2
N−h(u + v)−Q2

N−h(u− v)
]
, (26)

where u and v are vectors containing the initial N−h and the final N−h observations of x1, ..., xN ,
respectively. The robust estimator for the autocorrelation function is

ρ̂QN (h) =
Q2
N−h(u + v)−Q2

N−h(u− v)

Q2
N−h(u + v) +Q2

N−h(u− v)
. (27)

It can be shown that |ρ̂QN (h)|≤ 1 for all h.
Now, returning to (24), the robust QN -periodogram for a sample {Y1, ..., YN} is defined by

IQNN (λj) =
1

2π

N−1∑
h=−(N−1)

γ̂QN (h) cos(hλj), (28)

where λj = 2πj/N, j = 1, . . . , [N/2].

The theoretical properties of IQNN are still under study. Therefore, in the sequel, the asymptotic
properties of γ̂QN are summarized for short and long memory processes. These are well detailed
in Lévy-Leduc et al. (2011).

2.2.1 Main asymptotic results for short memory process In the short-memory scenario,
the process under study (Yi)i≥1 satisfies the following assumption (see, also, Lévy-Leduc et al.
(2011)):

(A8) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance sequence γ(h) =
E(Y1Yh+1) satisfying: ∑

h≥1

|γ(h)|<∞ .

Theorem 3. Assume that (A8) holds and let h be a non negative integer. Then, the autocovariance
estimator γ̂QN (h) satisfies the following Central Limit Theorem:

√
N (γ̂QN (h)− γ(h))

d−→ N (0, σ̌2
h), N →∞,

where
σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2

∑
k≥1

E[ζ(Y1, X1+h)ζ(Yk+1, Yk+1+h)] , (29)

and the function ζ is defined by

ζ : (x, y) 7→{
(γ(0) + γ(h)) IF

(
x+ y√

2(γ(0) + γ(h))
, Q,Φ

)
− (γ(0)− γ(h)) IF

(
x− y√

2(γ(0)− γ(h))
, Q,Φ

)}
.

(30)

where IF is defined by

IF(x,Q,Φ) = κ

(
1/4− Φ(x+ 1/κ) + Φ(x− 1/κ)∫

R φ(y)φ(y + 1/κ)dy

)
, (31)

where Φ and φ denote the c.d.f. and p.d.f. of a standard Gaussian random variable, respectively
with κ defined in (25).

Theorem 3 is proved in Lévy-Leduc et al. (2011).
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2.2.1 Main asymptotic results for long-memory process The following results concern the
robust autocovariance function for long-memory process see, also, Lévy-Leduc et al. (2011).

(A9) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance γ(h) = E(Y1Yh+1)
satisfying:

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large h. Note that, as previously stated,
D = 1− 2d.

Theorem 4. Assume that (A9) holds and that L has three continuous derivatives. Assume also
that Li(x) = xiL(i)(x) satisfy: Li(x)/xε = O(1), for some ε in (0, D), as x tends to infinity, for
all i = 0, 1, 2, 3, where L(i) denotes the ith derivative of L. Let h be a non negative integer. Then,
γ̂QN (h) satisfies the following limit theorems as N tends to infinity.

(i) If D > 1/2,
√
N (γ̂QN (h)− γ(h))

d−→ N (0, σ̌2(h)) ,

where

σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2
∑
k≥1

E[ζ(Y1, Y1+h)ζ(Yk+1, Yk+1+h)] ,

ζ being defined in (30).
(ii) If D < 1/2,

β(D)
ND

L̃(N)
(γ̂QN (h)− γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1)− Z1,D(1)2)

where β(D) = B((1 − D)/2, D), B denotes the Beta function, the processes Z1,D(·) and
Z2,D(·) are defined as follows:

Z1,D(t) =

∫
R

[∫ t

0

(u− x)
−(D+1)/2
+ du

]
dB(x), 0 < D < 1 , (32)

Z2,D(t) =

∫ ′
R2

[∫ t

0

(u− x)
−(D+1)/2
+ (u− y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 , (33)

and

L̃(N) = 2L(N) + L(N + h)(1 + h/N)−D + L(N − h)(1− h/N)−D , (34)

where B is the standard Brownian motion. The symbol
∫ ′

means that the domain of integra-
tion excludes the diagonal.

Theorem 4 is proved in Lévy-Leduc et al. (2011).

