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Abstract

This paper introduces and addresses a wide class of stochastic bandit problems
where the function mapping the arm to the corresponding reward exhibits some
known structural properties. Most existing structures (e.g. linear, Lipschitz, uni-
modal, combinatorial, dueling, . . . ) are covered by our framework. We derive an
asymptotic instance-specific regret lower bound for these problems, and develop
OSSB, an algorithm whose regret matches this fundamental limit. OSSB is not
based on the classical principle of “optimism in the face of uncertainty” or on
Thompson sampling, and rather aims at matching the minimal exploration rates
of sub-optimal arms as characterized in the derivation of the regret lower bound.
We illustrate the efficiency of OSSB using numerical experiments in the case of
the linear bandit problem and show that OSSB outperforms existing algorithms,
including Thompson sampling.

1 Introduction

Numerous extensions of the classical stochastic MAB problem (30) have been recently investigated.
These extensions are motivated by applications arising in various fields including e.g. on-line
services (search engines, display ads, recommendation systems, ...), and most often concern structural
properties of the mapping of arms to their average rewards. This mapping can for instance be
linear (14), convex (2), unimodal (36), Lipschitz (3), or may exhibit some combinatorial structure
(10; 29; 35).

In their seminal paper, Lai and Robbins (30) develop a comprehensive theory for MAB problems
with unrelated arms, i.e., without structure. They derive asymptotic (as the time horizon grows large)
instance-specific regret lower bounds and propose algorithms achieving this minimal regret. These
algorithms have then been considerably simplified, so that today, we have a few elementary index-
based1 and yet asymptotically optimal algorithms (18; 26). Developing a similar comprehensive
theory for MAB problems with structure is considerably more challenging. Due to the structure, the
rewards observed for a given arm actually provide side-information about the average rewards of
other arms2. This side-information should be exploited so as to accelerate as much as possible the
process of learning the average rewards. Very recently, instance-specific regret lower bounds and
asymptotically optimal algorithms could be derived only for a few MAB problems with finite set of
arms and specific structures, namely linear (31), Lipschitz (32) and unimodal (12).

In this paper, we investigate a large class of structured MAB problems. This class extends the
classical stochastic MAB problem (30) in two directions: (i) it allows for any arbitrary structure;
(ii) it allows different kinds of feedback. More precisely, our generic MAB problem is as follows.

1An algorithm is index-based if the arm selection in each round is solely made comparing the indexes of
each arm, and where the index of an arm only depends on the rewards observed for this arm.

2Index-based algorithms cannot be optimal in MAB problems with structure.
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In each round, the decision maker selects an arm from a finite set X . Each arm x ∈ X has
an unknown parameter θ(x) ∈ R, and when this arm is chosen in round t, the decision maker
observes a real-valued random variable Y (x, t) with expectation θ(x) and distribution ν(θ(x)). The
observations (Y (x, t))x∈X ,t≥1 are independent across arms and rounds. If x is chosen, she also
receives an unobserved and deterministic3 reward µ(x, θ), where θ = (θ(x))x∈X . The parameter
θ lies in a compact set Θ that encodes the structural properties of the problem. The set Θ, the
class of distributions ν, and the mapping (x, θ) 7→ µ(x, θ) encode the structure of the problem,
are known to the decision maker, whereas θ is initially unknown. We denote by xπ(t) the arm
selected in round t under algorithm π; this selection is based on previously selected arms and
the corresponding observations. Hence the set Π of all possible arm selection rules consists in
algorithms π such that for any t ≥ 1, xπ(t) is Fπt -measurable where Fπt is the σ-algebra generated
by (xπ(1), Y (xπ(1), 1), . . . , xπ(t−1), Y (xπ(t−1), t−1). The performance of an algorithm π ∈ Π
is defined through its regret up to round T :

Rπ(T, θ) = T max
x∈X

µ(x, θ)−
T∑
t=1

E(µ(x(t), θ)).

The above MAB problem is very generic, as any kind of structure can be considered. In particular,
our problem includes classical, linear, unimodal, dueling, and Lipschitz bandit problems as particular
examples, see Section 3 for details. Our contributions in this paper are as follows:

• We derive a tight instance-specific regret lower bound satisfied by any algorithm for our
generic structured MAB problem.

• We develop OSSB (Optimal Sampling for Structured Bandits), a simple and yet asymptoti-
cally optimal algorithm, i.e., its regret matches our lower bound. OSSB optimally exploits
the structure of the problem so as to minimize regret.

• We briefly exemplify the numerical performance of OSSB in the case of linear bandits.
OSSB outperforms existing algorithms (including Thompson Sampling (2), GLM-UCB
(16), and a recently proposed asymptotically optimal algorithm (31)).

As noticed in (31), for structured bandits (even for linear bandits), no algorithm based on the principle
of optimism (a la UCB) or on that of Thompson sampling can achieve an asymptotically minimal
regret. The design of OSSB does not follow these principles, and is rather inspired by the derivation of
the regret lower bound. To obtain this bound, we characterize the minimal rates at which sub-optimal
arms have to be explored. OSSB aims at sampling sub-optimal arms so as to match these rates. The
latter depends on the unknown parameter θ, and so OSSB needs to accurately estimate θ. OSSB
hence alternates between three phases: exploitation (playing arms with high empirical rewards),
exploration (playing sub-optimal arms at well chosen rates), and estimation (getting to know θ to
tune these exploration rates).

