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A tool for power flow analysis of a generalized class of droop

controllers for high-voltage direct-current transmission systems

Daniele Zonetti, Romeo Ortega and Johannes Schiffer

Abstract— The problem of primary control of high-voltage
direct current transmission systems is addressed in this paper,
which contains three main contributions. First, to propose a
new nonlinear, more realistic, model for the system suitable for
primary control design, which takes into account nonlinearities
introduced by conventional inner controllers. Second, to deter-
mine necessary conditions—dependent on some free controller
tuning parameters—for the existence of equilibria. Third, to
formulate additional (necessary) conditions for these equilibria
to satisfy the power sharing constraints. The usefulness of the
theoretical results is illustrated via numerical calculations on a
four-terminal example.

I. INTRODUCTION

For its correct operation, high-voltage direct current

(hvdc) transmission systems—like all electrical power

systems—must satisfy a large set of different regulation

objectives that are, typically, associated to the multiple

time-scale behavior of the system. One way to deal with

this issue, that prevails in practice, is the use of hierarchical

control architectures [1]–[3]. Usually, at the top of this

hierarchy, a centralized controller called tertiary control—

based on power flow optimization algorithms (OPFs)—is in

charge of providing the inner controllers with the operating

point to which the system has to be driven, according to

technical and economical constraints [1]. If the tertiary

control had exact knowledge of such constraints and of

the desired operating points of all terminals, then it would

be able to formulate a nominal optimization problem and

the lower level controllers could operate under nominal

conditions. However, such exact knowledge of all system

parameters is impossible in practice, due to uncertainties and

lack of information. Hence, the operating points generated

by the tertiary controller may, in general, induce unsuitable

perturbed conditions. To cope with this problem further

control layers, termed primary and secondary control, are

introduced. These take action—whenever a perturbation

occurs—by promptly adjusting the references provided

by the tertiary control in order to preserve properties that

are essential for the correct and safe operation of the

system. This paper focuses on the primary control layer.

Irrespectively of the perturbation and in addition to ensuring

stability, the primary control has the task of preserving

two fundamental criteria: a prespecified power distribution
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(power sharing) and keeping the terminal voltages near the

nominal value [4]. Both objectives are usually achieved by

an appropriate control of the dc voltage of one or more

terminals at their point of interconnection with the hvdc

network [2], [5], [6].

Clearly, a sine qua non requirement for the fulfillment of

these objectives is the existence of a stable equilibrium

point for the perturbed system. The ever increasing use of

power electronic devices in modern electrical networks, in

particular the presence of constant power devices (CPDs),

induces a highly nonlinear behavior in the system—

rendering the analysis of existence and stability of equilibria

very complicated. Since linear, inherently stable, models,

are usually employed for the description of primary control

of dc grids [3], [6], [7], little attention has been paid to

the issues of stability and existence of equilibria. This

fundamental aspect of the problem has only recently

attracted the attention of power systems researchers [8]–[10]

who, similarly to the present work, invoke tools of nonlinear

dynamic systems analysis, to deal with the intricacies of the

actual nonlinear behavior.

The main contributions and the organization of the paper

are as follows. Section II is dedicated to the formulation—

under some reasonable assumptions—of a reduced, nonlinear

model of the hvdc transmission system in closed-loop with

standard inner-loop controllers. A first implication is that

the obtained nonlinear model may in general have no

equilibria. Then, we consider a generalized class of primary

controllers, that includes the special case of the ubiquitous

voltage droop control, and establish necessary conditions on

the control parameters for the existence of an equilibrium

point. This is done in Section III. An extension of this

result to the problem of existence of equilibria that verify

the power sharing property is carried out in Section IV. Due

to space limitations, all proofs are omitted, for which the

reader is referred to [11]. The usefulness of the theoretical

results is illustrated with a numerical example in Section V.

We wrap-up the paper by drawing some conclusions and

providing guidelines for future investigation.

Notation. For a set N = {l, k, . . . , n} of, possibly un-

ordered, elements, we denote with i ∼ N the elements i =
l, k, . . . , n. All vectors are column vectors. Given positive

integers n, m, the symbol 0n ∈ R
n denotes the vector of all

zeros, 0n×m the n×m column matrix of all zeros, 1n ∈ R
n

the vector with all ones and In the n × n identity matrix.

