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Abstract

Mixed effects models are widely used to describe heterogeneity in a pop-

ulation. A crucial issue when adjusting such a model to data consists in

identifying fixed and random effects. Testing the nullity of the variances of a

subset of random effects can help to investigate this issue. Some authors have

proposed to use the likelihood ratio test and have established its asymptotic

distribution in some particular cases. Extending the existing results, a likeli-

hood ratio test procedure is studied, to test that the variances of any subset

of the random effects are equal to zero in nonlinear mixed effects model.

More precisely, the asymptotic distribution of the test statistics is shown to
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be a chi-bar-square distribution, that is to say a mixture of chi-square dis-

tributions, and the corresponding weights are identified. In particular, it is

highlighted that the limiting distribution depends strongly on the presence

of correlations between the random effects. The finite sample size proper-

ties of the test procedure are illustrated through simulation studies and the

test procedure is applied to two real datasets of dental growth and of coucal

growth.

Keywords: Chi-bar-square distribution, inference under constraints,

hypothesis testing, likelihood ratio test, nonlinear mixed effects models,

variance components

1. Introduction

Mixed effects models have been extensively used in population models in

order to account for heterogeneity in populations and to describe the intra

and inter-individual variability (see Pinheiro and Bates (2000); Davidian and

Giltinan (2003); Lavielle (2014)). In mixed effects models, parameters are of

two types: on one side, fixed effects that are common to all the individuals

of the population; on the other side, random effects that vary from one

individual to the other. The last ones are also called individual parameters.

From a modelling point of view, a key question when adjusting a popu-

lation model to a dataset is to identify the fixed and random effects of the

model. Therefore, being able to compare a simpler model with less random

effects to a larger one will help to choose a parsimonious model. From a

statistical point of view, it can be rephrased as a test on the nullity of the

variances of a subset of all the random effects (Silvapulle and Sen (2011),
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p14).

Several authors have been interested in likelihood ratio tests (LRT) in

this context. We recall here some of the main existing results. Let us denote

by Θ the parameter space, by Θ0 the subset of Θ corresponding to the null

hypothesis and by Θ1 the subset corresponding to the alternative hypothesis,

with Θ0 ⊂ Θ1 ⊂ Θ. Chernoff (1954), assuming that Θ is open, treated the

case where the true value of the parameter lies on the boundary of Θ0 and

Θ1, which is assumed to be a proper set of Θ, i.e. strictly contained in

Θ. He provided a representation of the asymptotic distribution of the LRT

and proved that it is asymptotically equivalent to testing the mean of a

multivariate Gaussian distribution based on one single observation. A few

years later, Chant (1974) generalized these results by considering the case

where the true value lies in a subset of Θ which may not be a proper subset.

Shapiro (1985) studied the asymptotic distribution of a larger class of tests

when the true value is on the boundary of Θ0 and an interior point of Θ.

He established that the asymptotic distribution is a mixture of chi-square

distributions. Simultaneously, Self and Liang (1987) obtained similar results

in the case where the true value is on the boundary of Θ. They established a

general convergence result and they derived the expression of the asymptotic

distribution only in specific cases, assuming in particular that the parameter

space Θ is equal to the product of a finite number of either closed, half-open

or open intervals of R. They considered several specific cases for applications.

They identified in particular the limiting distribution of the LRT for testing

that the variance of one single random effect is equal to zero as a mixture

1
2
δ0 + 1

2
χ2

1, where δ0 is the Dirac distribution at zero and χ2
1 is the chi-square
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distribution with one degree of freedom (Self and Liang, 1987, case 5). They

also identified the limiting distribution of the LRT for testing simultaneously

that the variance of one single random effect is equal to zero and that its mean

is equal to a constant as a mixture 1
2
χ2

1 + 1
2
χ2

2 (Self and Liang, 1987, case 6).

Nevertheless, their results do not allow to identify the asymptotic distribution

of the LRT statistics in all cases, for example testing that one variance is

equal to zero when considering two correlated random effects. Building upon

those works, several authors have addressed the issue of variance components

testing in mixed effects models. In the context of linear mixed effects models,

Stram and Lee (1994, 1995) considered the likelihood ratio test procedure and

identified the limiting distribution of the LRT statistics in some particular

cases. They suggested also that the limiting distribution might in fact be

influenced by the presence of correlations between random effects but they do

not investigate this issue. Some authors have also proposed finite sample test

procedures for variance components testing in linear mixed models, either by

deriving the finite sample distribution of test statistics, or using bootstrap

and permutation tests. For example, the finite sample size distribution of

the likelihood and restricted likelihood ratio test statistics was studied by

Crainiceanu and Ruppert (2004) for linear mixed models with one single

random effect, and Greven et al. (2008) extended these results to linear mixed

models with more than one random effect.

Other approaches were also inquired. Several years later, Qu et al. (2013)

proposed a procedure based on the score test for testing several variance com-

ponents in linear mixed models, and Wood (2013) studied the finite sample

distribution of a test based on the restricted likelihood for testing that one
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variance is null in generalized linear mixed models. Also in the context of

linear mixed models, Sinha (2009) studied a bootstrap test based on the

score test for testing several variance components in a generalized linear

mixed model, while Fitzmaurice et al. (2007), Samuh et al. (2012) and Drik-

vandi et al. (2013) considered permutation tests for testing several variance

components in the context of linear and generalized mixed effects models.

Molenberghs and Verbeke (2007) proposed a review of the existing results

for testing variance components in mixed effects models, and studied in par-

ticular the equivalence between the LRT, the Score test and the Wald test,

based on results by Silvapulle and Silvapulle (1995) or Stram and Lee (1994).

They also exhibited the common limiting distribution in some specific cases.

However, to the best of our knowledge, there exist no results identifying the

limiting distribution of the LRT for general tests on variance components in

mixed effects models.

In this paper, we consider the LRT in nonlinear mixed effects models

to test that the variances of any subset of the random effects are equal to

zero and identify its asymptotic distribution as a mixture of chi-square dis-

tributions. In Section 2, we present the framework of nonlinear mixed effects

models. Section 3 is devoted to the description of the proposed test and its

theoretical properties. Practical implementation guidelines are presented in

Section 4. Experimental results illustrate the performances of the procedure

through simulation studies and real datasets analysis in Section 5. The pa-

per ends with some discussion in Section 6. The technical proofs are given

in Appendix.
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2. Nonlinear mixed effects model

2.1. Description

We consider the following nonlinear mixed effects model (Davidian and

Giltinan (1995) p98, Pinheiro and Bates (2000) p306, Lavielle (2014) p24):

yi = g(ϕi, xi) + εi,

where yi denotes the vector of observations of the i-th individual of size J ,

1 ≤ i ≤ N , g a nonlinear function, ϕi the vector of individual parameters

of individual i, xi a vector of covariates, and εi the random error term. The

vectors of individual parameters (ϕi)1≤i≤N are modeled as:

ϕi = Uiβ + Vibi , 1 ≤ i ≤ N,

where β is the vector of fixed effects taking values in Rb, bi is the centered

vector of Gaussian random effects with covariance matrix Γ, Ui and Vi are

covariates matrices of individual i of sizes p× b and p× p respectively, and Γ

is a covariance matrix of size p× p. The random vectors (bi) are assumed to

be independent. The vectors (εi)1≤i≤N are assumed to be independent and

identically distributed centered Gaussian vectors with covariance matrix Σ,

and the sequences (εi) and (bi) are assumed mutually independent.

Let us denote by θ = (β,Γ,Σ) the vector of all the model parameters and

by q its dimension. Thus, the parameter space is defined as Θ = Rp×Sp+×SJ+,

where Sp+ is the set of symmetric, positive semi-definite p× p matrices.

2.2. Examples

A special but very common case is the one where the function g is linear.