The main technical contribution of this paper is a finite-time regret analysis of OSSB for any generic
structure. In spite of the simplicity the algorithm, its analysis is involved. Not surprisingly, it uses
concentration-of-measure arguments, but it also requires to establish that the minimal exploration
rates (derived in the regret lower bound) are essentially smooth with respect to the parameter θ. This
complication arises due to the (additional) estimation phase of OSSB: the minimal exploration rates
should converge as our estimate of θ gets more and more accurate.

The remainder of the paper is organized as follows. In the next section, we survey recent results
on structured stochastic bandits. In Section 3, we illustrate the versatility of our MAB problem by
casting most existing structured bandit problems into our framework. Section 4 is devoted to the
derivation of the regret lower bound. In Sections 5 and 6, we present OSSB and provide an upper
bound of its regret. Finally Section 7 explores the numerical performance of OSSB in the case of
linear structures.

3Usually in MAB problems, the reward is a random variable given as feedback to the decision maker. In our
model, the reward is deterministic (as if it was averaged), but not observed as the only observation is Y (x, t) if
x is chosen in round t. We will illustrate in Section 3 why usual MAB formulations are specific instances of our
model.
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2 Related work

Structured bandits have generated many recent contributions since they find natural applications
in the design of computer systems, for instance: recommender systems and information retrieval
(28; 11), routing in networks and network optimization (22; 5; 17), and influence maximization in
social networks (8). A large number of existing structures have been investigated, including: linear
(14; 34; 1; 31; 27) (linear bandits are treated here as a partial monitoring game), combinatorial
(9; 10; 29; 35; 13), Lipschitz (32), unimodal (36; 12). The results in this paper cover all models
considered in the above body of work and are the first that can be applied to problems with any
structure in the set of allowed parameters.

Here, we focus on generic stochastic bandits with a finite but potentially large number of arms. Both
continuous as well as adversarial versions of the problem have been investigated, see survey (6).

The performance of Thompson sampling for generic bandit problems has appeared in the literature
(15; 20), however, the recent results in (31) prove that Thompson sampling is not optimal for all
structured bandits. Generic structured bandits were treated in (7; 21). The authors show that the
regret of any algorithm must scale as C(θ)ln T when T →∞ where C(θ) is the optimal value of a
semi-infinite linear program, and propose asymptotically optimal algorithms. However the proposed
algorithms are involved and have poor numerical performance, furthermore their performance
guarantees are asymptotic, and no finite time analysis is available.

To our knowledge, our algorithm is the first which covers completely generic MAB problems, is
asymptotically optimal and is amenable to a finite-time regret analysis. Our algorithm is in the same
spirit as the DMED algorithm, presented in (24), as well as the algorithm in (31), but is generic
enough to be optimal in any structured bandit setting. Similar to DMED, our algorithm relies on
repeatedly solving an optimization problem and then exploring according to its solution, thus moving
away from the UCB family of algorithms.

3 Examples

The class of MAB problems described in the introduction covers most known bandit problems as
illustrated in the six following examples.

Classical Bandits. The classical MAB problem (33) with Bernoulli rewards is obtained by making
the following choices: θ(x) ∈ [0, 1]; Θ = [0, 1]|X |; for any a ∈ [0, 1], ν(a) is the Bernoulli
distribution with mean a; for all x ∈ X , µ(x, θ) = θ(x).

Linear Bandits. To get finite linear bandit problems (14),(31), in our framework we choose X as a
finite subset of Rd; we pick an unknown vector φ ∈ Rd and define θ(x) = 〈φ, x〉 for all x ∈ X ; the
set of possible parameters is Θ = {θ = (〈φ, x〉)x∈X , φ ∈ Rd}; for any a ∈ Rd, ν(a) is a Gaussian
distribution with unit variance and centered at a; for all x ∈ X , µ(x, θ) = θ(x). Observe that our
framework also includes generalized linear bandit problems as those considered in (16): we just need
to define µ(x, θ) = g(θ(x)) for some function g.

Dueling Bandits. To model dueling bandits (27) using our framework, the set of arms is X =
{(i, j) ∈ {1, . . . , d}2}; for any x = (i, j) ∈ X , θ(x) ∈ [0, 1] denotes the probability that i is
better than j with the conventions that θ(i, j) = 1 − θ(j, i) and that θ(i, i) = 1/2; Θ = {θ :
∃i? : θ(i?, j) > 1/2,∀j 6= i?} is the set of parameters such there exists a Condorcet winner; for
any a ∈ [0, 1], ν(a) is the Bernoulli distribution with mean a; finally, we define the rewards as
µ((i, j), θ) = 1

2 (θ(i?, i) + θ(i?, j)− 1). Note that the best arm is (i?, i?) and has zero reward.

Lipschitz Bandits. For finite Lipschitz bandits (32), the set of arms X is a finite subset of a metric
space endowed with a distance `. For any x ∈ X , θ(x) is a scalar, and the mapping x 7→ θ(x) is
Lipschitz continuous with respect to `, and the set of parameters is:

Θ = {θ : |θ(x)− θ(y)| ≤ `(x, y) ∀x, y ∈ X}.

As in classical bandits µ(x, θ(x)) = θ(x). The structure is encoded by the distance `, and is an
example of local structure so that arms close to each other have similar rewards.