3 Monte Carlo simulation

In this section, small sample size experiments are conducted with the aim to clarify the empirical
performance of the spectral estimates discussed previously in a different context such as time
series with additive outliers. Based on this, some standard questions, such as (1) what is the best
method to be used in a real application? (2) which method ( if any) should be considered when
dealing with outliers? (3) Does the large observation ( if any) make similar outlier´s effect on the
statistical time series modelling functions, that is, on the ACF and periodogram functions? among
others, are expected to be answered or, at least, clarified.
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Let {Xt}t=1,...,N be a sample from a Gaussian second order stationary process and let {Yt}t=1,...,N

be a sample of the process defined by

Yt = Xt + ωWt (35)

where the parameter ω represents the magnitude of the outlier, and Wt is a random variable with
probability distribution

P (Wt = −1) = P (Wt = 1) = δ/2 and P (Wt = 0) = 1− δ ,

where E[Wt] = 0 and E[W 2
t ] = Var(Wt) = δ. Note that (35) is based on the parametric models

proposed by Fox (1972). Wt is the product of Bernoulli(δ) and Rademacher random variables;
the latter equals 1 or −1, both with probability 1/2. Xt and Wt are independent random variables.
Note that, if ω = 0.0 {Yt} is an outlier free time series.

In order to compare the performance of M - and QN -periodogram, a Monte Carlo investiga-
tion was carried out under different contamination scenarios. For the simulations, the number of
replications was 5000, the samples {Xt} of size N = 500 were generated according to a model
autocorrelation structure, which is given in what follows, and the contaminated data Yt were gen-
erated from (35) with δ = 0.01 for magnitudes ω = 0 (no outliers) and 10.

The comparison between the methods is performed by estimating α in the linear regression
log(I(λj)) ' const + α log(λj) + Ej , j = 1, . . . , N0.7, where I(.) is either IN (.), IMN (.) or IQNN (.).
The data were generated based on

Xt = (1−B)−dZt =
∑
j≥0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j , (36)

where εt is an AR(1) model, that is, εt = φεt−1 + ηt, where ηt, t = 1, ..., N , are i.i.d. standard
Gaussian random variables.

In the finite sample size investigation, the model correlation structures are divided in two cases:

1. An AR(1) model with φ = 0.6 and d = 0.
2. An ARFIMA(0, d, 0) model with d = 0.3.

Figure 1 displays the plots of the empirical densities of α̂IN , α̂IMN and α̂
I
QN
N

for the case of

AR(1) models without contamination (ω = 0). Although, α̂IMN has a slight better performance than
α̂
I
QN
N

, that is, the first method and the classical periodogram presented very close densities, all the

methods provided similar results showing that, even for small sample sizes, the empirical density is
very close which corroborate the theoretical results discussed previously. Based on the asymptotic
theory and the empirical results all three methods can be used to estimate the spectral density
of a time series when there is no contamination of additive outliers. This opens an important
contribution in the context that alternative spectral estimators such as IMN and IQNN can be used
instead of the classical periodogram IN in the step procedure for modelling time series data. For
example, these estimators can be an alternative tools to be used in the Whittle function to obtain
the parameter estimates. This will be also discussed in what follows. Note that, the disadvantage
of IQNN over IMN and IN is that the ACF using QN (.) does not have the positive definite property.

When the data is contaminated with additive outliers the scenario changes significantly. As
well known, the periodogram, which depends on the classical autocovariance, is corrupted by the
outliers. Therefore, the alternative methods are almost unaffected. This is displayed in Figure 2
in which ω = 10 and δ = 0.01. The empirical density of α̂IN is shifted to the right side which is
an expected result since the variance increases with outliers. The empirical densities of α̂IMN and
α̂
I
QN
N

remain almost unchangeable.

In the case of long-memory process, the empirical density plots are given in Figures 3 and 4 for
non-contaminated and contaminated time series, respectively. Similar conclusions of the AR case
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for AR(1) models with φ = 0.6, δ = 0.01 and ω = 10.
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are drawn. That is, in the uncontaminated scenarios, all three methods displayed similar densities
although the method M and the classical one (periodogram) are very close. In the contaminated
case, the classical one is totally affected by the additive outliers. Reinforcing that the ACF using
QN does not have the positiveness property.
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Fig. 3. Densities of α̂IN , α̂IM
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when d = 0.3, N = 500 and ω = 0.
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Fig. 4. Densities of α̂IN , α̂IM
N

and α̂
I
QN
N

when d = 0.3, N = 500, δ = 0.01 and ω = 10.

