
HAL Id: hal-02398468
https://centralesupelec.hal.science/hal-02398468

Submitted on 23 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

PCA and Kriging for the efficient exploration of
consistency regions in Uncertainty Quantification

Gianmarco Aversano, John Camilo Parra-Alvarez, Benjamin J. Isaac, Sean T.
Smith, Axel Coussement, Olivier Gicquel, Alessandro Parente

To cite this version:
Gianmarco Aversano, John Camilo Parra-Alvarez, Benjamin J. Isaac, Sean T. Smith, Axel Cousse-
ment, et al.. PCA and Kriging for the efficient exploration of consistency regions in Uncer-
tainty Quantification. Proceedings of the Combustion Institute, 2019, 37 (4), pp.4461-4469.
�10.1016/j.proci.2018.07.040�. �hal-02398468�

https://centralesupelec.hal.science/hal-02398468
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Available online at www.sciencedirect.com 

Proceedings of the Combustion Institute 37 (2019) 4461–4469 
www.elsevier.com/locate/proci 

PCA and Kriging for the efficient exploration of 

consistency regions in Uncertainty Quantification 

Gianmarco Aversano 

a , b , c , ∗, John Camilo Parra-Alvarez 

d , 
Benjamin J. Isaac 

d , Sean T. Smith 

d , Axel Coussement a , b , Olivier Gicquel c , 
Alessandro Parente 

a , b , ∗

a Université Libre de Bruxelles, École polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Bruxelles, Belgium 

b Université Libre de Bruxelles and Vrije Universiteit Brussel, Combustion and Robust Optimization Group (BURN), 
Brussels, Belgium 

c Laboratoire EM2C, CNRS, Centrale-Supélec, Université ParisSaclay, 8–10 rue Joliot-Curie, Gif-sur-Yvette 91190, France 
d Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA 

Received 30 November 2017; accepted 6 July 2018 
Available online 22 August 2018 

Abstract 

For stationary power sources such as utility boilers, it is useful to dispose of parametric models able to 

describe their behavior in a wide range of operating conditions, to predict some Quantities of Interest (QOIs) 
that need to be consistent with experimental observations. The development of predictive simulation tools for 
large scale systems cannot rely on full-order models, as the latter would lead to prohibitive costs when coupled 

to sampling techniques in the model parameter space. An alternative approach consists of using a Surrogate 
Model (SM). As the number of QOIs is often high and many SMs need to be trained, Principal Component 
Analysis (PCA) can be used to encode the set of QOIs in a much smaller set of scalars, called PCA scores. 
A SM is then built for each PCA score rather than for each QOI. The advantage of reducing the number 
of variables is twofold: computational costs are reduced (less SMs need to be trained) and information is 
preserved (correlation among the original variables). 
The strategy is applied to a CFD model simulating the Alstom 15 MW th oxy-pilot Boiler Simulation Facility 
(BSF). In practice, experiments cannot provide full coverage of the pulverized-coal utility boiler due to both 

practicality and costs. Values of the model’s parameters which guarantee consistency with the experimental 
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data of this test facility for 121 QOIs are found, by trainin  

PCA, using only 5 latent variables. 
© 2018 The Authors. Published by Elsevier Inc. on behalf
This is an open access article under the CC BY-NC-ND l
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In engineering applications, the ability to make
eliable predictions about certain physical systems
s granted by the existence of predictive mathe-

atical models, based on the deep understanding
f the underlying processes. These mathematical
odels, even if deterministic, often include uncer-

ainties which limit their predictive abilities (e.g.,
nknown design or operating parameters). One
ay to assess a model’s capability to predict the

orrect values for a set of Quantities of Interest
QOIs) is to compare the model’s predictions with
eference data, i.e., measurements coming from ex-
eriments. A mathematical model is usually said to
e consistent with the data when the error interval
etween its predictions and the experimental data

s in the same range as the uncertainty intervals of 
he experimental values [1] . 