Unimodal Bandits. Unimodal bandits (23),(12) are obtained as follows. X = {1, ..., |X |}, θ(x) is a
scalar, and µ(x, θ(x)) = θ(x). The added assumption is that x 7→ θ(x) is unimodal. Namely, there
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exists x? ∈ X such that this mapping is stricly incrasing on {1, ..., x?} and strictly decreasing on
{x?, ..., |X |}.
Combinatorial bandits. The combinatorial bandit problems with bandit feedback (see (9)) are
just particular instances of linear bandits where the set of arms X is a subset of {0, 1}d. Now
to model combinatorial problems with semi-bandit feedback, we need a slight extension of the
framework described in introduction. More precisely, the set of arms is still a subset of {0, 1}d.
The observation Y (x, t) is a d-dimensional r.v. with independent components, with mean θ(x)
and distribution ν(θ(x)) (a product distribution). There is an unknown vector φ ∈ Rd such that
θ(x) = (φ(1)x(1), . . . , φ(d)x(d)), and µ(x, θ) =

∑d
i=1 φ(i)x(i) (linear reward). With semi-bandit

feedback, the decision maker gets detailed information about the various components of the selected
arm.

4 Regret Lower Bound

To derive regret lower bounds, a strategy consists in restricting the attention to so-called uniformly
good algorithms (30): π ∈ Π is uniformly good if Rπ(T, θ) = o(T a) when T → ∞ for all a > 0
and all θ ∈ Θ. A simple change-of-measure argument is then enough to prove that for MAB problems
without structure, under any uniformly good algorithm, the number of times that a sub-optimal
arm x should be played is greater than ln T/d(θ(x), θ(x?)) as the time horizon T grows large, and
where x? denotes the optimal arm and d(θ(x), θ(x?)) is the Kullback-Leibler divergence between
the distributions ν(θ(x)) and ν(θ(x?)). Refer to (25) for a direct and elegant proof.

For our structured MAB problems, we follow the same strategy, and derive constraints on the number
of times a sub-optimal arm x is played under any uniformly good algorithm. We show that this number
is greater than c(x, θ)ln T asymptotically where the c(x, θ)’s are the solutions of a semi-infinite
linear program (19) whose constraints directly depend on the structure of the problem.

Before stating our lower bound, we introduce the following notations. For θ ∈ Θ, let x?(θ) be the
optimal arm (we assume that it is unique), and define µ?(θ) = µ(x?(θ), θ). For any x ∈ X , we
denote by D(θ, λ, x) the Kullback-Leibler divergence between distributions ν(θ(x)) and ν(λ(x)).

Assumption 1 The optimal arm x?(θ) is unique.

Theorem 1 Let π ∈ Π be a uniformly good algorithm. For any θ ∈ Θ, we have:

lim inf
T→∞

Rπ(T, θ)

ln T
≥ C(θ), (1)

where C(θ) is the value of the optimization problem:

minimize
η(x)≥0 , x∈X

∑
x∈X

η(x)(µ?(θ)− µ(x, θ)) (2)

subject to
∑
x∈X

η(x)D(θ, λ, x) ≥ 1 , ∀λ ∈ Λ(θ), (3)

where
Λ(θ) = {λ ∈ Θ : D(θ, λ, x?(θ)) = 0, x?(θ) 6= x?(λ)}. (4)

Let (c(x, θ))x∈X denote the solutions of the semi-infinite linear program (2)-(3). In this program,
η(x)ln T indicates the number of times arm x is played. The regret lower bound may be understood as
follows. The set Λ(θ) is the set of “confusing” parameters: if λ ∈ Λ(θ) then D(θ, λ, x?(θ)) = 0 so λ
and θ cannot be differentiated by only sampling the optimal arm x?(θ). Hence distinguishing θ from
λ requires to sample suboptimal arms x 6= x?(θ). Further, since any uniformly good algorithm must
identify the best arm with high probability to ensure low regret and x?(θ) 6= x?(λ), any algorithm
must distinguish these two parameters. The constraint (3) states that for any λ, a uniformly good
algorithm should perform a hypothesis test between θ and λ, and

∑
x∈X η(x)D(θ, λ, x) ≥ 1 is

required to ensure there is enough statistical information to perform this test. In summary, for a
sub-optimal arm x, c(x, θ)lnT represents the asymptotically minimal number of times x should be
sampled. It is noted that this lower bound is instance-specific (it depends on θ), and is attainable
as we propose an algorithm which attains it. The proof of Theorem 1 is presented in appendix, and
leverages techniques used in the context of controlled Markov chains (21).
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Next, we show that with usual structures as those considered in Section 3, the semi-infinite linear
program (2)-(3) reduces to simpler optimization problems (e.g. an LP) and can sometimes even be
solved explicitly. Simplifying (2)-(3) is important for us, since our proposed asymptotically optimal
algorithm requires to solve this program. In the following examples, please refer to Section 3 for
the definitions and notations. As mentioned already, the solutions of (2)-(3) for classical MAB is
c(x, θ) = 1/d(θ(x), θ(x?)).

Linear bandits. For this class of problems, (31) recently proved that (2)-(3) was equivalent to the
following optimization problem:

minimize
η(x)≥0 , x∈X

∑
x∈X

η(x)(θ(x?)− θ(x))

subject to x>inv

(∑
z∈X

η(z)zz>

)
x ≤ (θ(x?)− θ(x))2

2
,

∀x 6= x?.

Refer to (31) for the proof of this result, and for insightful discussions.

Lipschitz bandits. It can be shown that for Bernoulli rewards (the reward of arm x is θ(x)) (2)-(3)
reduces to the following LP (32):

minimize
η(x)≥0 , x∈X

∑
x∈X

η(x)(θ(x?)− θ(x))

subject to
∑
z∈X

η(z)d(θ(z),max{θ(z), θ(x?)− `(x, z)}) ≥ 1 ,

∀x 6= x?.

While the solution is not explicit, the problem reduces to a LP with |X | variables and 2|X | constraints.

Dueling bandits. The solution of (2)-(3) is as follows (27). Assume to simplify that for any i 6= i?,
there exists a unique j minimizing µ((i,j),θ)

d(θ(i,j),1/2) and such that θ(i, j) < 1/2. Let j(i) denote this
index. Then for any x = (i, j), we have

c(x, θ) =
1{j = j(i)}
d(θ(i, j), 1/2)

.

