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Molecular Communications: Model-Based and Data-Driven Receiver Design and Optimization

In this paper, we consider a molecular communication system that is made of a 3D unbounded diffusion channel model without flow, a point transmitter, and a spherical absorbing receiver. In particular, we study the impact of inter-symbol interference, and analyze the performance of different threshold-based receiver schemes. The aim of this paper is to analyze and optimize the receivers by using the conventional model-based approach, which relies on an accurate model of the system, and the emerging data-driven approach, which, on the other hand, does not need any apriori information about the system model and exploits deep learning tools. We develop a general analytical framework for analyzing the performance of threshold-based receiver schemes, which are suitable to optimize the detection threshold. In addition, we show that data-driven receiver designs yield the same performance as receivers that have perfect knowledge of the underlaying channel model.
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 are available in the literature. In the present paper, we focus our attention on developing robust receiver schemes.

, the authors have designed an adaptive receiver that combines a channel estimator and a decision-feedback equalizer. The

I. INTRODUCTION

Traditional electromagnetic-based transmission techniques may not be appropriate to enable the communication among nano-devices [START_REF] Hiyama | Molecular Communication[END_REF]. Molecular Communications (MC) are, on the other hand, a more suitable and emerging option [START_REF] Farsad | A comprehensive survey of recent advancements in molecular communication[END_REF]. In a MC system, the information is transmitted via the release of information particles [START_REF] Farsad | A comprehensive survey of recent advancements in molecular communication[END_REF]. If the information is encoded onto the number of particles that are released, the corresponding modulation scheme is referred to as Concentration Shift Keying (CSK) modulation.

In MC systems, diffusion [START_REF] Pierobon | Capacity of a diffusion-based molecular communication system with channel memory and molecular noise[END_REF] is the easiest option to enable information particles propagate from the transmitter to the receiver. Due to the intrinsic characteristics of diffusion, the resulting transmission channel is usually affected by non-negligible Inter-Symbol Interference (ISI) which, if not taken into account for system optimization, may severely degrade the system performance [START_REF] Mohammadreza | Channel estimation for diffusive mimo molecular communications[END_REF][START_REF] Jamali | Channel estimation for diffusive molecular communications[END_REF][START_REF] Chang | Adaptive detection and isi mitigation for mobile molecular communication[END_REF][START_REF] Fang | Symbol-by-symbol maximum likelihood detection for cooperative molecular communication[END_REF][START_REF] Jamali | Non-coherent detection for diffusive molecular communication systems[END_REF]. The enzyme-based MC system [START_REF] Noel | Improving receiver performance of diffusive molecular communication with enzymes[END_REF] is one of the available schemes to mitigate the intrinsic ISI in MC systems. If the data rate is high, however, the ISI may not be negligible, and the approach in [START_REF] Noel | Improving receiver performance of diffusive molecular communication with enzymes[END_REF] may not provide satisfactory performance. For this reason, we channel estimator updates the channel parameters and detects the symbols constantly. Further results are available in [START_REF] Mosayebi | Receivers for diffusion-based molecular communication: Exploiting memory and sampling rate[END_REF]. Therein, the authors propose a new decoder that divides each slot into sub-slots. According to the number of received particles in each sub-slots, an associated decision rule is adopted and the whole scheme improves the detection performance. Similar results are available in [START_REF] Jamali | Non-coherent detection for diffusive molecular communication systems[END_REF].

The aforementioned approaches rely on the knowledge of the channel and system models. This, however, may not always be possible either due to the complexity of modeling the entire system in an accurate manner or due to the complexity of optimizing the resulting system model. These issues can be solved by using Machine Learning (ML) methods. With the help of ML, several schemes have been proposed [START_REF] Hao Ye | Power of deep learning for channel estimation and signal detection in ofdm systems[END_REF][START_REF] Dong | Machine learning prediction based csi acquisition for fdd massive mimo downlink[END_REF], e.g., for application to Orthogonal Frequency-Division Multiplexing (OFDM) [START_REF] Qian | Joint synchronization and channel estimation of aco-ofdm systems with simplified transceiver[END_REF], to circumvent these issues. In MC systems, ML-based schemes have been proposed in, e.g., [START_REF] H Birkan Yilmaz | A machine learning approach to model the received signal in molecular communications[END_REF][START_REF] Lee | Machine learning based channel modeling for molecular mimo communications[END_REF], to address the issue of accurate system modeling. Furthermore, the authors of [START_REF] Farsad | Sliding bidirectional recurrent neural networks for sequence detection in communication systems[END_REF] have recently proposed a sequence detection scheme based on sliding bidirectional recurrent neural networks that does not need channel information. Compared with existing ISI mitigation schemes, with the exception of the enzyme-based approach, ML-based schemes are less complex and easier to implement. With the aid of deep learning methods, the authors of [START_REF] Farsad | Sliding bidirectional recurrent neural networks for sequence detection in communication systems[END_REF] have shown that their proposed scheme is capable of automatically learning the whole system from empirical data and of performing data detection without using complex channel estimation and data equalization techniques.