On occasions, a model is defined by some
arameters whose value is uncertain. Values of 
hese model parameters for which the model’s
redictions are consistent with experimental data
xist, but they are not known [2,3] . A way to find
his set of values is to heavily sample the parameter
pace (e.g., Latin Hypercube Sampling, Monte
arlo random sampling) and evaluate the model’s
rediction for the QOIs at every location. This
trategy can work when the model’s output is fast
o compute. In the case of computationally costly
odels, this strategy is prohibitive. Computation-

lly expensive models are dominant in the world
f Computational Fluid-Dynamics (CFD). CFD
imulations are usually run on many CPUs and, in
pite of that, they still need hundreds or thousands
f hours of computational time to converge. Heav-

ly sampling the input space of CFD models is not
et feasible. Having a Surrogate Model (SM) that
an approximate the model predictions, at a lower
omputational cost is preferable [4,5] . SMs are
athematical models based on available data that

pproximate the underlying hidden relationship
etween input and output. SMs are useful when
his relationship is either not known or comes in
he form of a computationally expensive com-
uter code. SMs are also popular in Uncertainty
uantification (UQ) studies [6–9] . Examples are
olynomial Chaos Expansion (PCE) and Gaussian
rocess Regression (GPR), which are often em-
g a SM based on the combination of Kriging and

 of The Combustion Institute. 
icense. 

inty Quantification; Surrogate models 

ployed for the computation of Sobol’s indices. SMs
are constructed starting from a relatively small set
of training observations of the predictive model’s
output, which correspond to a set of training lo-
cations in the model parameter space. Once a SM
is trained, consistency with the experimental data
is performed by analyzing the SM’s output instead
of the actual model’s predictions. The uncertain
model parameters are then assigned the value for
which the difference between the experimental val-
ues and the SM predictions is the lowest. Usually,
SMs are built for one scalar target. In the presence
of many QOIs, as many SMs are needed as the
number of QOIs. This is true, for example, if PCE
or GPR are chosen as SMs, without any compres-
sion/reduction technique. Besides, when dealing
with outputs of a deterministic computer code,
interpolation might be preferred over regression. A
reduction is possible if the original set of QOIs can
be represented by a new set of fewer scalars. One
reason why one would want to reduce the number
of SMs is that the training itself can still be costly.
Indeed, SMs are usually defined by a set of hyper-
parameters, whose value affect the SM’s predictive
abilities. Very often, a good estimation for the value
of these hyper-parameters comes via the solution
of constrained optimization problems that involve
local optima. Another reason for reducing the
number of SMs is that very often the QOIs are
correlated, but their correlation might be lost in
the process of building individual SMs for each
of them. Taking these factors into account, the
advantage of reducing the number of QOIs, and
consequently the number of SMs to train, becomes
clear. 

A very popular method for data compression is
Principal Component Analysis (PCA) [10] . PCA is
a statistical technique used to find a set of orthogo-
nal low-dimensional basis functions to represent an
ensemble of high-dimensional data. In the context
of consistency analysis, PCA can be used to find a
new, smaller set of uncorrelated variables, often re-
ferred to as PCA scores , that is representative of the
original QOIs. Once these scores are found, a SM
can be built for each one of them. Then, the model
parameter space can be explored and a consistency
region in the model input space can be more easily
found. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In this work, we apply this strategy to find
the optimal input parameter values of a CFD
model [11] for the Alstom 15 MW th , pulverized
coal, tangentially fired, oxy-pilot Boiler Simulation
Facility (BSF) [12] . Experimental data for this
test facility are available, such as temperature and
heat-flux mapping measurements. The available
CFD model has limited predictive capabilities as it
is defined by 3 parameters whose correct values are
not known (the value for which consistency with
the experimental data is guaranteed). 121 QOIs
are to be correctly predicted by the model, namely
temperature and heat-fluxes at specific location
inside the boiler corresponding to the experimental
measurements. 22 simulations are carried out in or-
der to explore the 3-dimensional model parameter
space and used as training set. After performing
PCA, it is shown that 5 PCA scores can explain
over 99% of the original data variance. The set
of 121 original variables is thus encoded in a new
set of 5 scalars. The consistency region in the 3-
dimensional parameter space is found by training
a SM based on Kriging for the PCA scores. The
CFD model’s predictive capabilities for the BSF
are improved by choosing values for these 3 pa-
rameters that belong to the consistency region, and
can be used for the design of larger-scale facilities. 

2. Theory 

2.1. Bound-to-Bound Data Collaboration 

Bound-to-Bound Data Collaboration (B2B-
DC) is a mathematical framework that tests con-
sistency between a data-set and a model [13–15] . 

The basis of B2B-DC is composed of an un-
derlying physical process and associated model,
a collection of experimental observations with
respective uncertainties, and SMs representing
parametric dependence of the physical-model pre-
dictions of the QOIs on the uncertain parameters. 