Unimodal bandits. For such problems, it is shown in (12) that the solution of (2)-(3) is given by: for
all x ∈ X ,

c(x, θ) =
1{|x− x?| = 1}
d(θ(x), θ(x?))

.

Hence, in unimodal bandits, under an asymptotically optimal algorithm, the sub-optimal arms
contributing to the regret (i.e., those that need to be sampled Ω(ln T )) are neighbours of the optimal
arm.

5 The OSSB Algorithm

In this section we propose OSSB (Optimal Sampling for Structured Bandits), an algorithm that is
asymptotically optimal, i.e., its regret matches the lower bound of Theorem 1. OSSB pseudo-code is
presented in Algorithm 1, and takes as an input two parameters ε, γ > 0 that control the amount of
exploration performed by the algorithm.

The design of OSSB is guided by the necessity to explore suboptimal arms as much as prescribed
by the solution of the optimization problem (2)-(3), i.e., the sub-optimal arm x should be explored
c(x, θ)ln T times. If θ was known, then sampling arm x c(x, θ)ln T times for all x, and then selecting
the arm with the largest estimated reward should yield minimal regret.

Since θ is unknown, we have to estimate it. Define the empirical averages:

m(x, t) =

∑t
s=1 Y (x, s)1{x(s) = x}

max(1, N(x, t))
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Algorithm 1 OSSB(ε,γ)
s(0)← 0, N(x, 1),m(x, 1)← 0 , ∀x ∈ X {Initialization}
for t = 1, ..., T do

Compute the optimization problem (2)-(3) solution (c(x,m(t)))x∈X where m(t) =
(m(x, t))x∈X
if N(x, t) ≥ c(x,m(t))(1 + γ)ln t, ∀x then
s(t)← s(t− 1)
x(t)← x?(m(t)) {Exploitation}

else
s(t)← s(t− 1) + 1

X(t)← arg minx∈X
N(x,t)
c(x,m(t))

X(t)← arg minx∈X N(x, t)
if N(X(t), t) ≤ εs(t) then
x(t)← X(t) {Estimation}

else
x(t)← X(t) {Exploration}

end if
end if
{Update statistics}
Select arm x(t) and observe Y (x(t), t)
m(x, t+ 1)← m(x, t), ∀x 6= x(t) ,
N(x, t+ 1)← N(x, t), ∀x 6= x(t)

m(x(t), t+ 1)← Y (x(t),t)+m(x(t),t)N(x(t),t)
N(x(t),t)+1

N(x(t), t+ 1)← N(x(t), t) + 1
end for

where x(s) is the arm selected in round s, and N(x, t) =
∑t
s=1 1{x(s) = x} is the number of times

x has been selected up to round t. The key idea of OSSB is to use m(t) = (m(x, t))x∈X as an
estimator for θ, and explore arms to match the estimated solution of the optimization problem (2)-(3),
so that N(x, t) ≈ c(x,m(t))ln t for all x. This should work if we can ensure certainty equivalence,
i.e. m(t)→ θ(t) when t→∞ at a sufficiently fast rate.

The OSSB algorithm has three components. More precisely, under OSSB, we alternate between
three phases: exploitation, estimation and exploration. In round t, one first attempts to identify the
optimal arm. We calculate x?(m(x, t)) the arm with the largest empirical reward. If N(x, t) ≥
c(x,m(t))(1 + γ)ln t for all x, we enter the exploitation phase: we have enough information to infer
that x?(m(x, t)) = x?(θ) w.h.p. and we select x(t) = x?(m(x, t)). Otherwise, we need to gather
more information to identify the optimal arm. We have two goals: (i) make sure that all components
of θ are accurately estimated and (ii) make sure that N(x, t) ≈ c(x,m(t))ln t for all x. We maintain
a counter s(t) of the number of times we have not entered the expoitation phase. We choose between
two possible arms, namely the least played arm X(t) and the arm X(t) which is the farthest from
satisfying N(x, t) ≥ c(x,m(t))ln t. We then consider the number of times X(t) has been selected.
If N(X(t), t) is much smaller than s(t), there is a possibility that X(t) has not been selected enough
times so that θ(X(t)) is not accurately estimated so we enter the estimation phase, where we select
X(t) to ensure that certainty equivalence holds. Otherwise we enter the exploration phase where
we select X(t) to explore as dictated by the solution of (2)-(3), since c(x,m(t)) should be close to
c(x, θ).

Theorem 2 states that OSSB is asymptotically optimal. The complete proof is presented in Appendix,
with a sketch of the proof provided in the next section. We prove Theorem 2 for Bernoulli or
Subgaussian observations, but the analysis is easily extended to rewards in a 1-parameter exponential
family of distributions. While we state an asymptotic result here, we actually perform a finite time
analysis of OSSB, and a finite time regret upper bound for OSSB is displayed at the end of next
section.

Assumption 2 (Bernoulli observations) θ(x) ∈ [0, 1] and ν(θ(x)) =Ber(θ(x)) for all x ∈ X .

Assumption 3 (Gaussian observations) θ(x) ∈ R and ν(θ(x)) = N (θ(x), 1) for all x ∈ X .
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Assumption 4 For all x, the mapping (θ, λ) 7→ D(x, θ, λ) is continuous at all points where it is not
infinite.

Assumption 5 For all x, the mapping θ → µ(x, θ) is continuous.

Assumption 6 The solution to problem (2)-(3) is unique.