In this paper, motivated by the promising results obtained in [START_REF] Farsad | Sliding bidirectional recurrent neural networks for sequence detection in communication systems[END_REF], we study the possibility of optimizing the receiver design of MC systems in the presence of ISI by using Artificial Neural Networks (ANNs). In particular, our implementation is based on feed-forward ANNs with fully-connected layers.

Our study shows that ANNs without prior knowledge of the system model are capable of providing the same performance as conventional detection methods that rely on the perfect knowledge of the underlaying system model. In particular, the novelty and contribution of this paper can be summarized as follows.

• We compute the Bit Error Rate (BER) of many threshold-based detection schemes. Compared with other frameworks, the proposed approach takes the background noise and the ISI into account in an accurate manner. In particular, we show that the proposed ANN-based implementation is capable of estimating the optimal threshold that minimizes the BER, as opposed to sub-optimal solutions where the dynamic nature of the ISI is not taken into account. Our approach is, therefore, particularity suitable for optimal threshold-based receiver implementations without prior knowledge of the system model. • We develop different receiver schemes, both based on conventional detection theory and by applying recent results on data-driven optimization based on ANNs. In particular, we consider receiver structures that account for one-bit, two-bit, or all-bit (genie-aided) prior knowledge. We show that both model-based and data-driven approaches yield similar performance, with the latter approach having the benefits of not requiring any a priori information about the system model. Compared with the companion conference version [START_REF] Qian | Receiver design in molecular communications: An approach based on artificial neural networks[END_REF], this paper is largely expanded, since it encompasses the modeling, analysis, and optimization of different types of receivers whose major difference is the number of previouslydetected bits that they use for demodulation. In [START_REF] Qian | Receiver design in molecular communications: An approach based on artificial neural networks[END_REF], in fact, only the zero-bit memory receiver was considered. In [START_REF] Qian | Receiver design in molecular communications: An approach based on artificial neural networks[END_REF], in addition, no general framework to compute the BER was proposed. The approach proposed in this paper, on the other hand, can be applied to receivers with an arbitrary number of past bits used for detection. The corresponding architectures of the ANNs are proposed as well.

The remainder of this paper is organized as follows. In Section II, the system model is introduced. In Section III, modelbased detection schemes are proposed. In Section IV, datadriven detection schemes are developed and optimized. In Section V, the proposed schemes are validated via numerical simulations and illustrations are provided. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

Figure 1 depicts the main components of a MC system. The transmitter generates the information particles, which are released into the channel. The transmitter is assumed to be small enough to be considered as a point. We assume that the information particles diffuse randomly and independently of each other through the medium (Brownian motion). Even though a large number of information particles are emitted, not all of them reach the receiver in the considered time-slot. Some information particles remain in the channel and reach the receiver in subsequent time-slots: this causes the ISI. If not appropriately taken into account, the ISI may severely degrade the performance of MC systems. As an example, we consider a spherical absorbing-type receiver [START_REF] Deng | Analyzing large-scale multiuser molecular communication via 3-d stochastic geometry[END_REF][START_REF] H Birkan Yilmaz | Three-dimensional channel characteristics for molecular communications with an absorbing receiver[END_REF].

We assume that the temperature is constant and the viscosity η remains unchanged during the whole transmission duration. The diffusion coefficient D [START_REF] Hiyama | Molecular Communication[END_REF], thus, remains constant as well. In the considered system model, no extra energy is needed since particles diffuse freely.

