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Abstract: In this paper we consider the problem of velocity estimation and stabilization for
balancing an inverted pendulum equipped with a reaction wheel. A homogeneous differentiator
is proposed for velocity estimation, and it is shown that a bias in sensor readings yields steady-
state estimation error. The proposed observer is augmented with a reduced-order bias estimator
and local asymptotic stability of the coupled observers is shown. The proposed solution is tested
and compared with another approach on an experimental setup.
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1. INTRODUCTION

This research is motivated by the walking robot with a
non-anthropomorphic dynamic stabilization system that
we have recently reported in Ryadchikov et al. (2018).
For this robot, the idea was to provide auxiliary means
of vertical stabilization by installing inside the robot’s
body two flywheels (shown in red in the Figure 1, left),
improving vertical stability without affecting the rest of
the mechanical system. The flywheels are orthogonal to
each other and the problem of vertical stabilization of the
robot can be considered for each axis separately. Thus,
we consider a stabilization of a one-dimensional reaction-
wheel based inverted pendulum as a basic approximation
for the robot motion control system.

Inverted pendulums, including reaction-wheel setups, have
been extensively studied. Spong et al. (2001) proposed
a switching controller to swing the pendulum upwards
from its downright equilibrium. The monograph Block
et al. (2007) deeply covers the pendulum motion, including
linear and nonlinear models, and models of the sensors and
actuators that are used for feedback control. Finally, for
our paper, the most relevant work is the Cubli by Ga-
jamohan et al. (2012), a very interesting project created
at ETH Zürich.

The key element for the stabilization of an inverted pendu-
lum is velocity estimation both for the pendulum and for
the reaction wheel. While in the Cubli device, a gyroscope
sensor is used to measure the velocity, in our case we
use optical angular encoders, and the velocities are to be
estimated from the available measurements. Velocity (or
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Fig. 1. Left: AnyWalker robot uses reaction wheels (shown in red)
as an auxiliary stabilization system. Middle and right: 1D
pendulum hardware and corresponding notations.

momenta) observer design for a mechanical system is a
well-known and long-standing problem, see, for example,
the recent work by Aranovskiy et al. (2017) where several
solutions are considered and compared. While nonlinear
Luenberger-like observers and Kalman-based filters oper-
ate with the whole vector of measurements and can be
computationally demanding, a common engineering ap-
proach is to consider each degree of freedom separately and
estimate velocity as a derivative of a scalar position (angle)
signal; in such a case velocity estimation is considered as
a differentiator design problem. There are multiple known
solutions for numerical differentiation, such as linear ap-
proximation based on Taylor series expansion, e.g. a first-
order difference used by Spong et al. (2001), sliding-mode
exact differentiators first proposed by Levant (1998), or
high-gain differentiators as described by Vasiljevic and
Khalil (2008). For this paper, we are particularly inter-
ested in the homogeneous differentiator (HOMD) proposed
by Perruquetti et al. (2008) that ensures finite-time con-



vergence and is robust with respect to possible model
uncertainties.

An important issue for pendulum stabilization is a sensor
bias potentially present in the position measures. This
bias can be caused by imprecisions in sensor placement;
however, there are other possible sources. For example,
in the one-dimensional prototype considered in this paper
the motor cable creates a disturbance that shifts the
equilibrium point from zero readings of the position sensor.
As it is shown by Block et al. (2007) and illustrated in §4,
such a bias may shift the stable equilibrium of the closed-
loop system away from the origin, that is undesirable
behavior for robot stabilization. Thus, the bias should be
estimated and taken into account by the control design.
Unfortunately, differentiator-based observers cannot be
used here since the bias is not a derivative of any measured
signal. One possible solution is to use an extended full-
state observer instead of differentiators. Another solution
was used in the Cubli project by Gajamohan et al. (2012),
where the sensor offset was estimated at a slower time scale
from the observed equilibrium, see §6 for more details.