Theorem 2 If Assumptions 1, 4, 5 and 6 hold and either Assumption 2 or 3 holds, then under the
algorithm π =OSSB(ε, γ) with ε < 1

|X | we have:

lim sup
T→∞

Rπ(T )

ln T
≤ C(θ)F (ε, γ, θ),

with F a function such that for all θ, we have F (ε, γ, θ)→ 1 as ε→ 0 and γ → 0.

We conclude this section by a remark on the computational complexity of the OSSB algorithm. OSSB
requires to solve the optimization problem (2)-(3) in each round. The complexity of solving this
problem strongly depends on the problem structure. For general structures, the complexity of this
problem is difficult to assess. However for problems exemplified in Section 3, this problem is usually
easy to solve. Note that the algorithm proposed in (31) for linear bandits requires to solve (2)-(3)
only once, and is hence simpler to implement; its performance however is much worse in practice
than that of OSSB as illustrated in Section 7.

6 Finite Time Analysis of OSSB

The proof of Theorem 2 is presented in Appendix in detail, and is articulated in four steps. (i) We
first notice that the probability of selecting a suboptimal arm during the exploitation phase at some
round t is upper bounded by P(

∑
x∈X N(x, t)D(m(t), θ, x) ≥ (1 + γ)ln t). Using a concentration

inequality on KL-divergences (Lemma 2 in Appendix), we show that this probability is small and
the regret caused by the exploitation phase is upper bounded by G(γ, |X |) where G is finite and
depends solely on γ and |X |. (ii) The second step, which is the most involved, is to show Lemma 1
stating the solutions of (2)-(3) are continuous. The main difficulty is that the set Λ(θ) is not finite, so
that the optimization problem (2)-(3) is not a linear program. The proof strategy is similar to that
used to prove Berge’s maximal theorem, the additional difficulty being that the feasible set is not
compact, so that Berge’s theorem cannot be applied directly. Using Assumptions 1 and 5, both the
value θ 7→ C(θ) and the solution θ 7→ c(θ) are continuous.

Lemma 1 The optimal value of (2)-(3), θ 7→ C(θ) is continuous. If (2)-(3) admits a unique solution
c(θ) = (c(x, θ))x∈X at θ, then θ 7→ c(θ) is continuous at θ.

Lemma 1 is in fact interesting in its own right, since optimization problems such as (2)-(3) occur
in all bandit problems. (iii) The third step is to upper bound the number of times the solution to
(2)-(3) is not well estimated, so that C(m(t)) ≥ (1 + κ)C(θ) for some κ > 0. From the previous
step this implies that ||m(t) − θ||∞ ≥ δ(κ) for some well-chosen δ(κ) > 0. Using a deviation
result (Lemma 3 in Appendix), we show that the expected regret caused by such events is finite and
upper bounded by 2|X |

εδ2(κ) . (vi) Finally a counting argument ensures that the regret incurred when
C(θ) ≤ C(m(t)) ≤ (1 + κ)C(θ) i.e. the solution (2)-(3) is well estimated is upper bounded by
(C(θ)(1 + κ) + 2εψ(θ))ln T , where ψ(θ) = |X |||c(θ)||∞

∑
x∈X (µ?(θ)− µ(x, θ)).

Putting everything together we obtain the finite-time regret upper bound:

Rπ(T ) ≤ µ?(θ)
(
G(γ, |X |) +

2|X |
εδ2(κ)

)
+ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ)ln T.

This implies that:

lim sup
T→∞

Rπ(T )

ln T
≤ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ).

The above holds for all κ > 0, which yields the result.
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7 Numerical Experiments

To assess the efficiency of OSSB, we compare its performance for reasonable time horizons to the
state of the art algorithms for linear bandit problems. We considered a linear bandit with Gaussian
rewards of unit variance, 81 arms of unit length, d = 3 and 10 parameters θ in [0.2, 0.4]3, generated
uniformly at random. In our implementation of OSSB, we use γ = ε = 0 since γ is typically chosen
0 in the literature (see (18)) and the performance of the algorithm does not appear sensitive to the
choice of ε. As baselines we select the extension of Thompson Sampling presented in (4)(using
vt = R

√
0.5dln(t/δ), we chose δ = 0.1, R = 1), GLM-UCB (using ρ(t) =

√
0.5ln(t)), an

extension of UCB (16) and the algorithm presented in (31).

Figure 1 presents the regret of the various algorithms averaged over the 10 parameters. OSSB clearly
exhibits the best performance in terms of average regret.
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Figure 1: Regret of various algorithms in the linear bandit setting with 81 arms and d = 3. Regret is
averaged over 10 randomly generated parameters and 100 trials. Colored regions represent the 95%
confidence intervals.

8 Conclusion

In this paper, we develop a unified solution to a wide class of stochastic structured bandit problems.
For the first time, we derive, for these problems, an asymptotic regret lower bound and devise OSSB,
a simple and yet asymptotically optimal algorithm. The implementation of OSSB requires that we
solve the optimization problem defining the minimal exploration rates of the sub-optimal arms. In
the most general case, this problem is a semi-infinite linear program, which can be hard to solve
in reasonable time. Studying the complexity of this semi-infinite LP depending on the structural
properties of the reward function is an interesting research direction. Indeed any asymptotically
optimal algorithm needs to learn the minimal exploration rates of sub-optimal arms, and hence needs
to solve this semi-infinite LP. Characterizing the complexity of the latter would thus yield important
insights into the trade-off between the complexity of the sequential arm selection algorithms and their
regret.
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Appendices
We provide complete proofs of our results in the next sections.

A Proof of Theorem 1.