When clear from the context dimensions are omitted and



vectors and matrices are simply denoted by the symbols 0,

1 or I. For a given matrix A, the i-th colum is denoted

by Ai. diag{ai} is a diagonal matrix with entries ai ∈ R

and bdiag{Ai} denotes a block diagonal matrix with matrix-

entries Ai. Also, x := col(x1, . . . , xn) ∈ R
n denotes a vector

with entries xi ∈ R. When clear from the context it is simply

referred to as x := col(xi).

II. NONLINEAR MODELING OF HVDC SYSTEMS

A. A graph description

The main components of an hvdc transmission system are

ac to dc power converters and dc transmission lines. The

power converters connect ac subsystems—that are associated

to renewable generating units or to ac grids—to an hvdc

network. In [12] it has been shown that an hvdc transmission

system can be represented by a directed graph1 without

self-loops, where the power units—i.e. power converters

and transmission lines—correspond to edges and the buses

correspond to nodes. A first step towards the construction

of a suitable model for primary control analysis and design

is the definition of an appropriate graph description of the

system topology that takes into account the primary control

action.

We consider an hvdc transmission system described by a

graph G↑(N , E), where n = c + 1 is the number of nodes

and m = c+t is the number of edges, with c and t the number

of converter and transmission units respectively. We further

denote by p the number of converter units not equipped with

primary control—termed PQ units hereafter—and by v the

number of converter units equipped with primary control—

that we call voltage-controlled units. To facilitate reference

to different units we find it convenient to partition the set of

nodes (respectively converter edges) into two ordered subsets

NP and NV (respectively EP and EV ) corresponding to

PQ and voltage-controlled nodes (respectively edges). The

incidence matrix associated to the graph is given by:

B =





Ip 0 BP

0 Iv BV

−1⊤p −1⊤v 0



 ∈ R
n×m, (II.1)

where the submatrices BP and BV fully capture the topology

of the hvdc network with respect to the different units.

B. Converter units

For the description of the converter units we consider

power converters based on voltage source converter (VSC)

technology [13]. The following assumption is made.

Assumption 2.1: All VSCs are controlled via stable direct

current control schemes. Moreover, such schemes guarantee

instantaneous and exact tracking of the desired currents.

This assumption can be justified by an appropriate design

of the current inner-loop control scheme so that the resulting

closed-loop system is internally stable and has a very large

bandwidth compared to the voltage dynamics and to the outer

1A directed graph is an ordered 3-tuple, G↑
= {N , E,Π}, consisting of

a finite set of nodes N , a finite set of directed edges E and a mapping Π

from E to the set of ordered pairs of N .

loops. Under Assumption 2.1, the reduced-order model of the

VSC at the i-th node employed in this work is given by the

following scalar system:

Civ̇C,i = −GivC,i + i⋆i + iC,i, i⋆i := i⋆d,i + i⋆q,i, (II.2)

where vC denotes the dc voltage, i⋆d,i, i
⋆
q,i denote the current

references for the underlying current controller (the dynamics

of which are neglected under Assumption 2.1), iC,i denotes

the network current, Ci ∈ R+ and Gi ∈ R+ denote the

conductance and capacitance respectively.

By using (II.2) as a point of departure, we derive the

closed-loop dynamics of the PQ and voltage-controlled units.

Recall that the current references are obtained by an outer

power loop, which is based on the following definitions of

instantaneous active and reactive power [14]:

Pi := Vd,iid,i + Vq,iiq,i, Qi := Vd,iiq,i − Vq,iid,i, (II.3)

where Vd,i, Vq,i and id,i, iq,i are respectively the dq-

transformed ac voltages and currents of the converter. For

simplicity, we further assume that the current inner-loop

employs a time-varying dq transformation such that Vq,i is

always kept to zero.