In this paper, we propose a novel solution. More pre-
cisely, a contribution of this paper is twofold. First, we
design a finite-time HOMD-based velocity observer for a
reaction-wheel inverted pendulum and use this observer
for pendulum stabilization. Second, we propose to combine
this observer with a reduced-order sensor bias estimator.
Our analysis shows that the resulting coupled nonlinear
observer does not preserve the finite-time convergence
property, however, under a proper choice of tuning gains
the coupled system is locally asymptotically stable and
estimation errors converge to zero with a certain domain
of attraction. Moreover, it is also shown that the gains
can be tuned by the means of linear matrix inequalities
(LMIs). The proposed solution is implemented in an ex-
perimental setup and compared with the solution proposed
by Gajamohan et al. (2012).

The rest of the paper is organized as follows. In §2 we
present a model of the considered system and a stabi-
lizing LQR control. Next, in §3 we design HOMD-based
observers to estimate pendulum and reaction wheel veloc-
ities. The behavior of the closed-loop system with biased
measurements is analyzed in §4 and a reduced-order bias
observer is proposed and analyzed in §5. Finally, experi-
mental results and comparison with the bias observer used
for the Cubli project are given in §6.

2. PENDULUM MODEL AND LQR CONTROL

Model description and used notations. In this section
we follow the notations from Block et al. (2007): our main
variables are θ and θr, where θ is the angle between the
pendulum and the vertical, and θr is the angle of the
reaction wheel w.r.t the pendulum. Refer to Figure 1 for an
illustration; Table 1 provides all necessary measurements
and notations used in the paper.

Neglecting the friction, we derive the equations of motion
(the derivations are based on standard arguments for
mechanical systems and are omitted here due to the lack
of space):

Table 1. Parameters of the experimental setup.

Description Symbol Value

Mass of the pendulum, kg mp 0.58
Pivot – pendulum’s center of mass dis-
tance, m

lp 0.10

Moment of inertia of the pendulum
around its center of mass, kg·m2

Jp 3.8·10−3

Mass of the reaction wheel, kg mr 0.35
Pivot – reaction wheel axis distance, m lr 0.22
Moment of inertia of the reaction
wheel, kg·m2

Jr 12.48 · 10−4

Current-to-torque gain, N/A k 3.69 · 10−2

Sampling frequency, Hz – 500
Resolution of the reaction wheel angle
measurement, rad

– 6.54·10−2

Resolution of the pendulum angle mea-
surement, rad

– 6.28·10−4

Jr θ̈r + Jr θ̈ = kI,

(J + Jr)θ̈ + Jr θ̈r = mlg sin θ,
(1)

where the symbols are as defined in Table 1, ml := mplp+
mrlr, J := Jp + mpl

2
p + mrl

2
r , and I is the current in

the motor windings. Assuming an internal fast-time-scale
current loop, we consider I as our input control signal.

The control goal is to locally stabilize the pendulum in the
upper equilibrium, that is to drive the variables θ, θ̇, and
θ̇r to zero, while θr ∈ R. Let us further denote the upper

equilibrium as the set Ω0 :=
{
θ = θ̇ = θ̇r = 0, θr ∈ R

}
⊂

R4, which is an invariant set of the system (1). In what
follows we say that a control law (locally) stabilizes the
system (1) if under this control law the set Ω0 is (locally)
attractive.

Define the state variable vector x :=
[
θ θ̇ θ̇r

]>
. Then the

control goal is to construct the control input I such that
the state x locally converges to the origin.

LQR control design. To achieve the goal, the model (1) is

linearized around the equilibrium xeq := [0 0 0]
>

yielding
the linearized model

ẋ = Ax+BI, θ = Cx, (2)

where θ is the measured output and

A :=

 0 1 0
mlg
J 0 0

−mlgJ 0 0

 , B :=

 0
− k
J

(J+Jr)k
J Jr

 , C :=

[
1
0
0

]>
.

To stabilize the pendulum the LQR is designed:

u = −Kx, (3)

where K := [k1 k2 k3] is the gain vector minimizing the

cost function
∫∞

0

(
x>(τ)Qx(τ) +Ru2(τ)

)
dτ, where the

matrix Q > 0 and the scalar R > 0 are the design
parameters.