We first recall the original framework presented in (21), whose results we apply to establish the asymptotic lower
bound in Theorem 1. Consider a controlled Markov chain (Yt)t≥0 on a measurable state space Y with a control
set U . For a given control u ∈ U the transition probabilities are parametrized by θ ∈ Θ, where Θ is a compact
metric space. We denote the probability to move from state y to state y′, given the control u and the parameter θ
as p(y, y′|u, θ). The parameter θ is not known. The decision maker is provided with a finite set of stationary
control laws G = {g1, . . . , gK} where each control law gj is a mapping from Y to U : when control law gj is
applied in state y, the applied control is u = gj(y). It is assumed that if the decision maker always selects the
same control law g, the Markov chain is ergodic with stationary distribution πgθ . The expected reward obtained
when applying control u in state y is denoted by r(y, u), so that the expected reward achieved under control
law g is: µ(θ, g) =

∫
r(y, g(y))πgθ (y)dy. The decision maker knows the mapping r but not θ, and she selects

control laws g(1), g(2), ..., to minimize the cumulated regret:

R(T, θ) =

T∑
t=1

max
g∈G

µ(θ, g)− µ(θ, g(t)).

The chosen control law at time t solely depends on the observed states Y1, ..., Yt and the past chosen control laws
g(1), ..., g(t−1). It should be noted that this framework, and the corresponding results, can be straightforwardly
extended to a case where the mapping (θ, g) 7→ µ(θ, g) is arbitrary, as long as this mapping is known to the
decision maker. Of course θ remains unknown.

We now apply the above framework to our structured bandit problem, and we consider θ ∈ Θ, the compact
metric space encoding the structural properties of the average reward function (as introduced in Section 1). The
Markov chain has values in Y = R. The set of control laws is G = U = X , the set of available arms. These
laws are constant, in the sense that the control applied by control law x does not depend on the state of the
Markov chain, and corresponds to selecting arm x. The state of the Markov chain at time t is given by the
observation Yt = Y (x(t− 1), t− 1). The transition probabilities are chosen such that when control law x is
chosen, Yt+1 is distributed as ν(θ(x)), independently of Yt.

Therefore the Kullback-Leibler information number in the framework of (21) is simply the Kullback-Leibler
divergence between the distributions ν(θ(x)) and ν(λ(x)), that is Ix(θ, λ) = D(θ, λ, x).

Now consider θ ∈ Θ and define the set Λ(θ) consisting of all confusing parameters λ ∈ Θ such that x?(θ) is
not optimal under parameter λ, but which are statistically indistinguishable from θ when playing only x?(θ):

Λ(θ) = {λ ∈ Θ : D(θ, λ, x?(θ)) = 0, x?(θ) 6= x?(λ)}

By applying Theorem 1 in (21), we know that for all uniformly good decision policies π we have
lim infT→∞R

π(T, θ)/ln T ≤ C(θ), where C(θ) is the minimal value of the following optimization problem:

minimize
η(x)≥0 , x∈X

∑
x∈X

η(x)(µ?(θ)− µ(x, θ))

subject to
∑
x∈X

η(x)D(θ, λ, x) ≥ 1 , ∀λ ∈ Λ(θ).

which concludes the proof. �

B Finite Time Analysis of OSSB

For completeness, we restate the assumptions on which the theorem relies:

Assumption 1 The optimal arm x?(θ) is unique.

Assumption 2 (Bernoulli observations) θ(x) ∈ [0, 1] and ν(θ(x)) =Ber(θ(x)) for all x ∈ X .

Assumption 3 (Gaussian observations) θ(x) ∈ R and ν(θ(x)) = N (θ(x), 1) for all x ∈ X .

Assumption 4 For all x, the mapping (θ, λ) 7→ D(x, θ, λ) is continuous at all points where it is not infinite.

Assumption 5 For all x, the mapping θ → µ(x, θ) is continuous.

Assumption 6 The solution to problem (2)-(3) in Theorem 1 is unique.

We now prove Theorem 2 and give a finite time analysis of OSSB.
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B.1 Concentration results

We first state two technical results which are instrumental to our analysis.

Lemma 2 (32) Consider either Assumption 2 or 3. Then there exists a function G such that:∑
t≥1

P

[∑
x∈X

N(x, t)D(m(t), θ, x) ≥ (1 + γ)ln t

]
≤ G(γ, |X |).

Lemma 3 (12) Let x ∈ X and ε > 0. Define Ft the σ-algebra generated by (Y (x(s), s))1≤s≤t. Let S ⊂ N
be a (random) set of rounds. Assume that there exists a sequence of (random) sets (S(s))s≥1 such that (i)
S ⊂ ∪s≥1S(s), (ii) for all s ≥ 1 and all t ∈ S(s), N(x, t) ≥ εs, (iii) |S(s)| ≤ 1, and (iv) the event t ∈ S(s)
is Ft-measurable. Then for all δ > 0:∑

t≥1

P(t ∈ S, |m(x, t)− θ(x)| > δ) ≤ 1

εδ2
.

Lemma 2 was first proven in (32) to analyze Lipshitz bandits, but it is useful for generic bandit problems as well,
and allows to bound the expected number of times that the optimal arm is not correctly identified if arms have
been sampled enough to meet the constraints of the optimization problem (2)-(3). Lemma 3 was proven in (12)
in the context of unimodal bandits. However it is versatile and allows to upper bound the expected cardinality of
any set of rounds where x is selected and θ(x) is not accurately estimated. As shown by this lemma, such sets of
rounds only cause finite regret.