An important observation that follows from Assumption 2.1

is that the ac voltage dynamics evolve at a much slower

time-scale than the time-scale at which the power converter

is operated. For this reason Vd,i is seen as constant from

the point of view of the converter and the regulation of

active and reactive power is—up to a scaling factor—

equivalent to the regulation of the direct and quadrature

currents [12]. Nevertheless, at the time-scale at which the

outer-loop dynamics evolve, Vd,i is not constant, so that

the current references i⋆d,i, i
⋆
q,i—which are established using

(II.3) for some fixed powers P ⋆
i , Q⋆

i —vary as well, implying

for the system instantaneous tracking of powers rather than

currents. Hence, the controlled ac-side can be approximated

by the parallel connection of two power sources, so that the

injected power at the i-th converter unit is given by:

S⋆
i := Vd,ii

⋆
d,i + Vd,ii

⋆
q,i = Vd,ii

⋆
i , i ∼ EP ∪ EV . (II.4)

If the unit is a PQ unit then, the current references are simply

determined by the outer power loop via (II.3), which by

noting that Vq,j = 0, gives

i⋆d,j =
P ⋆
j

Vd,j

, i⋆q,j =
Q⋆

j

Vd,j

, j ∼ EP . (II.5)

Hence, by replacing these expressions into (II.4) we obtain

the injected power for the PQ units:

S⋆
j = P ⋆

j +Q⋆
j , j ∼ EP , (II.6)

which corresponds to a constant power device of value

P ⋆
P,j := P ⋆

j + Q⋆
j , see Fig. 1a. On the other hand, if

the converter unit is a voltage-controlled unit, the current

references are defined according to the primary control

strategy. A common approach in this scenario is to introduce

an additional deviation (also called droop) in the direct

current reference—obtained from the outer power loop—as



a function of the dc voltage, while keeping the reference of

the quadrature current unchanged:

i⋆d,k =
P ⋆
k

Vd,k

+ δk(vC,k), i⋆q,k =
Q⋆

k

Vd,k

, k ∼ EV , (II.7)

where δk(vC,k) represents the state-dependent contribution

provided by the primary control. We propose to take:

δk(vC,k) =
1

Vd,k
(µP,k + µI,kvC,k − µZ,kv

2
C,k), k ∼ EV ,

(II.8)

where µP,k, µI,k ∈ R, µZ,k ∈ R+ are free control

parameters. By replacing (II.7)-(II.8) into (II.4), we obtain

the injected power for the voltage-controlled units:

S⋆
k(vC,k) = P ⋆

V,k + µI,kvC,k − µZ,kv
2
C,k, k ∼ EV , (II.9)

with P ⋆
V,k := P ⋆

k +Q⋆
k + µP,k, which corresponds to a ZIP

model, i.e. the parallel connection of a constant impedance

µZ,k (Z), a constant current source/sink µI,k (I) and a

constant power device P ⋆
V,k(P)—see also Fig. 1b. Based on

these approximations and recalling (II.2), the dynamics of the

PQ units can be represented by the following scalar systems:

Cj v̇C,j = −GjvC,j + uj + iC,j ,

0 = P ⋆
P,j − vC,juj ,

(II.10)

while for the dynamics of the voltage-controlled units we

have:

Ckv̇C,k = −(Gk + µZ,k)vC,k + µI,k + uk + iC,k,

0 = P ⋆
V,k − vC,kuk,

(II.11)

where j ∼ EP , k ∼ EV , vC,j , vC,k ∈ R+ denote the voltages

across the capacitors, iC,j , iC,k ∈ R denote the network

currents, uj , uk ∈ R denote the currents flowing into the

constant power devices and Gj , Gk, Cj , Ck ∈ R+ denote

the conductances and capacitances. The aggregated model is

then given by:
[

CP v̇P
CV v̇V

]

=−

[

GP 0
0 GV +GZ

] [

vP
vV

]

+

+

[

uP

uV

]

+

[

0
ūV

]

+

[

iP
iV

]

,

(II.12)

together with the algebraic constraints:

P ⋆
P,j = vP,juP,i, P ⋆

V,k = vV,kuV,k, (II.13)

i ∼ EP , k ∼ EV , with: state vectors vP := col(vC,j) ∈
R

p, vV := col(vC,k) ∈ R
v; external sources ūV :=

col(µI,k) ∈ R
v; network currents iP := col(iC,j) ∈ R

p,

iV := col(iC,k) ∈ R
v; currents flowing into the constant

power devices uP := col(uj) ∈ R
p, uV := col(uk) ∈ R

v;

matrices CP := diag{Cj} ∈ R
p×p, GP := diag{Gj} ∈

R
p×p, CV := diag{Ck} ∈ R

v×v, GV := diag{Gk} ∈ R
v×v,

GZ := diag{µZ,k} ∈ R
v×v.