The model can be rewritten in the following usual form (Pinheiro and Bates
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(2000), p58):

yi = Xiβ + Zibi + εi ,

where yi is the observation vector for individual i, Xi and Zi are matrices of

known covariates, β is the vector of fixed effects, bi is the vector of centered

random effects for individual i, with bi ∼ N (0,Γ), and εi is a random error

term, with εi ∼ N (0,Σ).

Another famous example of a nonlinear mixed effects model is the logistic

growth model, which was studied for example by Pinheiro and Bates (2000)

in their well known example of orange trees growth. In this model, a logistic

curve is used to model the growth of each individual in the population as

a nonlinear function of three individual parameters. Denoting by yij the

variable measured for individual i at age xj (e.g. the trunk circumference in

the orange trees example), for each individual i these three parameters are:

the asymptotic value of the trunk circumference ϕi1, the age at which the

individual reaches half its asymptotic value, ϕi2, and the growth scale ϕi3.

More precisely, we have, for 1 ≤ i ≤ N, 1 ≤ j ≤ J :

yij =
ϕi1

1 + exp
(
−xj−ϕi2

ϕi3

) + εij, with ϕi = β + bi ,

where β = (β1, β2, β3) ∈ R3, bi ∼ N (0,Γ) and εij ∼ N (0, σ2).

3. Variance components testing

3.1. Description of the testing procedure

Let r ∈ {1, . . . , p}. We consider general test hypotheses of the following

form, to test the nullity of r variances and of the corresponding covariances:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ, (1)
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where Θ0 ⊂ Θ. Up to permutations of rows and columns of the covariance

matrix Γ, we can assume that we are testing the nullity of the last r variances.

We write Γ in blocks as follows:

Γ =

 Γ1 Γt12

Γ12 Γ2

 ,

with Γ1 a (p− r)× (p− r) matrix, Γ2 a r× r matrix, Γ12 a r× (p− r) matrix

and where At denotes the transposition of matrix A, for any matrix A.

The spaces associated to the null and alternative hypotheses are then:

Θ0 = {θ ∈ Rq | β ∈ Rp,Γ1 ∈ Sp−r+ ,Γ12 = 0,Γ2 = 0,Σ ∈ SJ+}

Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Σ ∈ SJ+}.

We emphasize that the parameter space Θ is not open, and that the tested

parameter values are on the boundary of Θ.

We recall below the likelihood ratio test procedure. Let us denote by

yN1 the joint vector of a N -sample (y1, . . . , yN), and by L(yN1 ; θ) the joint

likelihood. We then define the likelihood ratio test statistics by:

LRTN = −2 log

(
supθ∈Θ0

L(yN1 ; θ)

supθ∈Θ L(yN1 ; θ)

)
. (2)

For a nominal level 0 < α < 1, the rejection region Rα is defined by

Rα = {LRTN ≥ qα}, where qα is the (1 − α) quantile of the distribution

of LRTN under the null hypothesis. However in practice the finite sample

distribution of LRTN is generally intractable in the case of nonlinear mixed

effects models. Therefore we focus on its asymptotic distribution.

3.2. Asymptotic property of the likelihood ratio test

Let us denote by θ∗ the true value of the parameters. We assume that

the following condition (C1) is satisfied:
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(i) The value θ∗ is in Θ0, i.e. θ∗ is of the form θ∗ = (β∗,Γ∗,Σ∗),

with Γ∗ =

 Γ∗1 0(p−r)×r

0r×(p−r) 0r×(r)

 where Γ∗1 is a (p− r)× (p− r) matrix.

(ii) The matrices Γ∗1 and Σ∗ are positive definite. In particular, we assume

that the variances that are not being tested are strictly positive.

To derive the asymptotic distribution of the likelihood ratio test statistics

under the null hypothesis, we need to ensure the consistency of the maximum

likelihood estimate (MLE). Therefore, we assume that the following general

condition (C2) is fulfilled (Silvapulle and Sen, 2011):

(i) The function L is injective in θ (to ensure the identifiability of the

model),

(ii) The first three derivatives of the log-likelihood w.r.t. θ exist and are

bounded by a function whose expectation exists,

(iii) The Fisher information matrix is finite and positive definite.

Remark 1. Note that the consistency and asymptotic normality of the MLE

models in the specific context of nonlinear mixed effects have been studied

in Nie (2006, 2007). He exhibited specific assumptions that ensure these

theoretical results. However, these assumptions might be difficult to verify in

practice.

Before stating the expression of the asymptotic distribution of the like-

lihood ratio test statistics, we recall the definition of the chi-bar-square dis-

tribution (for more details, see Shapiro (1985); Silvapulle and Sen (2011)).

Definition 1. Let C be a closed convex cone of Rq, V a positive definite

matrix of size q × q and Z ∼ N (0, V ). The distribution of the random
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variable defined by

χ̄2(V, C) = ZtV −1Z −min
θ∈C

(Z − θ)tV −1(Z − θ)

is called a chi-bar-square distribution. It is equal to a mixture of chi-square

distributions with different degrees of freedom as follows:

∀t ≥ 0 P (χ̄2(V, C) ≤ t) =

q∑
i=0

wi(q, V, C)P (χ2
i ≤ t),

where the weights (wi(q, V, C))0≤i≤q are non-negative numbers summing up to

one, and where χ2
i is a random variable following the chi-square distribution

with i degrees of freedom, with the convention that χ2
0 ≡ 0.

We can now establish the asymptotic property of the likelihood ratio test

statistics.

Theorem 1. Assume that conditions (C1) and (C2) are fulfilled. Con-

sider the test defined in (1). We denote by I∗ the Fisher information matrix

evaluated at the true value θ∗ ∈ Θ0. Then:

LRTN −−−→
N→∞

χ̄2(I−1
∗ , T (Θ, θ∗) ∩ T (Θ0, θ

∗)⊥), (3)

where T (Θ, θ) is the tangent cone to Θ at θ, and S⊥ is the orthogonal com-

plement of S, for any subset S of Rq.

Proof. First we apply Theorem 3 of Self and Liang (1987) to derive a general

expression of the asymptotic distribution of the likelihood ratio test statistics.

Indeed under conditions (C1) and (C2), the conditions stated in Section 1

of Self and Liang (1987) are fulfilled. In particular, condition (C2) ensures

the consistency of the maximum likelihood estimates on Θ0 and Θ. Moreover
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we prove that both Θ and Θ0 can be approximated by cones, on which the

consistency of the MLE also holds. We recall that the sets Θ0 and Θ are

defined by:

Θ0 = {θ ∈ Rq | β ∈ Rp,Γ1 ∈ Sp−r+ ,Γ12 = 0,Γ2 = 0,Σ ∈ SJ+},

Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Σ ∈ SJ+},

where the constraints are that Γ1, of size (p − r) × (p − r) and Γ, of size

p× p, are positive semi-definite. Following Sylvester’s criterion (see Gilbert

(1991)), a matrix is positive semi-definite if and only if all its leading prin-

cipal minors are positive. Therefore both Θ0 and Θ can be written as a set

of polynomial equalities and inequalities corresponding to the different de-

terminants. In particular, it means that both Θ0 and Θ are semi-algebraic

sets. They are therefore Chernoff-regular, i.e. they admit approximating

cones at every point, and in particular at every point θ∗ ∈ Θ0 (Drton, 2009).

Therefore by applying Theorem 3 of Self and Liang (1987), we get that the

asymptotic distribution of the likelihood ratio test is the same as the one

of the likelihood ratio test from the null hypothesis “θ ∈ A(Θ0, θ
∗)” ver-

sus the alternative one “θ ∈ A(Θ, θ∗)”, where A(Θ0, θ
∗) and A(Θ, θ∗) are

respectively the approximation cones of Θ0 and Θ at θ∗:

LRTN → inf
θ∈A(Θ0,θ∗)\θ∗

‖Z − θ‖2
I∗ − inf

θ∈A(Θ,θ∗)\θ∗
‖Z − θ‖2

I∗ , (4)

where Z is a random variable with multivariate Gaussian distribution with

mean θ and covariance matrix I−1
∗ .