B.2 Continuity of the optimization problem (2)-(3) in Theorem 1

Lemma 1 states that the optimization problem (2)-(3) in Theorem 1 (henceforth referred to as only (2)-(3)) is
continuous with respect to θ. This fact is the cornerstone of our analysis. Since all bandit problems feature
optimization problems such as the one we consider here, Lemma 1 seems interesting in its own right. The main
difficulty to prove Lemma 1 comes from the fact that the set Λ(θ) is not finite, so that the optimization problem
(2)-(3) is not a linear program. The proof strategy is similar to that used to prove Berge’s maximal theorem, the
added difficulty being that the feasible set is not compact, so that Berge’s theorem cannot be applied directly.

Lemma 1 The optimal value of (2)-(3), θ 7→ C(θ) is continuous. If (2)-(3) admits a unique solution c(θ) =
(c(x, θ))x∈X at θ, then θ 7→ c(θ) is continuous at θ.

Proof. Define ∆(θ, x) = µ?(θ) − µ(x, θ). To ease notation, we use a vector notation so that c(θ), D(θ, λ)

and ∆(θ) denote vectors in R|X| whose respective components are c(θ, x), D(θ, λ, x) and ∆(θ, x). For any
v ∈ R|X| we define ||v||∞ = maxx∈X |v(x)|.

Now define the set:
Λ′(θ) = {λ ∈ Θ : max

x 6=x?(θ)
µ(x, λ) > µ(x?(θ), λ)}.

and the feasible sets:

F(θ) = {c ∈ (R+)|X| : inf
λ∈Λ(θ)

〈c,D(θ, λ)〉 ≥ 1},

F ′(θ) = {c ∈ (R+)|X| : inf
λ∈Λ′(θ)

〈c,D(θ, λ)〉 ≥ 1}

So C(θ) is the minimum of c 7→ 〈c,∆(θ)〉 over F(θ). Define C′(θ) the minimum of c 7→ 〈c,∆(θ)〉 over
F ′(θ). We have C(θ) ≤ C′(θ) from F ′(θ) ⊂ F(θ) since Λ(θ) ⊂ Λ′(θ). Now consider c ∈ F(θ) such that
C(θ) = 〈c,∆(θ)〉, and define c′ with c′(x) = ∞ if x = x?(θ) and c′(x) = c(x) otherwise. Then we have
c′ ∈ F(θ) and 〈c′,∆(θ)〉 = 〈c,∆(θ)〉 so that C′(θ) ≤ C(θ). Therefore C′(θ) = C(θ).

Consider θ fixed and consider (θk)k≥0 a sequence in Θ converging to θ. We will prove thatC(θk)→k→∞ C(θ).
It is sufficient to prove that lim supk→∞ C(θk) ≤ C(θ) ≤ lim infk→∞ C(θk).

We first prove that lim supk→∞ C(θk) ≤ C(θ). By Assumption 1 and 5, there exists k0 such that x?(θk) =
x?(θ) ∀k ≥ k0. If k ≥ k0 then Λ′(θ) = Λ′(θk) by definition of Λ′. Consider c? an optimal solution, that is
c? ∈ F ′(θ) and C(θ) = 〈c?,∆(θ)〉. Define the sequence ck:

ck =
c?

infλ∈Λ′(θ)〈c?, D(θk, λ)〉

We have ck ∈ F ′(θk) since Λ′(θ) = Λ′(θk) and:

inf
λ∈Λ′(θk)

〈ck, D(θk, λ)〉 =
infλ∈Λ′(θk)〈c?, D(θk, λ)〉
infλ∈Λ′(θ)〈c?, D(θk, λ)〉 = 1.
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We have that (θk, λ) 7→ D(θk, λ) is continuous and

inf
λ∈Λ′(θ)

〈c?, D(θk, λ)〉 = min
λ∈Λ′(θ)

〈c?, D(θk, λ)〉.

Also, since Λ′(θ) ⊂ Θ, and Θ is compact, we have that Λ′(θ) is compact. Therefore, by Berge’s maximal
theorem:

min
λ∈Λ′(θ)

〈c?, D(θk, λ)〉 →k→∞ min
λ∈Λ′(θ)

〈c?, D(θ, λ)〉 ≥ 1,

since c? ∈ F ′(θ). Now ck ∈ F ′(θk) for all k so that

lim sup
k→∞

C(θk) ≤ lim sup
k→∞

〈ck,∆(θk)〉 ≤ 〈c?,∆(θ)〉

We have proven that lim supk→∞ C(θk) ≤ C(θ).

We now prove that lim infk→∞ C(θk) ≥ C(θ). There exists a sequence ck ∈ F ′(θk) such that C(θk) =
〈ck,∆(θk)〉 ∀k. We prove that (ck)k is bounded by contradiction. If (ck)k is unbounded, then it admits a
subsequence (ckm)m with ||ckm || →m→∞ ∞. This readily implies that 〈ckm ,∆(θkm)〉 →m→∞ ∞ since
∆(θkm)→m→∞ ∆(θ), and all components of ∆(θ) are strictly positive. Therefore lim supk→∞ C(θk) =∞,
a contradiction since we have proven lim supk→∞ C(θk) ≤ C(θ) <∞.

Hence (ck)k is bounded. Consider c one of its accumulation points and (ckm)m a subsequence converg-
ing to c. Since ckm ∈ F ′(θkm), for any λ ∈ Λ′(θ) = Λ′(θkm) we have 〈ckm , D(θkm , λ)〉 ≥ 1. By
continuity of D this implies 〈c,D(θ, λ)〉 ≥ 1 for all λ ∈ Λ′(θ) and c ∈ F ′(θ). Now C(θkm) =
〈ckm ,∆(θkm)〉 →m→∞ 〈c,∆(θ)〉 ≥ C(θ) since c ∈ F ′(θ). This holds for all accumulation points so
we have proven lim infk→∞ C(θk) ≥ C(θ) which concludes the proof of the first statement. The second
statement follows directly. �

B.3 Proof of Theorem 2

The proof is articulated around upper bounding the number of times a suboptimal arm x 6= x? may be selected
in one of the 3 phases of OSSB. We recall the definition of ∆(θ, x) = µ?(θ)− µ(x, θ) and further define:

ψ(θ) = |X |||c(θ)||∞
∑
x∈X

∆(θ, x).