Under the control law (3), the upper equilibrium of the
pendulum is locally asymptotically stable with a domain of
attraction depending on the design parameters. However,
to implement the law (3) measurements of the velocities θ̇

and θ̇r are required; if these variables are not measured di-
rectly, then a velocity observer should be used to generate

the estimates
ˆ̇
θ and

ˆ̇
θr, and the law (3) takes the form



u = −K
[
θ

ˆ̇
θ

ˆ̇
θr

]>
. (4)

The estimates
ˆ̇
θ,

ˆ̇
θr can be obtained with a linear

Luenberger-like observer. Being widely used and rather
simple in implementation, this approach is based on the
linearized dynamics (2). Hence, the linear observer con-
verges only in a neighborhood of the equilibrium and,
moreover, the transient performance can significantly de-
grades for initial conditions being far from the origin.
This drawback can be partially alleviated using linear
observers with time-varying gains, e.g. an observer with
gains scheduling, but such systems are typically harder to
implement. In what follows, we propose to use nonlinear
velocity observers, namely homogeneous differentiators, to
obtain the estimates with a finite time of convergence.

3. FINITE TIME VELOCITY OBSERVER

By design, the homogeneous differentiator proposed in
Perruquetti and Floquet (2007); Perruquetti et al. (2008)
is applied to a chain of integrators with known input-
output injections and with a scalar output signal. Thus,
to use it for velocity estimation for the pendulum system
considered in this paper, we apply it to each degree of
freedom separately, i.e. we construct two observers, one for
the pendulum itself, and another for the reaction wheel.

Pendulum velocity observer. From (1) we obtain the

dynamics of the pendulum: θ̈ = − k
J I + mlg

J sin(θ). Let

x̂p ∈ R2 be an estimate of the vector xp :=
[
θ θ̇
]>

and
define the estimation error as ep := x̂p − xp, where we

recall that ep,1 = θ̂ − θ is measured. Denote for any real
numbers x and α > 0

dxcα := |x|α sgn(x),

where sgn(·) is the sign function. Following Perruquetti
and Floquet (2007), we construct the homogeneous veloc-
ity observer as a differentiator of xp,1:

˙̂xp,1 = x̂p,2 − kp,1dep,1cαp ,

˙̂xp,2 = − k
J
I +

mlg

J
sin(θ)− kp,2dep,1c2αp−1,

ˆ̇
θ = x̂p,2,

(5)

where αp, kp,1, kp,2 are the design parameters. Then the
error dynamics is given by

ėp,1 = ep,2 − kp,1dep,1cαp ,
ėp,2 = −kp,2dep,1c2αp−1.

(6)

Note that ep = 0 is the only equilibrium of the system (6).

Proposition 1. (Perruquetti et al. (2008)). Consider the sys-
tem (6), where αp ∈

(
1
2 , 1
)

and kp,1, kp,2 are chosen such

that the polynomial s2 + kp,1s+ kp,2 is Hurwitz. Let ep(t)
be the solution with the initial conditions ep(0) ∈ R2 \
{0}. Then the origin is finite-time stable, i.e. there exists
T = T (ep(0)) > 0 such that ep(t) is defined and unique
on [0, T ), bounded, and limt→T ep(t) = 0. T is called the
settling-time function of the system (6). The settling-time
function can be extended at the origin by T (0) = 0.

The proof of Proposition 1 follows applying Theorem 10
from Perruquetti et al. (2008) to the system (6).

Reaction wheel velocity observer. For the reaction wheel

dynamics we have from (1): θ̈r = (J+Jr)k
JJr

I−mlg
J sin(θ). Let

x̂r ∈ R2 be an estimate of the vector xr :=
[
θr θ̇r

]>
and

define the estimation error as er := x̂r − xr, where er,1 is
measured. Similarly to (5), we construct the homogeneous
velocity observer as

˙̂xr,1 = x̂r,2 − kr,1der,1cαr ,

˙̂xr,2 =
(J + Jr)k

JJr
I − mlg

J
sin(θ)− kr,2der,1c2αr−1,

ˆ̇
θr = x̂r,2,

(7)

where αr, kr,1, kr,2 are the design parameters. Then the
error dynamics is given by

ėr,1 = er,2 − kr,1der,1cαr ,
ėr,2 = −kr,2der,1c2αr−1.