We use now the link between approximating and tangent cones, due to

Geyer (1994). More precisely, if we denote by T (Θ, θ∗) the tangent cone of
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Θ at θ∗ and by A(Θ, θ∗) the approximating cone of Θ at θ∗, then A(Θ, θ∗) =

θ∗ + T (Θ, θ∗). Thus, we obtain:

LRTN → inf
θ∈T (Θ0,θ∗)

‖Z − θ‖2
I∗ − inf

θ∈T (Θ,θ∗)
‖Z − θ‖2

I∗ . (5)

Finally, applying Theorem 3.7.1, page 84 of Silvapulle and Sen (2011), we

derive that:

LRTN −−−→
N→∞

χ̄2(I−1
∗ , T (Θ, θ∗) ∩ T (Θ0, θ

∗)⊥), (6)

which concludes the proof.

3.3. Analytical expression of the asymptotic distribution

We emphasize that the cone T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥ always admits an an-

alytical expression in our context. We consider in the following three com-

mon cases for the correlation structure of the p-dimensional random effects,

namely independent, block-correlated and full correlated, corresponding re-

spectively to a covariance matrix Γ diagonal, block-diagonal and full. The

following proposition details the expressions of the cone T (Θ, θ∗)∩T (Θ0, θ
∗)⊥

in these three cases.

Proposition 1.

(i) Assume that Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Γ diagonal,Σ ∈ SJ+}. Then

T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥ = {0}p × {0}p−r × Rr+ × {0}J(J+1)/2.

(ii) Assume that Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Γ block-diagonal,Σ ∈ SJ+}

with Γ = diag(Γ1, . . . ,ΓK), where, for k = 1, . . . , K, Γk is a full covariance

matrix of size rk×rk, associated with the k-th sub-group of correlated random
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effects. Assume here that we want to test that the K-th block ΓK of variances

is null and consider the corresponding subset Θ0. Then

T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥ = {0}p ×

(
K−1⊗
k=1

{0}rk(rk+1)/2

)
× SrK+ × {0}J(J+1)/2.

(iii) Assume that Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Γ full,Σ ∈ SJ+}. Then

T (Θ, θ∗)∩ T (Θ0, θ
∗)⊥ = {0}p×{0}(p−r)(p−r+1)/2×Rr(p−r)× Sr+×{0}J(J+1)/2.

The proof of Proposition 1 relies on technical elements from convex anal-

ysis (see Hiriart-Urruty and Lemarechal (1996); Hiriart-Urruty and Malick

(2012)) and can be easily adapted to general covariance matrix structure

using similar tools. It is postponed to the Appendix.

Moreover, thanks to the expressions of the cone T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥

established in Proposition 1, we can deduce that several weights involved in

the chi-bar-square distribution defined in (3) are equal to 0. The following

corollary details this result for the two common cases of a diagonal or full

covariance matrix Γ, described in Proposition 1.

Corollary 1.

(i) Assume that Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Γ diagonal,Σ ∈ SJ+}. Then

the distribution of the random variable χ̄2(I−1
∗ , T (Θ, θ∗) ∩ T (Θ0, θ

∗)⊥) is a

mixture of (r + 1) chi-square distributions with degrees of freedom between 0

and r.

(ii) Assume that Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Γ full,Σ ∈ SJ+}. Then

the distribution of the random variable χ̄2(I−1
∗ , T (Θ, θ∗) ∩ T (Θ0, θ

∗)⊥) is a

mixture of (r(r + 1)/2 + 1) chi-square distributions with degrees of freedom

between r(p− r) and (r(p− r) + r(r + 1)/2).
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The proof is postponed to the Appendix.

3.4. Theoretical result for non identically distributed variables

The theoretical results above can be extended in a natural way to non

identically distributed observations, in particular to models involving covari-

ates as defined in Section 2, or to models involving a specific number of

observations Ji per individual possibly different for each i.

However Theorem 3 of Self and Liang (1987), which leads to the asymp-

totic representation of the likelihood ratio test, can not be applied for non

identically distributed random variables. In particular, the Fisher informa-

tion matrix of N independent non identically distributed observations is no

more defined as N times the Fisher information matrix of one observation

as for a N -sample. Nevertheless, the asymptotic distribution of the LRT

can be identified provided that suitable assumptions are fulfilled. We con-

sider here the same conditions as those proposed in Silvapulle and Sen (2011)

p156. Therefore we define the condition (C2)(iv) for all θ, there exists some

positive definite matrix ν(θ) such that

N−1/2∇θ logL(yN1 ; θ)→ N (0, ν(θ)) and N−1∇2
θ logL(yN1 ; θ)→ −ν(θ) a.s.,

and the function θ → ν(θ) is continuous. Moreover we define the condition

(C3) the maximum likelihood estimates on Θ0 and Θ are consistent. General

assumptions ensuring this condition in mixed effects models are provided in

Nie (2006). We can then state the following result:
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Theorem 2. Assume that conditions (C1), (C2)(i)(ii)(iv) and (C3) are

fulfilled. Consider the test defined in (1). Then:

LRTN −−−→
N→∞

χ̄2(ν(θ∗)−1, T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥), (7)

where T (Θ, θ) is the tangent cone to Θ at θ, and S⊥ is the orthogonal com-

plement of S, for any subset S of Rq.

Proof. We adapt the proof of our theoretical result stated in Subsection 3.2

to the case of non identically distributed variables using suited tools pre-

sented in Silvapulle and Sen (2011). We detail all the steps below. Assuming

(C2)(i)(ii)(iv), we establish the following fundamental quadratic approx-

imation using standard tools of asymptotic statistics:

logL(yN1 ; θ) = logL(yN1 ; θ∗) +
1

2N
∇θ logL(yN1 ; θ∗)tν(θ∗)−1∇θ logL(yN1 ; θ∗)

−1

2
(ZN − u)tν(θ∗)(ZN − u) + δN(u)

where ZN = N−1/2ν(θ∗)−1∇θ logL(yN1 ; θ) and sup‖u‖≤K |δN(u)| converges to-

ward zero in probability for K > 0 given. Then, applying Lemma 4.2.3 in

Silvapulle and Sen (2011), we obtain the
√
N -consistency of the maximum

likelihood estimates on Θ0 and on Θ (see Andrews (1999) for the proof of this

lemma in the non identically distributed setting). Following the lines of the

proof of Theorem 1, we prove that both sets Θ and Θ0 are Chernoff-regular

and can be approximated by cones. By Corollary 4.7.5 in Silvapulle and Sen

(2011), we get that the consistency of the maximum likelihood estimates also

holds on the corresponding approximation cones. Then applying Proposition
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4.8.2 in Silvapulle and Sen (2011), we get

LRTN → inf
θ∈A(Θ0,θ∗)\θ∗

‖Z − θ‖2
ν(θ∗) − inf

θ∈A(Θ,θ∗)\θ∗
‖Z − θ‖2

ν(θ∗),

where Z is a random variable with multivariate Gaussian distribution with

mean θ and covariance matrix ν(θ∗)−1. Finally, we conclude the proof fol-

lowing the same lines as in the proof of Theorem 1.

3.5. Extension of the test and discussion

Testing simultaneously fixed effects and variance components. The same kind

of theoretical results can be established when testing simultaneously fixed

effects values and variance components. Indeed, the components of the null

hypothesis subset Θ0 corresponding to the fixed effects values tested are

modified as follow: they are equal to the corresponding value of β∗ in place of

R. Based on this new expression, we calculate the corresponding tangent cone

to be able to derive finally the expression of the asymptotic distribution of the

LRT. Let us detail the case of a mixed model with p independent random

effects where we are interested in testing simultaneously that 0 < s ≤ b

fixed effects are equal to the corresponding values of β∗ and that 0 < r ≤ p

variances are equal to zero. We obtain:

Θ = Rb × Rp+ × SJ ,

Θ0 =
s∏
1

{β∗j } × Rb−s × {0}r × (R∗+)p−r × SJ ,

and

T (Θ, θ∗) = Rb × Rp+ × SJ ,

T (Θ0, θ
∗) =

s∏
1

{0} × Rb−s × {0}r × Rp−r × SJ ,
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leading finally to

T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥ = Rs × {0}b−s × Rr+ × {0}p−r × {0}J(J+1)/2 .

