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Hyperparameter Optimization of Two-Hidden-Layer
Neural Networks for Power Amplifiers Behavioral

Modeling Using Genetic Algorithms
Siqi Wang, Morgan Roger, Julien Sarrazin, Member, IEEE, and Caroline Lelandais-Perrault

Abstract—Neural networks (NN) are efficient techniques for
behavioral modeling of power amplifiers (PA). This paper pro-
poses a genetic algorithm to determine the optimal hyperparam-
eters of the NN model for a PA. Different activation functions
are compared. The necessary number of training epochs is also
studied to get an optimal solution with a significantly reduced
computational complexity. Experimental measurements on a PA
with different signals validate the NN models determined by the
proposed method.

Index Terms—Behavioral modeling, genetic algorithm, neural
networks, nonlinear distortion, power amplifiers

I. INTRODUCTION

THE POWER amplifiers (PA) performance is crucial in
modern wireless communication systems [1]. Modeling

the behavior of the PA is crucial to estimate and analyze its
performance [2]–[4].

Neural networks (NN) have been widely used in PA behav-
ioral modeling with similar or better performance compared
with classical analytic models [4]–[9]. A real-valued time-
delay NN model has been proposed in [5] by decomposing the
baseband input signal into in-phase and quadrature component
(I/Q) signals. The output signal is buffered to the input layer in
[6], which improved the modeling accuracy. Instead, authors
in [7] added nonlinear terms of the input signal to the input
layer. Recently, some studies [8], [9] applied NN models with
two or more hidden layers for better modeling accuracy.

The memory depth, the number of layers and the number
of hidden neurons in each layer have a great impact on the
performance of the NN model [10]. They are often determined
in an empirical way or by sweeping search [6], [7].

Some optimization algorithms, such as hill-climbing [11],
[12] and particle swarm optimization [13], have been applied
to determine the optimal structure of a Volterra-series-based
model. However, the hyperparameter optimization of the NN
has always been a challenge.
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de Moulon 91192 Gif-sur-Yvette CEDEX, France (e-mail of authors: first-
name.surname@centralesupelec.fr).

J. Sarrazin is with the Sorbonne Université, Laboratory of Elec-
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Fig. 1. PA behavioral modeling with neural network

In this paper, we propose to optimize the hyperparameters
of a two-hidden-layer NN using genetic algorithms (GA). To
the authors’ knowledge, this is the first time that the NN
hyperparameter problem for the PA behavioral modeling is
addressed. The number of training epochs is optimized to
reduce the running time.

II. MULTI-LAYER NEURAL NETWORK MODEL

The PA modeling system architecture is illustrated in Fig 1.
In order to train the network, we take the PA input signal
x(n) as the NN input signal and the PA output signal y(n)
as the target signal. They are decomposed into real-valued I/Q
signals:

x(n) = Iin(n) + iQin(n)

y(n) = Iout(n) + iQout(n)
(1)

The input layer is composed of Iin(n), Qin(n) and their
delayed samples. The memory depth is L which corresponds
to the number of delay taps. We denote the number of neurons
in the l-th hidden layers by Nl. The output sk(l) of the k-th
neuron in the l-th layer can be then expressed as a function
of the inputs tj :

sk(l) = f
(Nl−1∑

j=1

wjktj + bk
)

(2)

where wjk is the weight, bk is the bias, f(·) is the activation
function. In this paper, we test two different activation func-
tions: tangent sigmoid (tansig) and rectified linear unit (ReLU)
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as follows [9]:

tansig(x) =
1− e−2x

1 + e−2x
(3)

ReLU(x) =

{
x if x ≥ 0,

0 otherwise.
(4)

The activation function of the output layer is linear.
The training process is realized by backward computation

using the Levenberg-Marquardt algorithm [14]. The input
and target signals are randomly divided into 3 segments for
training, validating and testing. The process can be composed
of 2 phases:

1) At each epoch, we take the first segment to compute
the values of wjk and bk and validate the computed NN
with the second segment.