4 Applications of M and QN -periodograms

4.1 Robust estimation of the fractional parameter

Based on the theoretical results discussed previously, this section introduces some applications
related to the use of M−regression and QN estimation functions. The application is divided in
two cases: (a) Estimation of the fractional parameter d in long-memory processes; (b) Estimation
in periodic AR (PAR) processes. Some finite sample size investigation is also addressed in the
context of time series with and without outliers.

(a) Estimation of the fractional parameter in long-memory process

The estimation methods of the fractional parameter d discussed here are derived from the
well-known semi-parametric regression method (GPH) originally proposed by Geweke and Porter-

Hudak (1983). The regression estimation methods based on IMN and IQNN were previously intro-
duced in Reisen et al. (2017) and Fajardo et al. (2009), respectively, papers where the reader will
find more details related to theoretical and empirical results of these estimation methodologies.

(A10) (εi)i≥1 is a stationary mean-zero Gaussian process with spectral density given in Assumption
(A7).

For estimating the fractional parameter d of long-memory processes having their spectral den-
sity satisfying (14), it is usual to use the standard GPH (Geweke and Porter-Hudak (1983))
estimator defined in the following. This estimator is motivated heuristically by starting from

log(f(λj)) = −2d log(|2 sin(λj/2)|) + log(f∗(λj)) = −2dXj + log(f∗(λj))

= log(f?0 )− 2dXj + log(f?j /f
?
0 ), (37)
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where Xj = log|2 sin(λj/2)| and f?j = f?(λj). If

εRj = log

(
IN (λj)

f(λj)

)
, (38)

then
log(IN (λj)) = εRj + log(f(λj)),

and, by (37),
log(IN (λj)) = log(f?0 )− 2dXj + log(f?j /f

?
0 ) + εRj . (39)

The GPH estimator is given by

d̂GPH =
−0.5

∑mN
j=1(Xj − X̄) log(ILSN (λj))∑mN

k=1(Xk − X̄)2
, (40)

where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN , ILSN (λj) is defined in (9) and mN is a function

of N .
Based on the above discussion, one way to define a M−regression estimator of d consists in

replacing ILSN in (40) by IMN defined in (13):

d̂M =
−0.5

∑mN
j=1(Xj − X̄) log(IMN (λj))∑mN

k=1(Xk − X̄)2
, (41)

where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN and mN is a function of N which is specified in

Theorem 5.
The theoretical properties of d̂M are established under the following assumptions. The random

process (εj) is obtained through a moving average process:

εj =
∑
k≤j

aj−kζk , aj = L(j)j−(1+D)/2 , j ≥ 1 , (42)

for some D in (0, 1), where L(·) is a positive slowly varying function at infinity and where the
random variables ζk are i.i.d. with zero mean and variance 1. It is assumed that the distribution
of ζ0 satisfies ∣∣E(eiuζ0)

∣∣ ≤ C(1 + |u|)−δ , u ∈ R . (43)

where C < ∞ and δ > 0 are constants. Note that, Conditions (42) and (43) imply that the
cumulative distribution function Fε0 of ε0 is infinitely boundedly differentiable, see Koul and
Surgailis (2000).

Theorem 5. Let Yi = εi, for all i in {1, . . . , N}, where εi satisfy (42) and (A10). Assume that
1/D is not an integer and that β = 0 in (2). Assume moreover that E(ζ4∨2k

?

0 ) < ∞, where
k? = [1/D], ζ0 is defined in (42) and satisfies (43), ν1 6= 0, ν2 = 0 and ν3 6= 0, where the νk are
defined by

νk =

∫ ∞
0

ψ(y)
[
1− (−1)k

]
f (k)(y)dy, for all integer k ≥ 0 , (44)

where ψ is the Huber function. Then, if 1/3 < D < 1,

√
mN (d̂M − d)

d−→ N (0, π2/24), as N →∞, (45)

where d̂M is defined in (41) and mN = Nβ with 0 < β < (1−D)/3.

This result is proved in Reisen et al. (2017).
Another way of defining a robust estimator of d is to consider:

d̂QN =
−0.5

∑mN
j=1(Xj − X̄) log(IQNN (λj))∑mN

k=1(Xk − X̄)2
, (46)
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where Xj = log|2 sin(λj/2)|, X̄ =
∑mN
j=1Xj/mN , IQNN (λj) is defined in (28) and mN is a function

of N . For further information, see Fajardo et al. (2009). The asymptotic property of d̂QN is still
an open problem, however, the empirical results given in Fajardo et al. (2009) support the use of
this method under time series with and without outliers. The performance of fractional estimators
d̂GPH , d̂M and d̂QN is the motivation of the next subsection for long-memory time series with and
without additive outliers.