We consider a 3D unbounded diffusion channel model without flow, as illustrated in Fig. 2. By assuming the transmitter located at a = (0, 0, 0) and the receiver at b = (b x , b y , b z ), the hitting rate of each information particle can be expressed as follows [START_REF] Damrath | Lowcomplexity adaptive threshold detection for molecular communication[END_REF][START_REF] H Birkan Yilmaz | Three-dimensional channel characteristics for molecular communications with an absorbing receiver[END_REF]:

f 3D hit (t) = r(d -r) d √ 4πDt 3 e -(d-r) 2 4Dt (1) 
where a-b = d is the distance between the transmitter and the center of the receiver, and r is the radius of the receiver that is assumed to have a spherical shape. For ease of illustration, an On-Off Keying (OOK) modulation scheme is considered. At the ith slot, the transmitter releases N TX information particles into the environment when the symbol is s i = 1, otherwise the transmitter does not release any particles. We assume that the transmitter can release the N TX information particles in a very short time so that the release time effect of the transmitter on the received signal is negligible.

The hitting probability of an absorbing receiver, i.e., the probability to absorb one particle after t seconds that the information particle is released, can be expressed as follows:

t 0 f hit (t)dt (2) 
From ( 1) and (2), we have:

P hit (t) = t 0 f hit (t)dt = r d erf c( d -r √ 4Dt ) (3) 
where: erf (y) = y 0 2 √ π e -x 2 dx and erf c(y) = 1 -erf (y). Therefore, during the (i -1)th time slot after releasing the particle, the probability that one particle hits the receiver is: Then, we obtain:

P i-1 = iT (i-1)T f hit (t)dt (4) 
P i-1 = r d {erf c( d -r √ 4DiT ) -erf c( d -r 4D(i -1)T )} (5)
Let C j = N T X P j denote the average received particles at the jth time-slot if N T X particles are released. Then, the number of received particles [START_REF] Mosayebi | Receivers for diffusion-based molecular communication: Exploiting memory and sampling rate[END_REF] at the ith time-slot follows the Poisson distribution as follows:

r i ∼ P oisson(I i + s i C 0 ) (6) 
where

I i = λ 0 T + ∞ j=1
s i-j C j is the sum of ISI and background noise, and λ 0 is the background noise power per unit time.

More precisely, the probability of receiving r i information particles is:

P (r i |I i + s i C 0 ) = e -(Ii+siC0) (I i + s i C 0 ) ri r i ! (7) 
For ease of tractability, we assume that C i for i > L is small enough to be integrated into the background noise, and we denote by L the length of the Poisson channel. Therefore, C i for 1 ≤ i ≤ L contributes, in practice, to the ISI. The signal-to-noise ratio (SNR) can be defined as follows:

SN R = 10log 10 C 0 2λ 0 T (8) 
where the information bits are assumed to be equiprobable. Accordingly, given a certain SNR value, the number of released particles, N T X , is:

N T X = 2λ 0 T 10 SN R 10 /P 0 (9) 
For future reference, the system parameters of a typical MC system are listed in Table 1.

III. MODEL-BASED RECEIVERS DESIGN IN MOLECULAR COMMUNICATIONS

In this section, we study some receivers in the presence of ISI with the objective of computing their bit error rate (BER) performance and optimizing their parameters in order to minimize the BER. For all cases, the system model is the same as in the previous section. We consider different types of threshold-based detectors, whose main difference consists of the amount of prior information, i.e., the number of previous bits that they use for demodulation.

A. OPTIMAL ZERO-BIT MEMORY RECEIVER

We study a threshold-based zero-bit memory receiver. The demodulation threshold is denoted by τ . Let si be the estimate of symbol s i at time-slot i. The demodulation rule can be formulated as follows:

si = 0, r i ≤ τ 1, r i > τ (10) 
The traditional approach to determine the threshold τ is obtained by imposing P (r i = τ |s i = 0) = P (r i = τ |s i = 1). The rationale behind this approach is that the values of C i for 1 ≤ i ≤ L are unknown, but the averaged ISI, equal to L i=1 C i /2, is known. Under these assumptions, the probability of receiving r i particles conditioned upon s i can be written as follows:

P app (r i |s i ) = e -λ|s i (λ| si ) ri r i ! (11) 
where

λ| si = C 0 s i + L j=1 Cj 2 + λ 0 T .
By imposing the equality P app (r i |s i = 0) = P app (r i |s i = 1), we obtain:

τ = C 0 ln(1 + C0 L i=1 Ci/2+λ0T ) (12) 
This approach is, however, sub-optimal. If, in fact, the slot length is long enough, then the term L i=1 C i /2 is a good approximation for the ISI. If the slot length is short, on the other hand, the ISI changes according to the previously transmitted symbols and L i=1 C i /2 is not a good approximation anymore. Thus, the obtained demodulation threshold is not the optimal choice anymore.