2) After the training, we test the NN with the third segment.
The modeling performance is evaluated with the normalized

mean square error (NMSE) between the measured PA output
y(n) and the model output ŷ(n):

NMSEdB = 10 log10

[∑
n |y(n)− ŷ(n)|2∑

n |y(n)|2

]
. (5)

The hyperparameters of the two-hidden-layer NN model
to be optimized in this paper are: the memory depth L, the
number of neurons in the first and the second hidden layer N1

and N2 respectively.

III. GENETIC ALGORITHM

Genetic algorithms are iterative stochastic search mecha-
nisms based on the idea of Darwinian natural selection theory.
After generational evolution, better genes are kept. In this
algorithm, a fitness is defined to evaluate whether a gene is
good. In our implementation, the genes are represented by
NN hyperparameters (L,N1,N2) in binary bits. We train the
corresponding NN model to evaluate its fitness which is given
by the error defined in (5) between the target signal and the
output of NN model in the test phase (phase 2 in Section II).
We use P to denote the group of parents and q as the number
of generations. The maximum generation number is set to Q.

Algorithm 1: Overview of Genetic Algorithm
Set generation counter q = 1;
P is divided into P1, P2, P3;
while q 6 Q do

Compute fitness of all individuals in P;
Selection: P1 stays as offspring O1;
Crossover: P2 are subdivided and regrouped to
create offspring O2 ;

Mutation: P3 are randomly changed to create
offspring O3;
q = q + 1;
P = O1 + O2 + O3;

end

The offspring of each generation is created by the parents
of the previous generation through selection, crossover and

Fig. 2. Test error vs Epoch in training NN model with tansig as activation
function, HL NN: hidden-layer neural network

mutation as described in Algorithm 1. The parents are listed
from the best to the worst and then divided into three groups:
the first group P1 has the best 5% individuals, the second
group P2 has the best 80% of the remaining individuals,
and the third group P3 has the rest. Selection: we keep P1

completely into the following generation as the first offspring
group O1(q). Crossover: we mix the genes of P2 to constitute
the second offspring group O2(q). Mutation: we randomly
change the genes of P3 and create the third offspring group
O3(q). The parents of the following generation P(q+1) is the
union of O1(q), O2(q) and O3(q). The iteration continues till
the stall condition is met.

IV. EXPERIMENTAL RESULTS

In order to validate the proposed method, we test with
data acquired from a HMC409LP4E PA fabricated by Analog
Devices. Its nominal gain at 3.5 GHz is 31 dB and the saturated
output power is 32.5 dBm. We generate a stimulus at the
carrier frequency of 3.5 GHz in the PC Workstation and feed
it to the PA through an Arbitrary Waveform Generator (AWG)
with 10 GHz sampling frequency. The input and output base-
band signals of 15000 samples are time-aligned after down-
sampling to 120 MHz for behavioral modeling. A 20 MHz
long term evolution (LTE) signal and a 40 MHz wireless local
area network (WLAN) signal are used as stimulus in the tests.
Their peak-to-average power ratio (PAPR) are 8 dB and 12 dB
respectively.

To determine the necessary number of training epochs with
the aim of significantly reducing the search algorithm running
time, we first study the convergence of the NN model training
error as a function of the epoch number as depicted in Fig. 2.
The training procedure is standard and uses the data randomly
divided into a training set (70%), a validation set (15%) and
a test set (15%). The activation function is tansig. In order to
study the separation of convergences of different NN models,
we make the tests of a 1-hidden-layer (1HL) NN and a 2HL
NN which have surely different performances [8]. For sake of
the simplicity, we choose a 1HL NN with L = 5, N1 = 30 to
test. Since the NN is trained with 70% data randomly selected
from the signal and the initial values of wjk and bk are random,
its modeling accuracy is a random variable. We independently
train and test the NN model for 50 times. With 50 realizations,
we calculate the min, max, and average of their test errors at
each epoch.