4.1.1- Finite sample size investigation

In this subsection, the numerical experiments were carried out in accordance with the model
of Section 3. For the simulations, N = 500, ω = 10 and δ = 0.01 for 5000 replications. The results
are displayed in Figures 5, 6 and Table 1. Since there is not short-memory component in the model
mN was fixed at N0.7 for all tree methods.

Figure 5 presents the boxplots with the results of d̂GPH , d̂M and d̂QN estimators for the

uncontaminated scenario. d̂M and d̂QN seem to present positive bias and, surprisingly, d̂QN displays
smaller deviation. However, in general, all methods perform similarly, i.e., all estimation methods
leaded to comparable estimates close to the real values of d.

Figure 6 displays the boxplots of d̂GPH , d̂M and d̂QN when the series has outliers. As can be
perceived from the boxplots, the GPH estimator is clearly affected by additive outliers while the
robust ones keep almost the same picture as the one of the non-contaminated scenario, except that
the bias of d̂QN becomes negative, that is, this estimator tends to overestimate the true parameter.

The empirical mean, bias and mean square root are displayed in Table 1. This numerically
corroborates the results discussed based on Figures 5, 6, that is, the estimators have similar
performance in the absence of outliers in the data. While the performance of d̂GPH changes
dramatically in the presence of outliers, the estimates from d̂QN and d̂M keep almost unchangeable.
As a general conclusion, the empirical result suggests that all the methods can be used to estimate
the parameter d when there is not a suspicion of additive or abrupt observation. However, in the
existence of a single atypical observation, the methods d̂QN and d̂M should be preferred. Similar

conclusions are given in Fajardo et al. (2009) and Reisen et al. (2017) for d̂QN and d̂M , respectively.

Table 1. Empirical Mean, Bias and RMSE of d̂GPH , d̂M and d̂QN when ω = 10 and δ = 0, 0.01, 0.05.

d δ
MEAN BIAS RMSE

d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN

0.3
0.0 0.3029 0.2950 0.2933 0.0029 -0.0049 -0.0066 0.0601 0.0596 0.0558
0.01 0.2226 0.2899 0.3052 -0.0773 -0.0101 0.0052 0.0972 0.0581 0.0584
0.05 0.1225 0.2681 0.3236 -0.1775 -0.0318 0.0236 0.1873 0.0689 0.0682
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Fig. 5. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.
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Fig. 6. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.05 and δ = 0.1, respectively.

4.2 Qn and M-estimators in PARMA models

One of the most popular periodic causal process is the PARMA model which generalizes the
ARMA model. {Zt}t∈Z is said to be a PARMA model if it satisfies the difference equation∑pν

j=0 φν,jZrS+ν−j =
∑qν
k=0 θν,kεrS+ν−k, r ∈ Z (47)

where for each season ν ( 1 ≤ ν ≤ S) where S is the period, pν and qν are the AR and MA orders,
respectively, φν,1, . . . , φν,pν and θν,1, . . . , θν,qν are the AR and MA coefficients, respectively, and
φν,0 = θν,0 = 1. The sequence {εt}t∈Z is zero-mean and uncorrelated, and has periodic variances
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with period S, i.e. E(ε2rS+ν) = σ2
ν for ν = 1, . . . ,S. In the following, p = maxν pν , q = maxν qν ,

φν,j = 0 for j > pν , θν,k = 0 for k > qν , and (47) is referred as the PARMA(p, q)S model (see, for
example, Basawa and Lund (2001) and Sarnaglia et al. (2015)).

To deal with outliers effect in the estimation of PAR model, Sarnaglia et al. (2010) proposed
the use of the QN (.) function in this model. Following the same lines of the linear time series
model described previously, the QN (.) function is used to compute an estimator of the periodic
autocovariance function γ(ν)(h) at lag h and this sample ACF based on QN (.) estimator, denoted

here as γ
(ν)
Q (h), replaces the classical periodic ACF γ(ν)(h) in the Yule-Walker periodic equations

(see, for example, McLeod (1994) and Sarnaglia et al. (2010)) to derive an alternative parameter
estimator method for a periodic AR model. The authors derived some asymptotic and empirical
properties of the proposed estimator. They showed that the method well accommodate the effect
of additive outliers, that is, it presented robustness against these type of observations in the finite
sample size series as well as in a real data set.