In the following proposition, we develop the optimal demodulation threshold that minimizes the BER. To this end, we propose also a new accurate analytical formulation of the BER. For ease of notation, we denote by s i-1 = {s i-1 , s i-2 , ...s i-L } the vector of bits that are transmitted in the L time-slots preceding the ith time-slot of interest.

Proposition 1. The optimal threshold that minimizes the BER of the zero-bit memory receiver is as follows:

(τ * , P * e ) = arg min τ P e (τ ) (13) 
where P e (τ ) is the BER as a function of τ :

P e (τ ) = 1 2 L si-1 P e (s i-1 , τ ) (14) 
and: Proof. The BER is defined as follows:

P e (s i-1 , τ ) = 1 2 [Q(λ 0 T + L j=1 s i-j C j , τ ) + 1 -Q(λ 0 T + L j=1 s i-j C j + C 0 , τ )] (15) 
P e (s i-1 , τ ) = 1 2 [P (r i ≥ τ |s i = 0, s i-1 ) +P (r i < τ |s i = 1, s i-1 )] (16) 
where:

P (r i ≥ τ |s i = 0, s i-1 ) = P (r i ≥ τ |λ 0 T + L j=1 s i-j C j ) = ∞ k= τ e -( λ0T 
+ L j=1 si-j Cj ) (λ 0 T + L j=1 s i-j C j ) k k! = Q(λ 0 T + L j=1 s i-j C j , τ ) (17) 
where

Q(λ, n) = ∞ k=n e -λ λ k k!
is the incomplete Gamma function and Q(λ, 0) = 1. Similarly, we have:

P (r i < τ |s i = 1, s i-1 ) = P (r i < τ |λ 0 T + L j=0 s i-j C j ) = τ -1 k=0 e -(λ 0 T + L j=1 s i-j C j +C 0 ) (λ0T + L j=1 si-j Cj +C0) k k! = 1 - ∞ k= τ e -(λ 0 T + L j=1 s i-j C j +C 0 ) (λ0T + L j=1 si-j Cj +C0) k k! = 1 -Q(λ 0 T + L j=1 s i-j C j + C 0 , τ ) (18) 
From ( 17) and ( 18), we obtain [START_REF] Hao Ye | Power of deep learning for channel estimation and signal detection in ofdm systems[END_REF]. Finally, the BER is obtained by averaging [START_REF] Mosayebi | Receivers for diffusion-based molecular communication: Exploiting memory and sampling rate[END_REF] with respect to the vector s i-1 .

The optimal detection threshold, τ , is obtained by minimizing the BER (see [START_REF] Damrath | Lowcomplexity adaptive threshold detection for molecular communication[END_REF]). In Fig. 3, we depict [START_REF] Mosayebi | Receivers for diffusion-based molecular communication: Exploiting memory and sampling rate[END_REF] as a function of τ . We observe that an optimal value of τ exists that minimizes the BER and that it depends on the time slot duration T , i.e., the amount of ISI.

B. OPTIMAL ONE-BIT MEMORY RECEIVER

In this section, we study and optimize the performance of a one-bit memory receiver, which has more prior information than the zero-bit memory receiver. The receiver can be formulated as follows:

si = 0, r i ≤ τ | si-1 1, r i > τ | si-1 (19) 
where τ | si-1 denotes the threshold for the ith symbol when the previously transmitted symbol is s i-1 . Since the exact value of s i-1 is unknown, the estimate si-1 is employed instead, i.e., τ | si-1 is used.

In simple terms, in contrast to the zero-bit memory receiver that accounts only for the number of received particles in the time-slot of interest, the one-bit memory detector adapts the detection threshold as a function of the previously transmitted bit (that is, in practice, replaced by its estimate). Therefore, the detection threshold changes from time-slot to time-slot, but a better approximation of the ISI is obtained.

The following proposition yields the optimal value of the detection threshold, by using the same line of thought as for the zero-bit memory detector.