We can see that the performance convergence of these two
NN models slows down after 10 epochs and a 2HL NN almost
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Fig. 3. Experimental results: (a) Output spectra of the PA and the determined NN model M20 for 20 MHz LTE signal, (b) Output spectra of the PA and the
determined NN model M100 for 20 MHz LTE signal, (c) Output spectra of the PA and the determined NN model M20 for 20 MHz LTE signal at saturation
region, (d) Output spectra of the PA and the determined NN model for 40 MHz WLAN signal

always outperforms a 1HL NN after 20 epochs. In other words,
using a 2HL NN model allows to significantly reduce the num-
ber of epochs needed to get the better performance/training
time tradeoff. Since our objective is to find the optimal NN
hyperparameters instead of giving the precise minimum error,
we propose to reduce the epoch number to 20 in the GA search
considering the variance of the NN performance.

In the search algorithm, we set the population size to 10 for
each generation and the maximum number of generations to
Q = 6. When computing fitness, we evaluate the performance
by training the corresponding NN model with 20 and 100
epochs separately.

Based on the data measured with the PA, we applied
the proposed GA with 20 and 100 training epochs. The
final solutions of the NN model determined by the GA are
denoted by M20 and M100 respectively. We obtain their final
performances by training the M20 and M100 with 1000 epochs.
The output spectra of the optimal NN models trained with
1000 epochs are depicted in Fig.3(a) and Fig.3(b) respectively,
as well as the corresponding modeling errors. The results
in Fig.3(c) validate the NN model performance in saturation
region by increasing the input power 2 dB. We also make a test
with 40 MHz bandwidth WLAN signal as illustrated Fig.3(d),
which confirms the effectiveness of our proposed method.

Table I gives the quantitative performances of NN models
determined by our proposed method with LTE and WLAN
signals. We take a generalized memory polynomial model as
a reference whose optimal structure is determined using the
method in [11]. With the LTE and WLAN signals, the NMSE
values obtained are -34.7 dB and -37.0 dB respectively which
are similar to the performance of the NN model determined
by GA. The algorithm running time T is measured under
Matlab with an Intel(R) Core(TM) i7-3770 CPU @3.40GHz
and 16GB RAM.

The values in “fitness” are the NMSE values between the

TABLE I
BEHAVIORAL MODELING PERFORMANCE OF NN GIVEN BY ALGORITHM 1

Model Ac
L N1 N2

T Fitness NMSE
Fcn (min) (dB) (dB)

M20
tansig 7 46 49 151 -54.1 -33.7
ReLU 7 48 32 124 -54.5 -33.3

M100
tansig 9 42 44 876 -55.2 -32.4
ReLU 9 43 42 503 -55.6 -32.1

Mwlan20
tansig 9 26 37 121 -48.4 -34.2
ReLU 10 48 33 110 -49.5 -36.1

Ac Fcn: Activation Function; T: Running time of algorithm

model output and measured PA output during the training
process. The values in “NMSE” are the NMSE values obtained
by testing the GA-determined model after 1000-epoch training.
For the solution model determined by the GA, we calculate its
average NMSE value with 50 tests. The proposed algorithm
with 20 epochs seems to be a good tradeoff between modeling
accuracy and running time. Increasing the number of epochs
to 100 does not bring a sufficient improvement in performance
while the running time is more than 4 times longer.

The activation function has impact on the algorithm running
time. The search with ReLU needs less time since com-
putational complexity of ReLU is lower than tansig. The
performance of ReLU is better for WLAN signal.

V. CONCLUSION

In this paper, we propose a GA to optimize the hyperpa-
rameter of a NN-based PA behavioral model. To the authors’
knowledge, this is the first time this optimization problem
is addressed without exhaustive search. The algorithm is
validated with measurement data acquired from a PA with
different signals. We study the convergence of the NN model
training error as a function of the epoch number and signif-
icantly reduce the optimization running time while keeping
similar performances. Different activation functions of the NN
model are tested. ReLU leads to less running time.
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