Let now Z1, ...ZN , where N = nS, be a sample from PAR process which is a particular case
of the model definition in (47) with qν = 0 and let now QN (.) for PAR process be defined as

Q
(ν)
N (Z) = QN ({ZrS+ν}0≤r≤N ) . (48)

Based on Q
(ν)
N (Z), the authors derived the sample ACF for periodic stationary processes

γ̂
(ν)
Q (h). Under some model assumptions, they proved the following main results.

1. For a fixed lag h, γ̂
(ν)
Q (h) satisfies the following central limit theorem: As N −→∞,

√
N
(
γ̂
(ν)
Q (h)− γ(ν)(h)

)
D−→ N (0, σ̌2

h) ,

where γ(ν)(h) is the periodic ACF function and σ̌2
h is the variance, more details are given in

Sarnaglia et al. (2010).

2. The Q
(ν)
N Yule-Walker estimators (φ̃ν,i)1≤i≤pν ,ν=1,...,S satisfy φ̃ν,i − φν,i = OP (N−1/2) for all

i = 1, . . . , pν and ν in {1, . . . ,S}.

Recently, Solci et al. (2018) compared the Yule-Walker estimator (YWE), the robust least

squares estimator (Shao (2008)) and the ACF Qn estimator (γ̂
(ν)
Q (h), denoted here RYWE, in

the context of estimating the parameters in PAR models with and without outliers. Their main
conclusion is similar to the cases discussed previously, that is, for the case of ARFIMA model

γ̂
(ν)
Q (h) displayed good performance in estimating the parameters in PAR models, periodic samples

with and without outliers. As expected, the YWE estimator performed very poorly with the
presence of outliers in the data. One of their simulation results is reproduced in the table below
(Table 2) in which n = 100, 400 (cycles), S = 4, εt is a Gaussian white noise process and δ =
0.01 (outlier’s probability) and magnitude ω = 10. The results correspond to the mean of 5000
replications.
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Table 2. Bias and RMSE for Model 1 and outliers with probability δ = 0.01.

ω εt n φν,1

YWE RYWE
Bias RMSE Bias RMSE

0 N (0, 1)

100

0.9 -0.007 0.077 -0.003 0.103
0.8 -0.002 0.065 0.004 0.084
0.7 0.000 0.063 -0.001 0.083
0.6 -0.005 0.066 -0.003 0.083

400

0.9 -0.001 0.037 -0.001 0.047
0.8 -0.001 0.031 0.000 0.038
0.7 -0.001 0.032 0.001 0.038
0.6 0.000 0.032 0.000 0.039

7 N (0, 1)

100

0.9 -0.181 0.247 0.014 0.120
0.8 -0.118 0.176 0.012 0.096
0.7 -0.105 0.157 0.015 0.091
0.6 -0.097 0.151 0.012 0.091

400

0.9 -0.183 0.203 0.017 0.055
0.8 -0.129 0.144 0.012 0.046
0.7 -0.108 0.124 0.013 0.044
0.6 -0.103 0.119 0.014 0.043

As an alternative estimator of φ̃ν,i, Sarnaglia et al. (2016) proposed the use of M−periodogram
function to obtain estimates of the parameters in PARMA models. The estimator is based on
the approximated Whittle function suggested in Sarnaglia et al. (2015). Basically, the Whittle
M−estimator of PARMA parameters is derived by the ordinary Fourier transform with the non-
linear M -regression estimator for periodic processes in the harmonic regression equation that leads
to the classical periodogram. The empirical simulation investigation in Sarnaglia et al. (2016)
considered the scenarios of periodic time series with presence and absence of additive outliers.
Their small sample size investigation leaded to a very promising estimation method under the
context of modelling periodic time series with additive outliers and heavy-tailed distributions.
The theoretical justification of the proposed estimator is still an open problem and it is now a
current research theme of the authors.