(8)

The system (8) is similar to (6) and the finite-time stability
of the equilibrium er = 0 follows from Proposition 1
choosing 1

2 < αr < 1 and kr,1, kr,2 such that the

polynomial s2 + kr,1s+ kr,2 is Hurwitz.

Closed-loop system behavior. Given the finite-time ob-
servers, it follows that the control law (4), (5), (7) locally
stabilizes the system (1). Indeed, it is known that the
control law (3) that stabilizes the linearized system (2)
is locally stabilizing for the nonlinear system (1). Let us
denote the region of attraction under the control law (3)
as Ωα. For the observers (5) and (7) there exists a common
settling time T = T (ep(0), er(0)), which is the maximum
of the settling times of these observers, and the control
laws (3) and (4) are equivalent for t ≥ T . Since the
trajectories x̂p and x̂r are bounded, there exist constants
ēp > 0, ēr > 0, and a set Ωβ ⊂ Ωα, such that for all
initial conditions satisfying x(0) ∈ Ωβ , ‖ep(0)‖ < ēp,
‖er(0)‖ < ēr trajectories x(t) stay in Ωα for t ∈ [0, T ].
Then starting from t = T we can consider the system (1)
under the control law (4), (5), (7) as the system (1) under
the control law (3) with the initial condition x(T ) ∈ Ωα
ensuring x(t)→ 0.

The set Ωβ , which is the domain of attraction under the
control (4), (5), (7), depends on the design parameters and
initial conditions, and is typically smaller than the set Ωα,
which is the domain of attraction under the control (3).
However, given ep(0) = er(0) = 0 we have T = 0 and the
sets Ωβ and Ωα coincide.

4. BEHAVIOR UNDER BIASED MEASUREMENT

The proposed control law (4), (5), (7) was successfully
implemented with the experimental testbed, see Section
6 for details on the equipment. Given that the optical
encoder measuring θ is perfectly adjusted, stabilization of
the pendulum in the upper equilibrium and convergence
x(t)→ 0 were achieved.

However, it was found that if the zero reading of the sensor
does not coincide with the equilibrium position and the
angle θ is measured with a certain constant offset, then the
control goal is not achieved. This problem is well-known,
see e.g. Block et al. (2007); Gajamohan et al. (2012).
Denote the constant offset as d and let the measured signal
be

y = θ + d. (9)



Using y in place of the real value θ in (3) yields u =

−K
[
y θ̇ θ̇r

]>
= −Kx−K [d 0 0]

>
. Then the equilibrium

of the linearized system (2) under this control law can be
found as

xeq,d = (A−BK)−1BK [d 0 0]
>

=
[
0 0 −dk1k3

]>
.

It means that when measurements are biased, then the
pendulum is stabilized at the upper position, however the
reaction wheel does not stop and θ̇r converges to a non-
zero constant value.

Consider now behavior of the velocity observers (5), (7)
under biased measurements, where we impose the follow-
ing assumption.

Assumption 1. The sensor offset d is sufficiently small and
sin(d) ≈ d, cos(d) ≈ 1.