C. Hvdc network

For the model of the hvdc network we assume that

the dc transmission lines can be described by single-cell

RL circuits, for which it is straightforward to obtain the

aggregated model [12]:

LT i̇T = −RT iT + vT , (II.14)

with iT := col(iT,i), vT := col(vT,i) ∈ R
t denoting the

currents through and the voltages across the lines and LT :=
col(LT,i), RT := col(RT,i) ∈ R

t×t denoting the inductance

and resistance matrices. We make the following assumption.

Assumption 2.2: The dynamics of the dc lines evolve on

a time-scale that is much faster than the time-scale at which

the dynamics of the voltage capacitors evolve.

This assumption is a generalization of a fairly standard

assumption in traditional power systems, where this time-

scale separation typically holds because of the very slow

dynamics of generation and loads compared to those of

transmission lines [15], [16]. Under Assumption 2.2, (II.14)

reduces to:

i⋆T = GT vT , (II.15)

where i⋆T is the steady-state vector of the line currents and

GT := R−1
T the conductance matrix of the transmission lines.

D. Interconnected model

In order to obtain the reduced, interconnected model of

the hvdc transmission system under Assumptions 2.1 and

2.2, we consider the interconnection laws determined by the

incidence matrix (II.1). Let us define the node and edge

vectors:

Vn :=





VP

VV

0



 ∈ R
c+1, Ve :=





vP
vV
vT



 ∈ R
m, Ie :=





iP
iV
iT



 ∈ R
m.

By using the definition of the incidence matrix (II.1) together

with the Kirchhoff’s current and voltage laws [17], [18]:

BIe = 0, Ve = B⊤Vn, (II.16)

we obtain:

iP = −BPGTB
⊤
P vP − BPGTB

⊤
V vV ,

iV = −BV GTB
⊤
P vP − BV GTB

⊤
V vV .

(II.17)

Replacing ip and iV in (II.12) by the expression (II.17), leads

to the interconnected model:
[

CP v̇P
CV v̇V

]

=−

[

LP +GP Lm

L⊤
m LV +GV +GZ

] [

vP
vV

]

+

+

[

uP

uV

]

+

[

0
ūV

]

,

(II.18)

together with the algebraic constraints:

P ⋆
P,j = vP,juP,j , P ⋆

V,k = vV,kuV,k, (II.19)

i ∼ EP , k ∼ EV and where we defined

LP : = BPGLB
⊤
P , Lm := BPGLB

⊤
V , LV := BV GLB

⊤
V .

Remark 2.3: With the following choice:

µP,k = dkVd,kv
nom
C , µI,k = −dkVd,k, µZ,k = 0,



(a) Equivalent circuit scheme for PQ units.
(b) Equivalent circuit scheme for voltage-controlled
units.

Fig. 1: Equivalent circuit schemes of the converter units with constant power devices (CPDs), under Assumption 2.1.

where k ∼ EV , the primary control (II.8) reduces to:

δk(vC,k) = −dk(vC,k − vnomC ).

This is exactly the conventional voltage droop control [2],

[6], [19], where dk is called droop coefficient and vnomC is

the nominal voltage of the hvdc system. Note that it can be

interpreted as the parallel connection of a current sink with

a constant power load, as in [4]. This should be contrasted

with the models provided in [3], [7], where it is modeled as

a current source in parallel connection with an impedance.

Remark 2.4: The model (II.18) can be also employed for

the modeling of dc grids with no loss of generality. In

fact, loads can be represented either by PQ units (constant

power loads) or by voltage-controlled units with assigned

parameters (ZIP loads). This model should be contrasted with

the linear models adopted in [3], [7] where loads are modeled

as constant current sinks.

Remark 2.5: The matrix:

L :=

[

LP Lm

L⊤
m LV

]

∈ R
c×c

is the Laplacian matrix associated to the weighted undirected

graph Ḡw, obtained from the (unweighted directed) graph

G↑ that describes the hvdc transmission system by: 1)

eliminating the reference node and all edges connected to

it; 2) assigning as weights of the edges corresponding to

transmission lines the values of their conductances. Similar

definitions are also encountered in [3], [7].