Table 3 displays results of a simple simulation example to show the empirical performance of the
Whittle M−estimator with the Huber function ψ(x) (Huber (1964)) compared to the maximum
Gaussian and Whittle likelihood estimators to estimate a PAR(2) model with parameters φ1,1 =
−0.2, φ2,1 = −0.5, σ2

1,1 = 1.0 and σ2
2,1 = 1.0. The sample sizes are N = nS = 300, 800 (n = 150,

400, respectively) and the Huber function was used with constant equal to 1.345, which ensure
that the M -estimator is 95% as efficient as the least squares estimator for univariate multiple
linear models with independent and identically distributed Gaussian white noise. The sample root
mean square error (RMSE) was computed over 5000 replications. The PAR(2) model with additive
outliers was generated with outlier’s probability δ = 0.01 and magnitude ω = 10. The values with
“∗” refer to the RMSE for the contaminated series.

Table 3. Empirical RMSE results for estimating an PAR(2) model.

Method N φ1,1 σ2
1,1 φ2,1 σ2

2,1

300 0.067; 0.121∗ 0.117; 1.366∗ 0.079; 0.252∗ 0.111; 1.363∗

MLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.068; 0.121∗ 0.117; 1.368∗ 0.079; 0.252∗ 0.111; 1.364∗

WLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.067; 0.067∗ 0.147; 0.179∗ 0.083; 0.089∗ 0.147; 0.189∗

RWLE 800 0.051; 0.054∗ 0.118; 0.149∗ 0.051; 0.058∗ 0.108; 0.152∗
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In the absence of outliers, in general, all estimators present similar behaviour. Relating to the
estimation of the variance of the innovations, the MLE and WLE seem to be more precise which is
an expected result since the data is Gaussian with zero-mean and these two methods are asymp-
totically equivalents. The RMSE of the estimators decreases as the sample size increases. When
the simulated data has outliers, as an expected result the MLE and WLE estimates are totally
corrupted by the atypical observations while the RWLE estimator presents generally accurate es-
timates. This simple example of simulation leads to the same conclusions of the models discussed
previously in which M−regression method was also considered.

The methods discussed above give strong motivation to use the methodology in practical situa-
tions in which periodically correlated time series contain additive outliers. For example, Sarnaglia

et al. (2010) applied the robust ACF estimator γ̂
(ν)
Q (h) to fit a model for the quarterly Fraser

River data. Sarnaglia et al. (2016) and Solci et al. (2018) analysed air pollution variables using
the robust methodologies discussed in these papers. In the first paper, the authors considered
the daily average SO2 concentrations and, in the second one, it was analysed the daily average
PM10 concentrations. Both data set were collected at Automatic Air Quality Monitoring Network
(RAMQAr) in the Great Vitória Region GVR-ES, Brazil, which is composed by nine monitoring
stations placed in strategic locations and accounts for the measuring of several atmospheric pol-
lutants and meteorological variables in the area. In general, the models well fitted the series and
all these applied examples revealed outliers effects on the estimates.
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5 Proof of Theorem 1

By Propositions 1 and 4 and Example 1 of Wu (2007) the assumptions of Theorem 1 of Wu (2007)
hold. Thus, √

N

2
(F (c)− F (−c))β̂M

N (λj)
d−→ N

(
0,∆(j)

)
, N →∞ ,

with
∆(j) =

∑
k∈Z

E{ψ(ε0)ψ(εk)}∆(j)
k ,

where

∆
(j)
k = lim

N→∞

2

N

N−|k|∑
`=1

(
cos(`λj)
sin(`λj)

)
(cos((`+ k)λj) sin((`+ k)λj)) .

Observe that

∆
(j)
k = lim

N→∞

2

N

N−|k|∑
`=1

(
cos(kλj)+cos((2`+k)λj)

2
sin(kλj)+sin((2`+k)λj)

2
− sin(kλj)+sin((2`+k)λj)

2
cos(kλj)−cos((2`+k)λj)

2

)

=

(
cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)
+ lim
N→∞

2

N

N−|k|∑
`=1

(
cos((2`+k)λj)

2
sin((2`+k)λj)

2
sin((2`+k)λj)

2
− cos((2`+k)λj)

2

)
.

By observing that

1

N

N−|k|∑
`=1

cos((2`+ k)λj) =
cos(kλj)

N

N−|k|∑
`=1

cos(2`λj) +
sin(kλj)

N

N−|k|∑
`=1

sin(2`λj)

=
cos(kλj)

N
cos(λj(N − |k|−1))

sin(λj(N − |k|))
sin(λj)

+
sin(kλj)

N
sin(λj(N − |k|−1))

sin(λj(N − |k|))
sin(λj)

tends to zero as N tends to infinity and that the same holds for N−1
∑N−|k|
`=1 sin(2` + k), this

concludes the proof.
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