Choosing s = r = 1, we recover in particular the asymptotic distribution

0.5χ2
1 + 0.5χ2

2 given in the case 6 of Self and Liang (1987).

Effects of nuisance parameters. Assumption (C1) ii) ensures that the nui-

sance variance parameters are not on the boundary of the parameter space.

Indeed those nuisance parameters have no action on the asymptotic distribu-

tion whatever their number and their type (mean or variance components).

Their corresponding components in the subsets Θ and Θ0 are the same, and

consequently also in the tangent cones T (Θ, θ∗) and T (Θ0, θ
∗). This leads to

null components in the cone T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥. This appears also in the

asymptotic distributions obtained in cases 5 and 6 of Self and Liang (1987),

which do not depend on the number of nuisance parameters. However as

illustrated by the case 8 in Self and Liang (1987), the case of a test involv-

ing nuisance parameters on the boundary of the parameter space is more

intricate and requires further studies.

4. Practical implementation

4.1. Computation of the likelihood ratio test statistic

The computation of the likelihood ratio test requires the computation of

the maximum likelihood values under the null and alternative hypotheses,

denoted respectively by θ̂0 and θ̂1, as well as the values of the likelihood at

these two points, L(yN1 ; θ̂0) and L(yN1 ; θ̂1).
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However, in the context of nonlinear mixed effects models the likelihood

is not available in a closed form, and we need to resort to stochastic variants

of the Expectation-Maximization (EM) algorithm, such as the Stochastic

Approximation EM algorithm for example (Kuhn and Lavielle, 2005), to

compute θ̂0 and θ̂1. For the same reason, L(yN1 ; θ̂0) and L(yN1 ; θ̂1) cannot be

computed explicitly, and should be approximated using appropriate methods

such as numerical or stochastic integration.

Since the decision to reject the null hypothesis relies on the value of the

test statistics, the approximation of L(yN1 ; θ) must be computed precisely.

Let us denote by L(yi; θ) the marginal likelihood of the i-th individual, and

by `(yN1 ; θ) the joint log-likelihood. Then:

`(yN1 ; θ) = log

(
N∏
i=1

L(yi; θ)

)
=

N∑
i=1

log

(∫
Rp
f(yi | ϕi; θ)p(ϕi; θ)dϕi

)
,

where f(· | ϕi; θ) is the conditional probability density function of yi given the

random effect ϕi, and p(·; θ) is the probability density function of the random

effect ϕi. This quantity can be approximated using classical methods for

integral approximations. However in the case of high dimensional random

effects, stochastic integration is preferred over numerical approximations,

allowing a better approximation for comparable computation times.

In practice, each L(yi; θ) can be approximated independently from the

others using Monte Carlo methods, and this can be done in parallel to opti-

mize the execution time. Computing the joint log-likelihood using the sum of

the marginal log-likelihoods, instead of taking the logarithm of their product

can also result in less numerical issues. To further reduce the variability of

the LRT statistics estimate, we can compute directly the Monte Carlo esti-
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mate of LRTN based on the same sample of size M rather than using two

estimates of `(yN1 ; θ̂0) and `(yN1 ; θ̂1) based on two different samples. Thus, let

us consider:

ˆLRTN,M = −2
N∑
i=1

log

∑M
m=1 f(yi | ϕ̃mi,0; θ̂0)∑M
m=1 f(yi | ϕ̃mi,1; θ̂1)

,

where ϕ̃mi,0 = β̂0 + Γ̂
1/2
0 Zm

i , ϕ̃mi,1 = β̂1 + Γ̂
1/2
1 Zm

i and Zm
i ∼ N (0, Ip).

4.2. Computation of chi-bar-square weights when Γ is diagonal

In general, the weights involved in the definition of the chi-bar-square

distribution are not available in a tractable form. However, in the special

case of a diagonal covariance matrix, the cone C involved in the chi-bar-

square distribution is polyhedral of dimension r (see Proposition 1). Indeed,

in this case the cone can be written as C = {θ ∈ Rq | Rθ ≥ 0}, with

R =
(
0r×(p+p−r) | Ir | 0r×J(J+1)

2

)
, a full-rank matrix of dimension r × q. For

polyhedral cones of this type, Shapiro (1985) provided the exact weights

expressions for 1 ≤ r ≤ 3. The case r = 2 is also treated by Self and

Liang (1987). Following the notation of Shapiro (1985), we denote by ρij =

vij/(viivjj)
1/2 and ρij.k = (ρij − ρikρjk)/((1 − ρ2

ik)(1 − ρ2
jk))

1/2, respectively

the correlation coefficient, and the partial correlation coefficient associated

with the covariance matrix RI−1
∗ Rt, where vij stands for the element in row

i and column j of matrix RI−1
∗ Rt. Using Proposition 3.6.1 of Silvapulle

and Sen (2011), we have wi(q, I
−1
∗ , C) = wi(r, RI

−1
∗ Rt,Rr+) and denoting by

wi,r = wi(r, RI
−1
∗ Rt,Rr+), we have the following expressions: (i) for r = 1,

we have w0,1 = w1,1 = 1/2, (ii) for r = 2, we have w0,2 = 1/2 π−1 cos−1(ρ12),

w1,2 = 1/2, and w2,2 = 1/2 − 1/2 π−1 cos−1(ρ12), (iii) for r = 3, we have:

w3,3 = (4π)−1(2π− cos−1(ρ12)− cos−1(ρ13)− cos−1(ρ23)), w2,3 = (4π)−1(3π−
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cos−1(ρ12.3)− cos−1(ρ13.2)− cos−1(ρ23.1)), w1,3 = 1/2−w3,3, and w0,3 = 1/2−

w2,3.

For r > 3, and in more general settings, e.g. when C is not a polyhedral

cone, one has to either approximate the weights through numerical integra-

tion or Monte Carlo simulations, or to directly compute the tail probability

of the chi-bar-square distribution (see Silvapulle and Sen (2011), page 78).

5. Experiments

5.1. Simulation study

Simulation settings. We consider a linear mixed effects model and the logistic

mixed effects model described in Section 2.2 with two and three random

effects to explore different settings. We denote by θ∗ the true parameter

value used to generate the data under H0.

Let us denote by M1 the linear model with three individual parameters

where we set g(ϕi, xj) = ϕi1 + ϕi2xj + ϕi3x
2
j and ϕi = β∗ + bi. We choose

β∗ = (0, 7, 2)t, γ∗1 = 1.3, γ∗2 = 1 and γ∗12 = 1.04, corresponding to a correlation

coefficient of 0.8 between bi1 and bi2. We consider the null hypothesis H0

defined by γ∗3 = γ∗13 = γ∗23 = 0. In the sub-model with two individual

parameters, we set g(ϕi, xj) = ϕi1 + ϕi2xj, where ϕi = β∗ + bi, β
∗ = (0, 7)t

and γ∗1 = 1.3. In this case we consider H0 defined by γ∗2 = γ∗12 = 0. In each

simulation settings, xj = j, J = 20 and σ∗ = 1.5.