III. CONDITIONS FOR EXISTENCE OF AN

EQUILIBRIUM POINT

From an electrical point of view, the reduced system

(II.18) is a linear capacitive-resistive circuit, where at each

node a constant power device is attached. It has been

observed in experiments and simulations that the presence of

constant power devices may seriously affect the dynamics of

linear RLC circuits hindering the achievement of a constant,

stable behavior of the state variables—the dc voltages in

the present case [10], [20]–[22]. A first objective is thus

to determine conditions on the free control parameters of

the system (II.18)-(II.19) that guarantee the existence of an

equilibrium point. To simplify the notation, let us define

P ⋆
P : = col(P ⋆

P,j) ∈ R
p, RP := LP +GP ∈ R

p×p,

P ⋆
V : = col(P ⋆

V,k) ∈ R
v, RV := LV +GV +GZ ∈ R

v×v.
(III.1)

In order to present the main result on existence of equilibria

for the system (II.18), we further recall the following lemma,

the proof of which can be found in [10].

Lemma 3.1: Consider m quadratic equations of the form

fi : R
n → R,

fi(x) :=
1

2
x⊤Aix+ x⊤Bi, i ∈ [1,m], (III.2)

where Ai = A⊤
i ∈ R

n×n, Bi ∈ R
n and define:

A(T ) : =

m
∑

i=1

tiAi, B(T ) :=
m
∑

i=1

tiBi, C(T ) :=
m
∑

i=1

tici.

If the following LMI

Υ(T ) :=

[

A(T ) B(T )
B⊤(T ) −2C(T )

]

> 0,

is feasible, then the equations fi(x) = ci, with i ∈ [1,m],
have no solution.

We are now ready to formulate the following proposition,

that establishes necessary, control parameter-dependent, con-

ditions for the existence of equilibria of the system (II.18).

Proposition 3.2: Consider the system (II.18)-(II.19), for

some given P ⋆
P , P ⋆

V . Suppose that there exist two diagonal

matrices TP ∈ R
p×p and TV ∈ R

v×v such that:

Υ(TP , TV ) > 0, (III.3)

with

Υ :=





TPRP +RPTP TPLm + L⊤
mTV 0

⋆ TV RV +RV TV −TV ūV

⋆ ⋆ −2(1⊤p TPP
⋆
P + 1⊤v TV P

⋆
V )



 ,

where P ⋆
P , P ⋆

V , RP and RV are defined in (III.1). Then the

system (II.18)-(II.19) does not admit an equilibrium point.

Remark 3.3: The feasibility of the LMI (III.3) depends on

the control parameters GZ , ūV and P ⋆
V . Since the feasibility



condition is only necessary for the existence of equilibria

for (II.18), it is of interest to determine regions for these

parameters that imply non-existence of an equilibrium point.

IV. CONDITIONS FOR POWER SHARING

Another control objective of primary control is the

achievement of power sharing among the voltage-controlled

units. We introduce the following definition.

Definition 4.1: Let be v⋆ := (v⋆P , v
⋆
V ) ∈ R

c an equilib-

rium point for (II.18)-(II.19), P̂V (v
⋆) := col(P̂k(v

⋆
C,k)) ∈

R
v, i.e. the collection of injected powers as defined by (II.9)

and Γ := diag{γk} ∈ R
v×v, a positive definite matrix. Then

v⋆ verifies the power sharing property with respect to Γ if:

ΓP̂V (v
⋆) = 1v. (IV.1)

This property consists in guaranteeing a given (propor-

tional) power distribution among terminals in steady-state. A

typical choice for the weights γk is the nominal power rating

of the terminal. We now show that is possible to reformulate

such a control objective as a set of quadratic constraints on

the equilibrium point, assuming that it exists.

Lemma 4.2: Let v⋆ = (v⋆P , v
⋆
V ) ∈ R

c be an equilibrium

point for (II.18)-(II.19) and Γ := diag{γk} ∈ R
v×v a positive

definite matrix. Then v⋆ possesses the power sharing prop-

erty with respect to Γ if an only if the quadratic equations

1

2
(v⋆)⊤Aps

k v⋆ + (Bps

k )⊤v⋆ = p
ps

k , k ∼ EV , (IV.2)

where:

Aps

k : = 2

[

0 0
0 ΓGZ

]

eke
⊤
k , Bps

k :=

[

0
ΓūV

]

eke
⊤
k , p

ps

k := e⊤k

[

0
ΓP ⋆

V ,

]

admit a solution.