Proposition 2. The optimal detection threshold of the one-bit memory receiver can be formulated as follows:

τ * | si-1 = arg min τ P e (τ, s i-1 ) (20) 
where the BER is as follows:

P e (τ, s i-1 ) = 1 2 L-1 si-2,••• ,s i-L P e (s i-1 , τ ) (21) 
In order to compute the optimal threshold for the ith timeslot, the previously transmitted symbol s i-1 is assumed to be known. In practice, this is not possible, since only its estimates is available, as discussed already. Therefore, the BER needs to take this into account. The BER of the onebit memory receiver is given in the following theorem.

Theorem 1. The BER of the one-bit memory detector can be formulated as follows:

P e = m + n 2 (22) 
where m and n are the solutions of the following equations:

m = 1 2 L si-1 si-1 Q(λ| si-1,si=0 , τ | si ) Ψ(s i-1 , si-1 , m, n) (23) 
n = 1 2 L si-1 si-1 (1 -Q(λ| si-1,si=1 , τ | si )) Ψ(s i-1 , si-1 , m, n) (24) 
λ| si-1,si=0 = L j=1 C j s i-j + λ 0 T . Similarly, λ| si-1,si=1 = L j=1 C j s i-j + λ 0 T + C 0 . The function Ψ(s i-1 , si-1 , m, n) is defined as follows: Ψ(s i-1 , si-1 , m, n) =        m, (s i-1 = 0, si-1 = 1) 1 -m, (s i-1 = 0, si-1 = 0) n, (s i-1 = 1, si-1 = 0) 1 -n, (s i-1 = 1, si-1 = 1) (25) 
Proof. See Appendix VII-A.

C. OPTIMAL K-BIT MEMORY RECEIVER

Inspired by the one-bit memory detector in Section III-B, we generalize this receiver design by considering a generic Kbit memory receiver. It is worth nothing that K may be set equal to L, which is the actual length of the ISI channel. This setup yields the optimal performance but needs more a priori information on the previously detected bits, which increases the complexity of the receiver.

The optimal detection threshold and BER are given in the following proposition and theorem, respectively. Proposition 3. The optimal detection threshold of the K-bit memory receiver can be formulated as follows:

τ * | si-1,...,s i-K = arg min τ P e (τ, s i-1 , ..., s i-K ) (26)
where the BER is as follows:

P e (τ, s i-1 , ..., s i-K ) = 1 2 L-K s i-K+1 ,••• ,s i-L P e (s i-1 , τ ) (27)
Since the exact symbols s i-j , for1 ≤ j are unknown, the estimates si-1 , ..., si-K are used to perform the detection:

si = 0, r i ≤ τ | si-1,...,si-K 1, r i > τ | si-1,...,si-K (28) 
Theorem 2. The BER of the K-bit memory receiver can be approximated by using [START_REF] Deng | Analyzing large-scale multiuser molecular communication via 3-d stochastic geometry[END_REF], where m and n are the solution of the equations:

m = 1 2 L si-1 si-1,...,si-K Q(λ| si-1,si=0 , τ | si-1,...,si-K ) K j=1 Ψ(s i-j , si-j , m, n) n = 1 2 L si-1 si-1,...,si-K (1 -Q(λ| si-1,si=1 , τ | si-1,...,si-K )) K j=1 Ψ(s i-j , si-j , m, n)
Proof. See Appendix VII-B. It is worth mentioning that the obtained expression of the BER is an approximation for general values of K. The details of the approximation are available in the appendix.

where τ| s ¯i-1 is the optimal threshold that corresponds to the previously detected bit s ¯i-1 , λ| si-1,si=0 is the average number of received particles by conditioning on the current symbol being 0 and the previous L symbols being s i-1 , i.e., 

IV. DATA-DRIVEN RECEIVER DESIGN IN MOLECULAR COMMUNICATIONS

In the previous section, we have optimized the operation of receivers by assuming that the underlying system model is perfectly known. In this section, we do not rely on this assumption anymore, and take advantage of feed-forward ANNs with fully-connected layers and deep learning [START_REF] Goodfellow | Deep learning[END_REF] to optimize the design of molecular receivers. The architecture of a typical feed-forward ANN with fully-connected layers is depicted in Fig 4, and it consists of an input layer, several hidden layers, and an output layer. The nodes of the hidden layers are referred to as neurons. The objective of this section is to describe how to design and optimize receivers by using ANNs and by training an ANN by using only empirical data, i.e., the number of received particles in the presence of ISI. We describe each receiver studied in the previous section in the following subsections.