Let us denote byM2 the logistic model with three random effects where

we set g(ϕi, xj) = ϕi1/(1 + exp (−(xj − ϕi2)/ϕi3)), where ϕi = β∗ + bi. We

set β∗ = (200, 500, 150)t, γ∗2 = 50, γ∗3 = 15 and γ∗23 = 375, corresponding to a

correlation coefficient of 0.5 between ϕi2 and ϕi3. We consider here the null

20



hypothesis H0 defined by γ∗1 = γ∗12 = γ∗13 = 0. In the sub-model with two

random effects, we set β∗ = (200, 500)t and γ∗2 = 50. In this case we consider

H0 defined by γ∗1 = γ∗12 = 0. The vector of observation times (xj) is the

same for all the individuals, and is defined as a vector of 20 equally spaced

values between 50 and 1000, plus 5 equally spaced values between 1100 and

1500. In each simulation settings, σ∗ = 10. When only two random effects

are considered in the model, β3 is fixed to 150 and not estimated by the

algorithm.

For the two modelsM1 andM2, we consider several test cases, according

to the number of variances being tested, to the total number of random

effects in the model, and to the presence of correlations between the random

effects. More precisely, we consider the following cases: (i) testing that

one variance is null in a model with two independent (Case 1) or non

independent (Case 2) random effects, and in a model with three independent

(Case 3) or non independent (Case 4) random effects, (ii) testing that two

variances are null in a model with three independent (Case 5) random effects,

and (iii) testing that two variances are null in a model with two independent

random effects (Case 6), i.e. testing the absence of random effects. The

limiting distribution of the test statistics in each of these cases is respectively

0.5χ2
0 + 0.5χ2

1 (Case 1), 0.5χ2
1 + 0.5χ2

2 (Case 2), 0.5χ2
0 + 0.5χ2

1 (Case 3),

0.5χ2
2 + 0.5χ2

3 (Case 4), and w0,2χ
2
0 + 0.5χ2

1 + (0.5 − w0,2)χ2
2 (Case 5 and

Case 6) (see Section 4.2). We emphasize here that the limiting distribution

strongly depends on the correlation structure of the random effects.

Parameter estimation is performed either using the lmer function imple-

mented in the R package lme4 (Bates et al., 2015), for the linear model, or
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using the SAEM algorithm implemented in the R package saemix (Comets

et al., 2011), for the nonlinear model. Others parts of the codes are also

developed in R and are available on request.

Empirical level. For each test case, to evaluate the level of the test we gen-

erate K datasets D0,1, . . . , D0,K under the null hypothesis, and we denote by

θ̂0,k (resp. θ̂1,k) the maximum likelihood estimates of θ∗ using dataset D0,k

under H0 (resp. H1). The likelihood ratio test statistics estimate is denoted

by ˆLRT k. Then, the empirical level of the test for a sample size K is equal

to α̂K = 1
K

∑K
k=1 1 ˆLRTk>cα

, where cα is the (1 − α) quantile of the limiting

distribution of the LRT statistics. In practice, cα is not always available in

a closed form and may be estimated as mentioned in Section 4.

Note that in the linear mixed model case, the Fisher information matrix

I∗ is known and is given by:

(I∗)i,j =

(
∂Xβ

∂θi

)t∣∣∣∣∣
θ=θ∗

(Ω∗)−1 ∂Xβ

∂θj

∣∣∣∣
θ=θ∗

+
1

2
tr

(
(Ω∗)−1 ∂Ω

∂θi

∣∣∣∣
θ=θ∗

(Ω∗)−1 ∂Ω

∂θj

∣∣∣∣
θ=θ∗

)
,

where Ω∗ = ZΓ∗Zt + (σ∗)2IJ , θi is the i-th element of vector θ, where tr(A)

denotes the trace of A for any matrix A and where for a matrix A of size

m × n, ∂A/∂x is the matrix of size m × n whose element (i, j) is given by

(∂A/∂x)i,j = ∂Aij/∂x.

We first analyze the finite sample size properties of the LRT statistics

when performing the test in the linear modelM1 involving two or three ran-

dom effects, with and without correlations between the random effects. We

start by testing that the variance of one random effect is zero. We compute

the empirical level as detailed above for nominal level α in {0.01, 0.05, 0.10}

and for a sample size N varying in {100, 500, 800}. Results are presented
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Figure 1: Empirical level and Monte-Carlo error in the linear model for a theoretical

level α ∈ {0.01, 0.05, 0.10} when testing that one variance is null in a model with 2 random

effects (Cases 1-2), evaluated on K = 10000 datasets of size N ∈ {100, 500, 800}

in Figures 1 and 2. We observe that the empirical levels are closer to the

nominal ones when N grows, for random effects involving two and three

components. We also observe that the empirical levels are lower than the

nominal ones, particularly when N is smaller. This is a known property of

chi-bar-square distributions (see for example Fitzmaurice et al. (2007) and

Drikvandi et al. (2013)). However, the theoretical results developed in this

paper are asymptotic ones. For small values of N , non-asymptotic test pro-

cedures such as permutation tests are more appropriate (see Drikvandi et al.

(2013)).

Let us now highlight that one can be led to false conclusions when per-

forming the LRT in a model without taking into account the presence of
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Figure 2: Empirical level and Monte-Carlo error in the linear model for a theoretical

level α ∈ {0.01, 0.05, 0.10} when testing that one variance is null in a model with 3 random

effects (Cases 3-4), evaluated on K = 10000 datasets of size N ∈ {100, 500, 800}

correlations between random effects. For example, let us consider Case 2,

corresponding to a limiting distribution 0.5χ2
1 + 0.5χ2

2. If we do not assume

a correlation structure between the two random effects although there exists

one, then the corresponding limiting distribution is 0.5χ2
0 + 0.5χ2

1. We com-

pute the corresponding empirical quantiles. Results are displayed in Table

1. We observe that the empirical levels in column 3 are too large, leading

to possibly wrong conclusions. This emphasizes that the presence of corre-

lations between the random effects in the model plays a crucial role when

performing a test on variance components in mixed effects models.

We then evaluate the finite sample size properties of the LRT statistics

when performing the test of two variances equal to zero in the linear model
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Table 1: Empirical level and Monte Carlo standard errors in parenthesis in the linear

model for a theoretical level α ∈ {0.01, 0.05, 0.10}, when testing that one variance is

null in a model with two correlated random effects, using the theoretical quantiles of the

limiting distribution 0.5χ2
1 + 0.5χ2

2 (column 2), and using the quantiles of the limiting

distribution 0.5χ2
0 + 0.5χ2

1 obtained when considering a model with uncorrelated random

effects (column 3), for N = 500

α α̂0.5χ2
1+0.5χ2

2
α̂0.5χ2

0+0.5χ2
1

0.01 0.009 0.050

(0.0009) (0.0019)

0.05 0.045 0.174

(0.0021) (0.0037)

0.10 0.092 0.311

(0.0029) (0.0046)

M1 involving three independent random effects. Results are detailed in

Figure 2. As previously, we observe that the empirical levels converge to

the nominal ones when N grows. However the asymptotic effect seems to

occur slower when testing that two variances are equal to zero. This may be

explained by the fact that more parameters have to be estimated than in the

case where one variance is tested equal to zero.

We also study the properties of the LRT statistics when testing that

the two variances are equal to zero in the linear model M1 involving two

independent random effects, which amounts to testing the absence of random

effects in the model. Results are presented in Table 2. We observe the

convergence of the empirical levels towards the nominal ones as N increases.