Using y as a measurement of θ in (5) and noting that

θ̂ − y = ep,1 − d, the error dynamics (6) takes the form

ėp,1 = ep,2 − kp,1dep,1 − dcαp ,
ėp,2 = a1 cos(θ)d− kp,2dep,1 − dc2αp−1,

(10)

where we define a1 := mlg
J . Obviously, ep = 0 is not an

equilibrium of this system. Considering the pendulum in
the upper half-plane where cos(θ) > 0, at the equilibrium
of the system (10) we have the steady-state velocity
estimation error

e0
p,2 := kp,1

(
a1 cos(θ)

kp,2
|d|
) αp

2αp−1

sgn(d). (11)

Analyzing the error dynamics of the reaction wheel ob-
server, it can be shown that the steady-state velocity
estimation error is e0

r,2 = −e0
p,2. Applying these results

to the control law (4), it follows

xeq,d = (A−BK)−1BK

 d
e0
p,2

e0
r,2


=

 0
0

e0
p,2

k3−k2
k3
− dk1k3

 .
(12)

The conclusion is that when the measurements are biased,
the velocity estimates do not converge to the real values
but are biased. The pendulum stabilizes in the upper
equilibrium, but the reaction wheel keeps rotating. To deal
with the biased sensor we propose to construct a reduced-
order bias observer, described in the following section.

Remark 1. It is worth noting that if the reaction wheel
position θr is measured with a constant bias dr while the
pendulum position θ is measured without a distortion,
then the error dynamics of the observer (7) becomes

ėr,1 = er,2 − kr,1der,1 − drcαr ,
ėr,2 = −kr,2der,1 − drc2αr−1.

It follows that at the equilibrium we have er,2 = 0, i.e.
a bias of the reaction wheel sensor does not lead to a
steady-state bias of the estimate x̂r,2 of the reaction wheel
velocity.

5. REDUCED-ORDER BIAS OBSERVER

5.1 Reduced-order observer design

Define the extended state vector z :=
[
x> d

]>
=[

θ θ̇ d
]>
. Then the measured signal is given by y =

[1 0 1] z. Let ẑ be an estimate of z and define e := ẑ −
z. Then e3 is the bias estimation error. Motivated by
Assumption 1, we expect that the estimate of the bias
is also small and the following approximation holds:

sin(z1) = sin(y − z3) ≈ sin(y − ẑ3) + cos(y − ẑ3)e3.

Then the dynamics of z can be written as

ż =

 z2

− k
J I + a1 sin(z1)

0


=

[
z2

a1 cos(y − ẑ3)e3

0

]
+

[
0
βz
0

]
,

(13)

where the signal βz is available, βz := − k
J I+a1 sin(y− ẑ3).

If the velocity z2 is measured, then the reduced-order
Luenberger-like linear observer of d can be constructed
as

v̇ = βz,

ẑ3 = L(v − z2),

d̂ = ẑ3,

(14)

where L is the design parameter. Then

ė3 = −La1 cos(y − ẑ3)e3. (15)

As we consider the pendulum around the upper equilib-
rium, it is reasonable to impose the following assumption.

Assumption 2. For trajectories of the system there exists 1

c0 > 0 such that min
(

cos(y − d̂), cos(θ)
)
> c0 along these

trajectories.

Under this Assumption, it is obvious that choosing L > 0
in (15) yields to exponential convergence of e3 to zero.
With the estimator (14), the stabilizing control law (4)
can be rewritten as

u = −K
[
y − d̂ ˆ̇

θ
ˆ̇
θr

]>
. (16)

5.2 Closed-loop convergence

Let us now consider what happens when the reduced-order
bias observer is in the loop with the homogeneous velocity
observer. In such a case the state z2 in the observer (14) is
not measured directly but generated by the observer (5).
At the same time, the estimate ẑ3 is used to compensate
the bias and we substitute y − ẑ3 in place of θ in (5). The
joint observers dynamics is now given by

˙̂z1 =ẑ2 − kp,1dẑ1 + ẑ3 − ycαp ,

˙̂z2 =− k

J
I + a1 sin(y − ẑ3)

− kp,2dẑ1 + ẑ3 − yc2αp−1,

v̇ =− k

J
I + a1 sin(y − ẑ3),

ẑ3 =L(v − ẑ2).

(17)

1 In practical applications this assumption can be ensured restrict-
ing, e.g. by a projection operator, possible variations of ẑ3 subject
to known bounds of the displacement d.