An immediate implication of this lemma is given in the

following proposition, which establishes necessary condi-

tions for the existence of an equilibrium point that verifies

the power sharing property.

Proposition 4.3: Consider the system (II.18)-(II.19), for

some given P ⋆
P , P ⋆

V and Γ. Suppose that there exist three

diagonal matrices TP ∈ R
p×p, TV ∈ R

v×v, T
ps

V ∈ R
v×v,

such that:

Υ(TP , TV ) + Υps(T
ps

V ) > 0, (IV.3)

with

Υps :=





0 0 0
⋆ 2T ps

V ΓGZ T
ps

V ΓūV

⋆ ⋆ −2T ps

V (1v − ΓP ⋆
V )



 .

Then the system (II.18)-(II.19) does not admit an equilibrium

point that verifies the power sharing property.

V. AN ILLUSTRATIVE EXAMPLE

In order to validate the results on existence of equilibria

and power sharing for the system (II.18)-(II.19) we pro-

vide an illustrative example. Namely, we consider the four-

terminal hvdc transmission system depicted in Fig. 2, the

parameters of which are given in Table I. Since c = t = 4,

the graph associated to the hvdc system has n = 5 nodes

and m = 8 edges. We then make the following assumptions.

1 4

2 3

Fig. 2: Four-terminal hvdc transmission system.

- Terminal 1 (T1) and Terminal 3 (T3) are equipped with

primary control. Hence, there are p = 2 PQ units and

v = 2 voltage-controlled units. Moreover we take

δk(vC,k) = −dk(vC,k − vnomC ), k = {1, 3}.

This is the well-known voltage droop control, where dk
is a free control parameter, while vnomC is the nominal

voltage of the hvdc system, see Remark 2.3.

- The power has to be shared equally among T1 and T3.

Hence, Γ = I2 in Definition 4.1.

The next results are obtained by investigating the feasibility

of the LMIs (III.3), (IV.3) as a function of the control

parameters d1 and d3. For this purpose, CVX, a package

for specifying and solving convex programs, has been used

to solve the semidefinite programming feasibility problem

[23]. By using a gridding approach, the regions of the

(positive) parameters that guarantee feasibility (yellow) and

unfeasibility (blue) of the LMI (III.3) are shown in Fig. 3,

while in Fig. 4 the same is done with respect to the LMI

(IV.3). We deduce that a necessary condition for the existence

of an equilibrium point is that the control parameters are

chosen inside the blue region of Fig. 3. Similarly, a nec-

essary condition for the existence of an equilibrium point

that verifies the power sharing property is that the control

parameters are chosen inside the blue region of Fig. 4.
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Fig. 3: Feasibility regions of the LMI (III.3) on the plane

(d1, d3) of droop control parameters.



TABLE I: System parameters.

Gi 0 Ω−1 P ⋆
V,1 30 MW P ⋆

P,2 −20 MW P ⋆
V,3 9 MW P ⋆

P,4 −24 MW

Ci 20 µF G12 0.1 Ω−1 G14 0.15 Ω−1 G23 0.11 Ω−1 G24 0.08 Ω−1
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Fig. 4: Feasibility regions of the LMI (IV.3) on the plane

(d1, d3) of droop control parameters.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a new nonlinear model for primary control

analysis and design has been derived. Primary control laws

are described by equivalent ZIP models, which include

the standard voltage droop control as a special case. A

necessary condition for the existence of equilibria in

the form of an LMI—which depends on the parameters

of the controllers—is established, thus showing that an

inappropriate choice of the latter may lead to non-existence

of equilibria for the closed-loop system. The same approach

is extended to the problem of existence of equilibria that

verify the power sharing property. The obtained results are

illustrated on a four-terminal example.

Future research will concern various aspects. First of

all, a better understanding of how the feasibility of the

LMIs are affected by the parameters is necessary. Since

the established conditions depends on the network topology

and the dissipation via the Laplacian matrix, this suggests

that the location of the voltage-controlled units, as well as

the network impedances, play a key role on the existence

of equilibria. Similarly, it is of interest to understand how

the ZIP coefficients affect the LMIs, in order to provide

guidelines for the design of primary controllers. Further

developments will focus on the establishment of conditions

for the existence of equilibria in other scenarios: small

deviations from the nominal voltage [9]; unit outages [4].
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