Let us now focus on the nonlinear model M2. We analyze the finite

sample size properties of the LRT statistics when performing the test in the
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Table 2: Empirical level and Monte-Carlo standard errors in parenthesis in the linear

model for a theoretical level α ∈ {0.01, 0.05, 0.10}, when testing that two variances are

null in a model with two independent random effects (Case 6), evaluated on K = 10000

datasets of size N ∈ {100, 200, 500}

α N = 100 N = 500

0.01 0.008 0.009

(0.0009) (0.0009)

0.05 0.041 0.046

(0.0020) (0.0021)

0.10 0.082 0.088

(0.0027) (0.0028)

model involving two and three random effects, with and without correlations

between random effects. Results are detailed in Table 3. We observe that

in the case of this nonlinear mixed effects model, the empirical levels are

not as close to the nominal ones as in the linear case and are always lower

than the nominal levels in our example. We study the asymptotic behaviour

of the empirical levels and notice that they are not improved when N is

increased to 1000 (results not presented). These numerical results might

be explained by the numerical integrations which have to be performed to

compute the LRT statistics in nonlinear mixed effects models, which is not

the case in the linear setting. To illustrate this, we use the linear modelM1

where the likelihood can be computed exactly. We compare the exact value

(given by the lmer function in R) with the approximation obtained by an

importance sampling scheme (given by the saemix function in R), for K =

1000 datasets. It appears on this specific example that the approximation

26



procedure of saemix has a tendency to under-estimate the likelihood value,

especially under the alternative hypothesis. Consequently, the LRT statistics

is in general lower than the exact value when computed by saemix, which

implies lower empirical levels (see Table 4).

When we consider correlations between the random effects in modelM2,

the empirical levels are globally slightly lower than in the models without

correlations. This may be explained again by the fact that the models with

correlations involved more parameters to estimate. We also observe that the

empirical levels in model M2 with 3 random effects are lower than those

in model M2 involving only 2 random effects. The same argument can be

retained in this case.
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Figure 3: Empirical level and Monte-Carlo error in the linear model for a theoretical

level α ∈ {0.01, 0.05, 0.10}, when testing that the two variances γ21 and γ22 are null (Case

5), evaluated on K = 10000 datasets of size N ∈ {100, 500, 800}
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Table 3: Empirical level in the nonlinear model and Monte Carlo standard errors in

parenthesis for a theoretical level α ∈ {0.01, 0.05, 0.10} when testing that one variance is

null (Cases 1-4), evaluated on K = 1000 datasets of size N = 500

2 random effects 3 random effects

α Γ diagonal (Case 1) Γ full (Case 2) Γ diagonal (Case 3) Γ full (Case 4)

0.01 0.003 0.007 0 0.003
(0.0017) (0.0020) (0) (0.0033)

0.05 0.038 0.033 0.040 0.033
(0.0060) (0.0048) (0.0113) (0.0104)

0.10 0.082 0.073 0.077 0.073
(0.0087) (0.0068) (0.0154) (0.0151)

Empirical power. We assess the empirical power of the procedure in both

modelsM1 andM2, when performing the test of one variance equal to zero

in a model with two random effects. Results are given in Tables 5 and 6 for

the linear model, and in Table 7 for the nonlinear model. We observe that the

empirical power rises rapidly as the true value of the variance being tested

γ∗2 increases. As β∗2 = 7, it corresponds to a relative standard deviation

of approximately 1.4%. In the model with correlated random effects, the

empirical powers increase with the correlation coefficient between the random

effects.

Misspecification of the random effects distribution.. We assess the effect of

a misspecification of the random effects distribution on the empirical level.

More precisely, we generate K = 10000 datasets in the linear model M1

with two independent random effects, following non-Gaussian distributions.

Then, we compute the maximum likelihood estimators under H0 and H1 and
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Table 4: Comparison of the empirical level and Monte Carlo standard error in parenthesis

computed using the exact value of the LRT statistics and an approximation of the LRT

statistics using an importance sampling (IS) scheme, in the linear model, when testing

that one variance is null, and evaluated on K = 1000 datasets of size N = 500

α = 0.01 α = 0.05 α = 0.10

Exact value of the LRT 0.004 0.048 0.104

(0.0018) (0.0064) (0.0092)

Approximation of LRT by IS 0.002 0.034 0.078

(0.0013) (0.0054) (0.0081)

Table 5: Empirical power and Monte Carlo standard error in parenthesis when testing

that one variance is null in the linear model with two independent random effects,

evaluated on K = 10000 datasets of size N .

α = 0.01 α = 0.05 α = 0.10

γ2 N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

0.01 0.0453 0.0761 0.1869 0.2643 0.3290 0.4178

(0.0021) (0.0026) (0.0039) (0.0044) (0.0047) (0.0049)

0.02 0.1341 0.4880 0.3569 0.7466 0.5150 0.8546

(0.0034) (0.0050) (0.0048) (0.0043) (0.0050) (0.0035)

0.05 0.9803 1 0.9972 1 0.9991 1

(0.0004) (0) (0.0019) (0) (0.0033) (0)
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Table 6: Empirical power and Monte-Carlo standard error in parenthesis when testing that

one variance is null in the linear model with two correlated random effects, evaluated

on K = 10000 datasets of size N .

α = 0.01 α = 0.05 α = 0.10

γ2 ρ12 N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

0.01 0.1 0.0135 0.0371 0.0624 0.1250 0.1193 0.2051

(0.0005) (0.0019) (0.0021) (0.0033) (0.0035) (0.0040)

0.5 0.0385 0.2674 0.1280 0.4957 0.2152 0.6236

(0.0019) (0.0044) (0.0033) (0.0050) (0.0041) (0.0048)

0.75 0.0737 0.5617 0.2059 0.7827 0.3103 0.8640

(0.0026) (0.0049) (0.0040) (0.0041) (0.0046) (0.0034)

0.9 0.1010 0.7265 0.2547 0.8857 0.3705 0.9365

(0.0030) (0.0044) (0.0043) (0.0032) (0.0048) (0.0024)

0.02 0.1 0.0694 0.4182 0.1869 0.6585 0.2825 0.7699

(0.0025) (0.0049) (0.0039) (0.0047) (0.0045) (0.0042)

0.5 0.2556 0.9652 0.4728 0.9912 0.5993 0.9952

(0.0044) (0.0018) (0.0050) (0.0009) (0.0049) (0.0007)

0.75 0.4825 0.9991 0.7008 0.9999 0.8022 1

(0.0050) (0.0003) (0.0046) (0.0001) (0.0040) (0)

0.9 0.6025 1 0.8058 1 0.8756 1

(0.0049) (0) (0.0039) (0) (0.0033) (0)

0.05 0.1 0.9644 1 0.9925 1 0.9964 1

(0.0018) (0) (0.0009) (0) (0.0006) (0)
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Figure 4: Comparison of the results based on the exact evaluation of the likelihood (com-

puted by the lmer function) and on its approximation using importance sampling (com-

puted by the saemix function), evaluated on 1000 datasets. Figure 4a : difference between

the exact value of the likelihood and its approximation, under each hypotheses. Figure 4b

: LRT statistics based on the approximated values of the likelihood, as a function of its

exact value.

the corresponding test statistics for each dataset, assuming that the random

effects are Gaussian. We consider three types of distribution: a Student, a

log-normal and a mixture of two Gaussian distributions. Hence, we cover

three different departures from the Gaussian distribution: higher tails with

the Student distribution, asymmetry with the log-normal distribution, and

bimodality with the mixture of Gaussian distributions. Data are generated

under the null hypothesis, with γ∗2 = 0, and ϕi1 generated according to one

of the three types of distribution mentioned above. For the Student distribu-

tion, we choose a degree of freedom of 4.89, leading to a standard deviation of
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Table 7: Empirical power Monte-Carlo standard error in parenthesis when testing that

one variance is null in the nonlinear model with two independent random effects,

evaluated on K = 1000 datasets of size N .