A. DATA-DRIVEN DESIGN OF ZERO-BIT MEMORY RECEIVER

The objective of an ANN-based design is to identify an ANN structure that demodulates the transmitted data by minimizing the BER. An ANN-based zero-bit memory demodulator is a system whose input consists of the received information particles r i at the ith time-slot, and the outputs are the probabilities that the transmitted bit is 0 or 1, i.e., P i (s i = 0|r i ) and P i (s i = 1|r i ), respectively. Since, P i (s i = 1|r i ) + P i (s i = 0|r i ) = 1, only one of the two probabilities is needed. In the sequel, we use the notation P i = P i (s i = 1|r i ). Based on the inputs, the ANN demodulate the received data as follows:

si = 0, P i ≤ 0.5 1, P i > 0.5 (29) 
where the threshold 0.5 accounts for the fact that the bits are equiprobable.

In order to train the ANN, we consider a supervised learning approach, i.e., we compute the parameters (e.g., the bias factors and the weights) of the ANN by using a known sequence of transmitted bits. In particular, we use the Bayesian regularization back propagation technique, which updates the weights and biases by using the Levenberg-Marquardt optimization algorithm. A hyperbolic tangent sigmoid activation function is employed in all neurons. The set of parameters that are used to train and operate the ANN are the following: The number of hidden layers is 10, the number of neurons per layer is 5, the learning rate is 0.01, the training epoch is 200, the total number of training bits is 50000, and the number of test bits is 100000. In particular, the training is performed in a batch mode, and the number of bits in each batch is 1000. This setup is used to obtain the numerical results in the next section.

B. DATA-DRIVEN DESIGN OF ONE-BIT MEMORY RECEIVER

If the one-bit memory receiver is considered, the input of the ANN is not just the number of received particles at the ith time-slot, r i , but also the estimated symbol at the (i -1)th time-slot, s ¯i-1 . In mathematical terms, the output estimate of the ANN can be formulated as follows: si = 0, P (s i = 1|r i , si-1 ) ≤ 0.5 1, P (s i = 1|r i , si-1 ) > 0.5

A block diagram representation of the ANN-based architecture is depicted in Fig. 5.

As far as the ANN architecture is concerned, the same system setup as for the zero-bit memory receiver is considered with the only exception that the number of hidden layers is equal to 5 and the number of neurons per layer is 4.

C. DATA-DRIVEN DESIGN OF K-BIT MEMORY RECEIVER

By using the same line of thought as for the one-bit memory receiver, the decision rule of the K-bit memory receiver can be formulated as follows:

si = 0, P (s i = 1|r i , si-1 , ..., si-K ) ≤ 0.5 1, P (s i = 1|r i , si-1 , ..., si-K ) > 0.5
The corresponding block diagram is illustrated in Fig. 6. In this case, in particular, the training data-unit is constituted by the vector {r i , s i-1 , ...s i-K ; s i }. The same system setup as for the one-bit memory receiver is considered to obtain the numerical results illustrated in the next section. 

V. NUMERICAL RESULTS

In this section, we report and describe some simulation results in order to validate the analysis, design, and optimization of the proposed receivers for application to molecular communications. In addition, we compare both model-based and data-driven designs.

As far as Monte Carlo simulations are concerned, the MC system is assumed to be perfectly synchronized. Accordingly, the hitting rate at each ∆T can be obtained directly from [START_REF] Hiyama | Molecular Communication[END_REF], and the number of received particles can be, thus, com-puted from (6) without the need of implementing particle-based Monte Carlo simulations. This approach reduces the simulation time without compromising, under the considered system model, the accuracy of the results. Real distribution when s i =0 Real distribution when s i =1

A. ZERO-BIT MEMORY RECEIVERS

The optimal threshold Threshold derived under P(r i |s i =0)=P(r i |s i =1)

Received particle number r i Probability other in a different point. This justifies the reason why our approach yields the optimum and a better BER. The results shown in Fig. 8 and Fig. 9 are, therefore, very important in order to highlight the sub-optimality of the demodulation thresholds that have been used in the literature to date. The results in Fig. 7, in addition, highlight the advantages of the proposed optimal thresholds in the context of MC systems design and optimization.