To proceed with the dynamics analysis note that ẑ1 + ẑ3−
y = e1 + e3 and that under the imposed assumptions the
following approximation holds: sin(y−ẑ3) = sin(z1 − e3) ≈
sin(z1)−cos(z1)e3. Denote s := [e1 + e3 e2 e3]

>
. Then the

error dynamics of the observer yields

ṡ1 = s2 − kp,1ds1cαp + Lkp,2ds1c2αp−1,

ṡ2 = −a1 cos(z1)s3 − kp,2ds1c2αp−1,

ṡ3 = Lkp,2ds1c2αp−1.

(18)

Since cos(z1) > c0, the only equilibrium of (18) is the
origin s = e = 0. However, the error dynamics (18) is not
homogeneous for αp < 1 and thus it does not have the
finite-time stability property. An important observation is
that for αp = 1 the system (18) becomes a linear time-
varying (due to cos(z1)) system. The following proposition
establishes convergence of the extended observer for αp in
a vicinity of 1.

Proposition 2. Consider the observer (17) for the system
(13) under Assumption 2 with the error dynamics (18).
Define

Am :=

[−kp,1 + Lkp,2 1 0
−kp,2 0 −a1c0
Lkp,2 0 0

]
,

AM :=

[−kp,1 + Lkp,2 1 0
−kp,2 0 −a1

Lkp,2 0 0

]
,

and

A1 :=

Lkp,2 − 1
2kp,1 0 0

−kp,2 0 0
Lkp,2 0 0

 ,
where c0 is defined in Assumption 2. If the parameters of
the observer (17) are chosen such that the there exists a
positive-definite symetric matrix P satisfying the LMIs

PAm +A>mP + γP ≤ 0,

PAM +A>MP + γP ≤ 0,

PA1 +A>1 P ≤ 0,

(19)

for some γ > 0, then there exist εα > 0 and a compact set
Ωα, such that for α ∈ (1− εα, 1] and all initial conditions
s(0) ∈ Ωα it holds s→ 0 and limt→∞ |ẑ − z| = 0.

The proof of the proposition is omitted due to the lack of
space.

Remark 2. The LMIs (19) are used to check if the given
set of gains kp,1, kp,2, and L is stabilizing. Using standard
LMIs arguments, see Boyd et al. (1994), this feasibility
check can be reformulated in order to find (if any) such
gains, that (19) are feasible.

Estimation of the domain of attraction Ω. Suppose we
are given P being a solution of (19) for some c0 and γ and
∆M being the maximum value ∆α. First, compute Q and
find λQ as the smallest generalized eigenvalue of γP and
Q, i.e. the smallest value such that det (γP − λQQ) = 0.

Then V̇ is negative definite if ln
(
s2

1

)
∆α < λQ. Next,

compute sM as sM = exp
(
λQ
∆M

)
. To estimate Ω we have

to find such C that s>Ps < C ⇒ s2
1 < sM , i.e. we

are looking for the ellipsoid s>Ps = C that touches the
plane s1 =

√
sM . Since P is positive definite, there exists

matrix R = R> such that P = RR. Then s>Ps = v>v
where the new coordinates are v = Rs. Now s>Ps = C

Table 2. Controller parameters used in experi-
ments.

Description Symbol Value

LQR gains in (4) and (16) K
[
−581.6 −83.4 −1.2

]
Parameters in (5) [kp,1, kp,2, αp] [7, 12, 0.75]
Parameters in (7) [kr,1, kr,2, αr] [7, 12, 0.75]
Gain of the bias observer (14) L 0.033

is a sphere v>v = C with the radius
√
C in the new

coordinates. The plane s1 =
√
sM in the s coordinates

is defined by the normal vector ns := [1 0 0]
>

and the

point ps = [
√
sM 0 0]

>
. In the v coordinates we have the

point pv = Rps and the normal vector nv = R−1ns. Then
the distance from the plane in v coordinates to the origin

is given by
√
C =

n>v pv
|nv| =

√
sM

n>s R
−2ns

, hence C = sM
(P−1)1,1

,

where
(
P−1

)
1,1

is the (1, 1) element of the matrix P−1.