α = 0.01 α = 0.05 α = 0.10

γ2 ρ N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

2 0 0.30 0.98 0.46 0.995 0.55 0.999

(0.0145) (0.0044) (0.0158) (0.0022) (0.0157) (0.001)

2 0.2 0.182 0.945 0.310 0.985 0.400 0.991

(0.0122) (0.0072) (0.0146) (0.0038) (0.0155) (0.0030)

2 0.5 0.448 1 0.639 1 0.717 1

(0.0157) (0) (0.0152) (0) (0.0142) (0)

2 0.8 0.880 1 0.953 1 0.970 1

(0.0103) (0) (0.0067) (0) (0.0054) (0)

1.3. For the log-normal distribution, we choose the parameters such that the

variable logϕi1 is centered and its standard deviation takes two different val-

ues, namely 0.25 and 1.5, corresponding respectively to a distribution which

is slightly asymmetric with a mode around 0.95, and to a distribution which

is highly asymmetric, with a mode around 0.10. For the mixture of Gaussian

distributions, we consider two cases: (i) a symmetric one where the expec-

tations of the Gaussian distributions are set respectively to −1 and 1, both

standard deviations to 1, and both weights to 0.5, and (ii) an asymmetric

one where the expectations are set respectively to −3 and 1, both standard

deviations to 1, and the weights to 0.25 and 0.75. Results for random effects

following the Student distribution t4.89, the log-normal distribution such that

log(ϕi1) ∼ N (0, 1.52) and the Gaussian mixture 0.5N (−1, 1)+0.5N (1, 1) are
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presented in Figure 5. Results for the two other distributions are very similar

and therefore not presented here. We observe on these specific examples that

the empirical levels are globally closed to the nominal ones. Moreover, except

in the case of the highly asymmetric log-normal distribution, the empirical

levels are closer to the nominal ones than the empirical levels obtained in the

case where the random effects are Gaussian. This numerical study gives some

insight on the effects of misspecification of the random effects distribution

on the proposed test procedure. Yet, it can not lead to a general conclusion

about the robustness of the proposed test procedure to misspecification of the

random effects distribution. However let us mention that there exist diag-

nostic tools for the normality assumption of the random effects distribution

in mixed effects models. Let us quote for example those proposed recently

by Drikvandi et al. (2017) and Drikvandi (2017).
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Figure 5: Empirical level and Monte-Carlo error in the linear model for a theoretical level

α ∈ {0.01, 0.05, 0.10}, evaluated on K = 10000 datasets of size N ∈ {100, 500, 800}, when

testing that γ22 is null, under different misspecification of the random effects distribution:

(a) ϕi1 ∼ t4.89 , (b) log(ϕi1) ∼ N (0, 1.52) , (c) ϕi1 ∼ 0.5N (−1, 1) + 0.5N (1, 1)
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5.2. Real data analysis

The method is illustrated on two sets of real data. The first one is the

famous dental growth dataset from Potthoff and Roy (1964), in which the

distance from the center of the pituitary gland to the pteryomaxillary fissure

was measured at 4 different ages for 27 children (16 boys and 11 girls). This

dataset is available in the R package mice. The second dataset comes from a

study of coucal growth rates, available as a Dryad package (Goymann et al.,

2016). Body masses of 678 nestlings from two species (white-browed coucals

and black coucals) were recorded every two days from their hatching date

until they left the nests. In this paper, we only consider data from the

white-browed coucals species, corresponding to the highest sample size (385

individuals).

A linear model is fitted to the dental growth data using the lme4 package,

with two random effects as described in Section 5.1 (model M1). More

precisely, if we denote by yij, 1 ≤ i ≤ 27, 1 ≤ j ≤ 4, the dental measurement

of child i of sex xi, at age tj, the following model is considered, with a random

slope and a random intercept:

yij = (α0 + α1xi + bi1) + (β0 + β1xi + bi2)tj + εij ,

εij ∼ N (0, σ2), (bi1, bi2)t ∼ N (0,Γ) .
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The model can be written in the following form :

yi = Xiβ + Zibi + εi

Xi =


1 xi t1 xit1

1 xi t2 xit2
...

...
...

...

1 xi tJ xitJ

 , β =


α0

α1

β0

β1

 , Zi =


1 t1

1 t2
...

...

1 tJ

 .

First, we assess if the random effects are correlated or not using a LRT

test, and we obtain a test statistics of 0.3027. In this case, the limiting

distribution is a chi-square with one degree of freedom. Thus, at the level of

5%, the null hypothesis is not rejected. Therefore in the sequel we consider a

diagonal covariance matrix Γ = diag(γ2
1 , γ

2
2). We first test H0 : {γ2

1 = 0, γ2
2 =

0} against H1 : {γ2
1 ≥ 0, γ2

2 ≥ 0}, i.e. we test for the absence of randomness

in the model. We compute the likelihood ratio test statistics and compare it

to the rejection threshold qdα associated with the limiting distribution d and

corresponding to a level α. The test statistics is equal to 50.13, the limiting

distribution is the mixture w0χ
2
0 + 0.5χ2

1 + (1 − w0)χ2
2, with w0 = 0.37, and

the rejection threshold is q
0.37χ2

0+0.5χ2
1+0.63χ2

2
0.05 = 3.61. Therefore, at the level of

5% we reject the null hypothesis that there is no random effects in the model.

Next, we want to test H0 : {γ2
1 ≥ 0, γ2

2 = 0} against H1 : {γ2
1 ≥ 0, γ2

2 ≥ 0},

i.e. we want to test if there is a random slope. In this case, the test statistics

is equal to 0.5304, the rejection threshold is equal to q
0.5χ2

0+0.5χ2
1

0.05 = 2.706 and

the p-value is equal to 0.233. Therefore the null hypothesis is not rejected,

which suggests that there is no randomness in the slope. These results are

consistent with previous results obtained on this dataset, in particular in

Drikvandi et al. (2012).
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A nonlinear model is fitted to the white-browed coucals data using the

saemix package, with three random effects as described in Section 5.1 (model

M2). More precisely, if we denote by yij, 1 ≤ i ≤ 385, 1 ≤ j ≤ ni the body

mass of nestling i at age xj, we consider the following model:

yij =
ϕi1

1 + exp
(
xj−ϕi2
ϕi3

) , ϕi = β + bi , bi ∼ N (0,Γ) , εij ∼ N (0, σ2) ,

where ϕi1 is the asymptotic body mass of individual i, ϕi2 the age in days at

which individual i reaches half its asymptotic body mass and ϕi3 the growth

rate of individual i.

We test whether the variances of the inflexion point and the growth rate

are equal to 0, and thus we consider the Case 4 described previously. We

consider a diagonal covariance matrix Γ = diag(γ2
1 , γ

2
2 , γ

2
3) and we test H0 :

{γ2
1 > 0, γ2

2 = γ2
3 = 0} against H1 : {γ2

1 > 0, γ2
2 ≥ 0, γ2

3 ≥ 0}. The limiting

distribution of the LRT statistics is the mixture w0,2χ
2
0 + 0.5χ2

1 + (0.5 −

w0,2)χ2
2, where w0,2 is defined in Section 4 and can be computed from the

correlation coefficient between parameters γ2
2 and γ2

3 obtained from the Fisher

information matrix.

The estimated Fisher information matrix Î is obtained as an output of

the saemix package when the full model corresponding to H1 is fitted to

the data. From this matrix we can easily compute the covariance matrix

V̂ = RÎ−1Rt, where R = (02×4 | I2 | 02×1), and the corresponding correlation

matrix Ĉ = diag(V̂ )−1/2 V̂ diag(V̂ )−1/2. Then, the correlation coefficient ρ̂12

needed to compute w0,2, is the element (1, 2) of Ĉ.

In our case, ρ̂12 = −0.644, leading to the three following weights: w0,2 =

0.139, w1,2 = 0.5 and w2,2 = 0.361, and thus to the limiting distribution
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0.139χ2
0 + 0.5χ2

1 + 0.361χ2
2. The likelihood ratio test statistics is equal to

LRT = 3.119, and the rejection threshold is equal to q
0.139χ2

0+0.5χ2
1+0.361χ2

2
0.05 =

4.682. The corresponding p-value is evaluated at 0.114 on this dataset. In

other words, assuming a diagonal covariance matrix Γ, we do not reject the

null hypothesis that both the inflection point and the growth rates are fixed

effects and do not vary among individuals, at the asymptotic level of 5%.