In Fig. 10, we compare the BER of the ANN-based demodulator against the model-based receiver design. We observe a good accuracy, which confirms the correct optimization of the ANN, and, at the same time, the correct calculation of the analytical framework. In Fig. 11, we compare the optimal threshold computed numerically from [START_REF] Damrath | Lowcomplexity adaptive threshold detection for molecular communication[END_REF] as a function of the SNR, and the demodulation threshold that is learned by In Fig. 7, we observe that the proposed design based on optimizing the detection threshold that minimizes the BER provides us with better performance than the sub-optimal design. We note, in particular, that for each SNR the optimal detection threshold is used. We observe, in addition, a very good accuracy of the proposed analytical framework. Notably, Fig. 8 and Fig. 9 provide us with a simple representation of the receiver sub-optimality discussed in Sec. III-A. First of all, we observe that the theoretical and empirical distributions of the received number of particles are different. More importantly, we observe that the empirical distributions cross each other in correspondence of the estimated optimal detection threshold, while the approximated ones cross each the ANN-based demodulator. In the latter case, the threshold is obtained, after completing the training of the ANN, and identifying the input, i.e., the number of information particles, for which the output probability is equal to 0.5. We observe that the ANN-based implementation is capable of learning the demodulation threshold in a very accurate manner. This result is very interesting, as it allows us to unveil the hidden behavior of the optimized ANN. It highlights, in particular, that the optimized ANN is, indeed, a thresholdbased demodulator.

In order to further test the robustness of our ANN-based design, we consider another case study where the distance between the transmitter and receiver is short [START_REF] Noel | Using dimensional analysis to assess scalability and accuracy in molecular communication[END_REF]. In this case, the hitting rate can be formulated as follows: FIGURE 13: System model assuming a short distance between transmitter and receiver. The data-driven receiver achieves the same BER performance as the optimal (i.e., based on the optimal threshold) zero-bit receiver -T = 30∆T .

f short (t) = 1 2 [erf (τ 1 ) + erf (τ 2 )] - √ Dt d √ π [e -τ 2 1 -e -τ
where τ 1 = √ r+d and τ = √ r-d . The rest of the equations can be obtained from this new expression of the hitting rate. As for the simulation parameters, they are the same as those in Table 1, with the exception of the distance d = 100nm and the channel length L = 2.

The corresponding results are illustrated in Fig. 12 and Fig. 13. We observe that similar performance trends as for the first case study are obtained. There exists a gap between the BER of optimal and sub-optimal zero-bit receivers. In the following sections, therefore, we will consider only the channel where the distance between the transmitter and the receiver is large.

B. ONE-BIT MEMORY RECEIVERS

In Fig. 14, we compare the BER of the optimal and suboptimal one-bit threshold receivers. Also in this case, we observe that better performance is obtained by using the proposed optimal design. In addition, the numerical results confirm the correctness of our analytical framework. In Fig. 15, we observe that the proposed ANN-based design yields the FIGURE 14: BER of optimal vs. sub-optimal one-bit memory receiver. The performance gap between optimal and suboptimal receiver gets smaller since the ISI is modeled more accurately -T = 30∆T . Comparison between the optimal and sub-optimal setups of the demodulation thresholds. The more the number of memory bits, the better the ISI is modeled. As the memory length approaches the channel length, thus, the optimal threshold converges towards the conventional threshold -T = 30∆T . 

VI. CONCLUSION

In this paper, we have introduced a new analytical framework to compute the BER of a MC system that uses thresholdbased demodulators. By modeling the receiver as an ANN, in addition, we have proved that data-driven receivers provide similar performance as those that are optimized based on the exact knowledge of the channel model. From the considered same results as the model-based approach, which, however, assumes perfect knowledge of the system model.

C. K-BIT MEMORY RECEIVERS

In this section, finally, we consider the design of receivers that exploit more than one bit for improving the performance. In Fig. 16, we compare the BER of the optimal and suboptimal receivers by assuming K = 2. We observe that, in this case, the sub-optimal receiver is closer to the optimal one, if compared to the case studies with K = 0 and K = 1. We have observed, in general, that the larger the number of bits of memory is, the closer the BER of optimal and suboptimal receivers are.

In Fig. 17 and Fig. 18, we compare model-based and ANNbased receiver designs, and we observe a good agreement. In particular, Fig. 18 highlights the improved performance that is obtained by increasing the number of bits of memory, which, for the considered setup, is K = L, i.e., the actual length of the ISI.
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 1 FIGURE 1: Block diagram of a typical MC system.