Consider κ > 0, and δ(κ) > 0 such that for all λ ∈ Θ verifying ||θ − λ||∞ ≤ δ(κ) the following holds:

(i) C(λ) ≤ C(θ)(1 + κ),

(ii) ψ(λ) ≤ 2ψ(θ) ,

(iii) x?(θ) = x?(λ).

From Assumptions 1, 5 and 6 and Lemma 1, the mappings θ 7→ c(θ), θ 7→ C(θ) and θ 7→ x?(θ) are continuous,
so that such a δ(κ) exists.

Exploitation Phase. In this phase, we select arm x∗(m(t)), and N(x, t) ≥ c(m(t), t)(1 + γ)ln t for all x, so:∑
x∈X

N(x, t)D(m(t), λ, x) ≥ (1 + γ)ln t, ∀λ ∈ Λ(m(t)).

If a suboptimal arm is selected x∗(m(t)) 6= x?(θ), then we must have θ ∈ Λ(m(t)) so that event A(t) defined
as: ∑

x∈X

N(x, t)D(m(t), θ, x) ≥ (1 + γ)ln t.

occurs. From Lemma 2 we have ∑
t≥1

P(A(t)) ≤ G(γ, |X |).

Certainty equivalence. We now upper bound the number of times a suboptimal arm is chosen and θ is not
estimated with sufficient accuracy. Define B(t) the event that x(t) 6= x?(θ), that we are not in the exploitation
phase and that ||θ −m(t)||∞ > δ(κ). Define B(x, t) the event that B(t) occurs and |θ(x)−m(x, t)| > δ(κ)

so that B(t) = ∪x∈XB(x, t). We prove that if B(t) occurs then minxN(x, t) ≥ εs(t)
2

. Assume that this is
false, then there exists s(t)/2 rounds {t1, ..., ts(t)/2} ⊂ {1, ..., t} where minxN(x, t) ≤ εs(t). After |X |
such rounds minxN(x, t) is incremented by at least 1, so that minxN(x, t) ≥ s(t)

2|X| . Since ε < 1
|X| this is a
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contradiction. Therefore, if B(t) occurs, then we have both minxN(x, t) ≥ εs(t)
2

, and ||θ −m(t)||∞ > δ(κ).
By Lemma 3 and a union bound we conclude that:∑

t≥1

P(B(x, t)) ≤
∑
t≥1

∑
x∈X

P(B(x, t)) ≤ 2|X |
εδ2(κ)

.

Estimation and Exploration Phase. We are now left with the regret caused by rounds at which θ is estimated
accurately, and we are not in the exploitation phase. Define C(t) the event that x(t) ∈ X(t) ∪X(t) and that
B(t) does not occur. Define the regret caused by such events:

W (T ) =

T∑
t=1

∑
x∈X

∆(x, θ)1{x(t) = x, C(t)}.

Assume that C(t) occurs and that x(t) = x. We first upper bound s(t). If x = X(t), then N(x, t) ≤
minx∈X N(x, t). Since we are not in the exploitation phase, there exists x′ such thatN(x′, t) ≤ c(x′,m(t))(1+

γ)ln t ≤ ||c(m(t))||∞(1 + γ)ln T . Hence N(x, t) ≤ ||c(m(t))||∞(1 + γ)ln T . If x = X(t), then N(x, t) ≤
c(x,m(t))(1 + γ)ln t ≤ ||c(m(t))||∞(1 + γ)ln T . In both cases N(x, t) ≤ ||c(m(t))||∞(1 + γ)ln T . Since
s(t) is incremented whenever C(t) occurs, we deduce that s(t) ≤ |X |||c(m(t))||∞(1 + γ)ln T .

We can now bound the number of times x is selected. If x = X(t), we have N(x, t) ≤ εs(t) ≤
ε|X |||c(m(t))||∞(1 + γ)ln T , and if x = X(t) we have c(x,m(t))(1 + γ)ln T . We deduce that∑T
t=1 1{x(t) = x, C(t)} is upper bounded by:

(c(x,m(t)) + ε|X |||c(m(t))||∞)(1 + γ)ln T.

Summing over x and using the fact that if C(t) occurs then ||m(t)− θ||∞ ≤ δ(κ), so that∑
x∈X

∆(x, θ)c(m(t)) ≤ C(θ)(1 + κ),

ε|X |||c(m(t))||∞
∑
x∈X

∆(x, θ) ≤ 2εψ(θ),

we get:

W (T ) ≤ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ)ln T.

Putting everything together we obtain the finite-time regret upper bound:

Rπ(T ) ≤ E(W (T )) + µ?(θ)
(∑
t≥1

P(A(t)) + P(B(t))
)

≤ µ?(θ)
(
G(γ, |X |) +

2|X |
εδ2(κ)

)
+ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ)ln T.

This implies that:

lim sup
T→∞

Rπ(T )

ln T
≤ (C(θ)(1 + κ) + 2εψ(θ))(1 + γ).

The above holds for all κ > 0, which yields the result:

lim sup
T→∞

Rπ(T )

ln T
≤ (C(θ) + 2εψ(θ))(1 + γ).
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