6. Discussion

Several perspectives of this work are of great interest, both from a theo-

retical and a practical point of view. For a wide-range application of these

results, adapted tools to compute precisely the test statistics in nonlinear

mixed effects models have to be developed. Indeed the reliability of the

test is linked to the precise evaluation of the test statistics. Moreover, the

procedure opens very promising perspectives in applications with high di-

mensional random effects. For example, models of plant growth have raised

expectations to help improving the understanding of gene by environment

interactions by developing a predictive capacity that scales from genotype to

phenotype (Letort et al., 2008). In plant ecophysiological models, one geno-

type should be represented by one unique set of parameters, and reversely,

two different genotypes should potentially be characterized by two different

sets of parameters (Tardieu, 2003). Such models are often descriptive ones,

involving mechanistic parameters. Therefore, considering these parameters

as random effects is relevant in order to understand how they vary within a

given population (Baey et al., 2016). However this leads to many computa-

tional issues, since the number of parameters is high. Therefore, the issue
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of reducing the model size in a mixed effects model has gained an increas-

ing interest in plant growth modelling. Also more advanced works on the

computational methods are still necessary for the computation of the Fisher

information matrix. Besides, from a theoretical point of view, it would be

interesting to establish results when considering nuisance parameters lying

on the boundary of the parameter space, as well as results for the test power.

Finally, since the asymptotic regime is not always reached in practice, it

would be of a great interest to develop a finite sample-size procedure using

for example bootstrap methods or permutation tests in the spirit of the ones

developed in the context of linear mixed effects models (Fitzmaurice et al.,

2007; Drikvandi et al., 2013).

7. Appendix

7.1. Proof of Proposition 1

The proof relies on technical elements from convex analysis and can be

easily adapted to general covariance matrix structure using similar tools.

To calculate the tangent cones to Θ0 and Θ at θ∗, we can use general re-

sults from Hiriart-Urruty and Lemarechal (1996) on the definition of tangent

cones, and more recent results by Hiriart-Urruty and Malick (2012) on the

tangent cone of the set of symmetric positive semi-definite matrices.

The proof is carried out in the cases where the covariance matrix Γ is

diagonal and full. Similar tools can be used in other cases where a more

sparse structure is assumed for Γ.
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Tangent cone of Θ. We recall that Θ is defined as:

Θ = {θ ∈ Rq | β ∈ Rp,Γ ∈ Sp+,Σ ∈ SJ+} ,

Θ = Rp × Sp+ × SJ+ .

Now, since each term in the above product is a convex cone, we have that

T (Rp × Sp+ × SJ+, (β
∗,Γ∗,Σ∗)) = T (Rp, β∗) × T (Sp+,Γ

∗) × T (SJ+,Σ
∗) (see for

example (Hiriart-Urruty and Lemarechal, 1996, Proposition 5.3.1.)). There-

fore, the tangent cone of Θ at θ∗ is given by:

T (Θ, θ∗) = Rp × T (Sp+,Γ
∗)× T (SJ+,Σ

∗) ,

where T (Sp+,Γ
∗) is the tangent cone of the set of symmetric positive semi-

definite matrices of size p × p at Γ∗, and T (SJ+,Σ
∗) the tangent cone of the

set of symmetric positive semi-definite matrices of size J × J at Σ∗.

To identify T (Sp+,Γ
∗) and T (SJ+,Σ

∗), we can use the result established by

Hiriart-Urruty and Malick (2012). According to the authors, the tangent cone

of Sp+ at A ∈ Sp+ is given by TA = {M ∈ Sp | 〈Mu, u〉 ≥ 0 for all u ∈ kerA},

where Sp is the set of symmetric matrices of size p× p.

In our case, since Γ∗ =
[

Γ∗
1 0

0 0

]
, we have:

T (Sp+,Γ
∗) = {M ∈ Sp | ∀u ∈ ker Γ∗, 〈Mu, u〉 ≥ 0}

=


 M11 M12

M t
12 M22

 ∈ Sp | ∀u = (0, . . . , 0︸ ︷︷ ︸
p−r

, up−r+1, . . . , up), u
tMu ≥ 0


=


 M11 M12

M t
12 M22

 ∈ Sp |M22 ≥ 0


T (Sp+,Γ

∗) = R(p−r)(p−r+1)/2 × Rr(p−r) × Sr+.
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Similarly, we have:

T (SJ+,Σ
∗) =

{
M ∈ SJ | ∀u ∈ ker Σ∗, 〈Mu, u〉 ≥ 0

}
=
{
M ∈ SJ | ∀u ∈ {0}, 〈Mu, u〉 ≥ 0

}
= SJ .

In the end, we get:

T (Θ, θ∗) = Rp × R(p−r)(p−r+1)/2 × Rr(p−r) × Sr+ × SJ .

In the case where Γ is diagonal, i.e. when the effects are assumed to be

independent, we have:

T (Θ, θ∗) = Rp × Rp−r × Rr+ × SJ .

Tangent cone of Θ0. We recall that Θ0 is defined as:

Θ0 ={θ ∈ Rq | β ∈ Rp,Γ1 ∈ Sp−r+ ,Γ12 = 0,Γ2 = 0,Σ ∈ SJ+}

=Rp × Sp−r+ × {0}r(p−r) × {0}r(r+1)/2 × SJ+ .

Using similar tools than for Θ, we get:

T (Θ0, θ
∗) = Rp × Sp−r × {0}r(p−r) × {0}r(r+1)/2 × SJ

= Rp × R(p−r)(p−r+1)/2 × {0}r(p−r)+r(r+1)/2 × RJ(J+1)/2.

Note that in the particular case where Γ is diagonal, i.e. when the ef-

fects are supposed to be independent, the parameter space Θ0 and hence its

tangent cone can be simplified, and we have:

T (Θ0, θ
∗) = Rp × Rp−r × {0}r × RJ(J+1)/2.

Finally, we derive the expressions stated in (i) and (iii).
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7.2. Proof of Corollary 1

Let V be a positive-definite matrix and C a closed convex cone of Rq. We

denote by Co = {x ∈ Rq | xty ≤ 0, ∀y ∈ C} its polar cone. We recall the

following properties for the weights of the chi-bar-square distribution χ̄2(V, C)

(Shapiro, 1985, 1988):

1. for 0 ≤ i ≤ q, wi(q, V, C) = wq−i(q, V, Co);,

2. if C is included in a linear space of dimension (q − k), for 1 ≤ k ≤ q,

then the first k weights {wi(q, V, Co), i = 0, . . . , k − 1} are zero,

3. if C contains a linear space of dimension l, for 1 ≤ l ≤ q, then the last

l weights {wi(q, V, Co), i = q − l + 1, . . . , q} are zero.

In our case, C = T (Θ, θ∗) ∩ T (Θ0, θ
∗)⊥ and V = I−1

∗ , and we have for

both cases mentioned in the corollary: (i) C = {0}p × {0}(p−r)(p−r+1)/2 ×

Rr(p−r)×Sr+×{0}J(J+1)/2 which is included in Rr(p−r)+r(r+1)/2, i.e. in a linear

space of dimension q − (p+ (p− r)(p− r + 1)/2 + J(J + 1)/2). Therefore,

using properties (i) and (ii) above, the weights wi(q, I
−1
∗ , C), for i = r(p −

r) + r(r + 1)/2 + 1, . . . , q are zero. Moreover, C contains Rr(p−r), i.e. a

linear space of dimension r(p− r), which means using properties (i) and (iii)

above, that the weights wi(q, I
−1
∗ , C), for i = 0, . . . , r(p − r) − 1 are zero.

(ii) C = {0}p × {0}p−r × Rr+ × {0}J(J+1)/2 which is included in Rr, a linear

space of dimension q − p− (p− r)− J(J + 1)/2. It follows that the weights

wi(q, I
−1
∗ , C), for i = r + 1, . . . , q are zero. Then, since C does not contain

any linear space of dimension k > 0, all the other weigths are non-zero.
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