FIGURE 2 :

 2 FIGURE 2: The 3D unbounded molecular channel model without flow including a point transmitter and a spherical absorbing receiver.

FIGURE 3 :

 3 FIGURE 3: BER in (14) as a function of τ (the SNR is 30 dB).

FIGURE 4 :

 4 FIGURE 4: Typical structure of a feed-forward ANN with fullyconnected layers.

FIGURE 5 :

 5 FIGURE 5: Data-driven one-bit memory receiver.
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 67 FIGURE 6: Data-driven K-bit memory receiver.

FIGURE 8 :

 8 FIGURE 8: Approximated distributions of the received bits from (11) (the SNR is 25 dB).

FIGURE 9 :

 9 FIGURE 9: Empirical distributions of the received bits (the SNR is 25 dB).

FIGURE 10 :

 10 FIGURE 10:The ANN-based receiver achieves the same BER performance as the optimal zero-bit receiver -T = 30∆T .

FIGURE 11 :

 11 FIGURE 11: Optimal detection thresholds of model-based and data-driven schemes. The ANN-based receiver auto-matically emulates the optimal zero-bit memory receiver. -T = 30∆T .
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FIGURE 16 :

 16 FIGURE 16:Two-bit memory detector: Comparison between the optimal and sub-optimal setups of the demodulation thresholds. The more the number of memory bits, the better the ISI is modeled. As the memory length approaches the channel length, thus, the optimal threshold converges towards the conventional threshold -T = 30∆T .

FIGURE 17 :

 17 FIGURE 17:The ANN-based two-bit memory receiver achieves the same BER performance as the optimal two-bit receiver -T = 30∆T .

FIGURE 18 :

 18 FIGURE 18: The BER performance of ANN-based and modelbased L-bit memory detectors overlap with each other -T = 30∆T .

FIGURE 15 :

 15 FIGURE 15:The ANN-based receiver achieves the same BER performance as the optimal one-bit receiver -T = 30∆T .

TABLE 1 :

 1 Simulation parameters

	Parameter	Value
	λ 0	100s -1
	Receiver radius r	45 nm
	Distance d	500 nm
	Diffusion coefficient D	4.265 * 10 -10 m 2 /s
	Discrete time length ∆T 9 us
	Slot length T	30∆T
	Channel length L	5

ANN-based receiver design, in addition, we have shown that the resulting ANN architecture results in a threshold-based receiver whose threshold coincides with that predicted theoretically. This is an interesting result for better optimizing and further understanding MC systems.

VII. APPENDIX

A. PROOF OF THE BER OF THE ONE-BIT MEMORY RECEIVER

The BER is defined as follows:

where P (s i = 1|s i = 0) is the probability of detecting s i equal to 1 when the transmitted symbol is 0. We have the following:

P (s i-1 |s i-1 )P (s i-1 )P (s i-2 , ...,

where λ| si-1,si=0 = λ 0 T + L j=1 s i-j C j . By using similar steps, we obtain:

The proof follows.

B. PROOF OF THE BER OF THE MULTI-BIT MEMORY RECEIVER

From (30), we have the following:

The term P (s i-1 |s i-1 ..., s i-L , si-L ) can be calculated as follows:

Also, P (s i-2 |s i-2 ..., s i-L , si-3 , ..., si-K ) can be obtained as follows:

P (s i-2 |s i-2 , ..., s i-L , si-3 , ..., si-K )

To obtain a tractable closed-form expression, we use the following approximation to compute, recursively, P (s i = 1|s i = 0):

The calculation of P (s i = 1|s i = 0, s i , si-1 , ..., si-K ) can be done for any threshold, τ | si-1,...,si-K , and from the average number of received particles as follows:

From [START_REF] Fang | Symbol-by-symbol maximum likelihood detection for cooperative molecular communication[END_REF], we obtain:

P (s i = 0|s i = 1) can be computed by using similar steps and assumptions:

si-1 si-1,...,si-K P (s i-1 |s i-1 )...P (s i-K |s i-K ) P (s i = 0|s i = 1, s i-1 , si-1 , ..., si-K )

where:

Finally, we obtain the following:

si-1 si-1,...,si-K P (s i-1 |s i-1 )...P (s i-K |s i-K )

(1 -Q(λ si-1,si=1 , τ | si-1,...,si-K ))

This concludes the proof.