Remark 3. It is worth noting that the set Ω is obviously a
conservative estimate of the real domain of attraction.

6. EXPERIMENTS

The hardware for the tests (shown in Figure 1) is assem-
bled from off-the-shelf components. The reaction wheel (a
bicycle brake rotor) is driven by a 70W Maxon EC 45
flat brushless DC motor, which is controlled using Maxon
EPOS2 50/5 in torque mode. A STM32F407 discovery
board was chosen as the main computing unit.

For our experiments, we consider the problem of the
upright pendulum stabilization, where the initial position
is in a neighborhood of the equilibrium. We use the
homogeneous velocity observers (5) and (7) with the
feedback control law (4). At it is mentioned in Section
4, if the optical encoder is perfectly adjusted and d = 0
in (9), then the proposed controller achieves the goal
and stabilizes the pendulum. In what follows we consider
the problem of stabilization under biased measurements,
where the sensor offset d in (9) is d ≈ 5◦ ≈ 0.09. Table 2
lists the parameters used in the experiments.

First, we illustrate that the same control law (4), (5), and
(7) cannot stabilize the pendulum for d 6= 0. As it is shown
in (12), the pendulum arrives to the upper position, but
the reaction wheel does not stop and maintains a nonzero
constant velocity. The experimental results are depicted
in Figure 2. Here the measured angle y converges to a
nonzero value, such that y ≈ d, and the physical angle
θ ≈ 0. Velocity estimates x̂p,2 and x̂r,2 converge to nonzero
values, where the estimation errors are predicted by (11).

The physical velocities converge to θ̇ ≈ 0 and θ̇r ≈ 156
radians per second, that corresponds to (12).

Next we apply the approach by Gajamohan et al. (2012).
The key observation of this approach is that under the
control law (4) the pendulum angle θ reaches zero, and is
steady state it holds y ≈ d. Thus, the measurement y can

be used as an estimate d̂, which is then injected in (16).
To avoid stability issues, estimation of d is performed in
a slower time scale than stabilization that is ensured by a
low-pass linear filter:

τd
d

dt
d̂(t) + d̂(t) = y(t), (20)
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(a) Angle measurement
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(b) Velocity estimates

Fig. 2. The control law (4), (5), and (7) for d ≈ 0.09.
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(a) Bias estimate d̂
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(b) Estimate of the pendulum position θ̂ = y − d̂
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(c) Velocity estimate x̂r,2

Fig. 3. The control (5), (7), (16), and (20) for d ≈ 0.09. For τd = 20
the system is stabilized in approx. 60 seconds. For τd = 2
transients are faster but closed-loop oscillations appear.

where τd > 0. The drawback of this approach is that if
τd is large enough, then the stabilization goal is achieved
but with a long transient time. If the value τd is reduced
to accelerate the transients, then the closed-loop stability
can be compromised. Results of the experiments with the
velocity observers (5), (7), bias observer (20), and control
law (16) are depicted in Figure 3 for τd = 20 and τd = 2
and illustrate the trade-off between the transient time and
the closed-loop stability.

Finally, we perform an experiment with the reduced-order
bias observer (14). Results of the experiment are shown in
Figure 4 and illustrate stabilization of the pendulum with
fast transients.

7. CONCLUSION

The problem of velocity observer design for an inverted
reaction-wheel pendulum under biased measurements was
considered in the paper. The proposed solution combines a
HOMD-based velocity observer with a reduced-order bias
estimator. It is shown that the stability of the proposed
observer is ensured under a proper choice of tuning pa-
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(a) Bias estimate d̂ and estimate of the pendulum
position θ̂ = y − d̂
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(b) Velocity estimates

Fig. 4. The control (5), (7), and (16) with the reduced order observer
(14) for d ≈ 0.09.

rameters. Experimental results illustrate the performance
of the proposed approach.

As a further research direction, we consider robustness
analysis for time-varying parameters and model uncertain-
ties and application of the proposed nonlinear observer for
walking robot stabilization, see Ryadchikov et al., 2018.
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