Each QOI y i ∀ i = 1 , . . . , N is both experimen-
tally measured and predicted by a model. N is the
number of QOIs. The set of inequalities 

| M(x ) − y exp | ≤ σ, (1)

combines the experimental and modeling informa-
tion into a single set of constraints. x is the vec-
tor of P uncertain parameters. M ( x ) is the model’s
prediction of the QOIs ( y) based on the input pa-
rameters ( x) . Thus, y (x ) = M(x ) is the vector of 
predicted QOIs, by the model, when the input pa-
rameters’ values are the ones contained in x. y exp

are the measured values. The size of the vectors
y ( x ) and y exp is N . The discrepancy between the
measurement of one QOI and its model prediction
is bounded by σ i , which is usually the experimen-
tal uncertainty. A point x in the model parameter
space is consistent with the experimental data if the
corresponding model prediction M ( x ) satisfies the
set of constraints (1) . The constraints (1) represent 
a hyperbox in the y -space and limit the allowed dis- 
crepancy between experimental measurement and 

model prediction for each individual QOI y i . If �
is a diagonal matrix, such that � = diag( σ ) , we can 

express (1) in matrix form: 

�−1 | M(x ) − y exp | ≤ 1 . (2) 

The set of N pairs of orthogonal linear constraints 
(1) or (2) represents a hyper-rectangle in the y -space 
and it states that the model’s predictions for each 

QOI y i must lie within this hyper-rectangle in or- 
der for the model to be consistent with the reference 
data. 

Rather than a hyper-rectangle, the feasible set 
can also be bounded using an ellipsoid, which is de- 
fined by a single quadratic constraint: 
[
M(x ) − y exp 

]T 
�−1 �−1 

[
M(x ) − y exp 

] ≤ α, (3) 

where α is a quantity to be determined. Clearly, it 
is preferable to have the smallest α such that the el- 
lipsoid contains the feasible set. In the case α = N, 
the ellipsoid in the y -space determined by (3) con- 
tains the hyper-rectangle defined by (2) . If α = 1 , 
the opposite is true. 

By either using (2) or (3) , a region F of consis- 
tency in the x -space can be found. This region is 
called consistency region and represents the region 

of all possible values of x for which the model pre- 
dictions, M ( x ), respect either (1) or (3) . It is worth 

noting that, in general, a solution to (1) might 
not exist and in such a case the consistency region 

would be a null-set. 

2.2. Principal Component Analysis (PCA) 

PCA is a statistical technique that finds a set of 
orthogonal low-dimensional basis functions to rep- 
resent an ensemble of high-dimensional data de- 
scribing an undesirably complex system [16–18] . 

For a data-set Y ( N × M ), containing M obser- 
vations of N original variables, PCA provides an 

approximation of the original data-set using only 
q < N linear correlations between the N variables. 
The quantity q is referred to as approximation or- 
der . 

Data are usually centered and scaled before ap- 
plying PCA. Centering represents all observations 
as fluctuations, leaving only the relevant variation 

for analysis [16] . The centered-scaled data read: 

Y 0 = D 

−1 (Y − Ȳ ) , (4) 

where D indicates a diagonal matrix of chosen scal- 
ing factors, usually standard deviations, and Ȳ a 
matrix of mean values. The dimension of Y 0 is also 

( N × M ). 
A set of q < N PCA modes or directions can be 

found, V q = { v 1 , v 2 , . . . , v q } , thus the data can be 
encoded in a set of q scalars called PCA scores or 
Principal Components (PCs) as follows: 

a i (x j ) = v T i D 

−1 
(
y (x j ) − ȳ 

) ∀ i = 1 , . . . , q. (5) 



4464 G. Aversano et al. / Proceedings of the Combustion Institute 37 (2019) 4461–4469 

T  

Y  

c

Y  

w  

s
t  

i  

P  

o  

o  

s  

D

2

 

y  

b

y  

T  

l  

a  

β  

s  

t  

a  

o
h  

L  

l

l

 

w  

t  

t
 

r

y  

I  

t  

a  

t
F  

s

2
C

 

u  

i  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

he centered-scaled data can be approximated by
 0 ≈ V q V q 

T D 

−1 
(
Y − Ȳ 

) = V q A q . The data-set Y
an be approximated as: 

 = Ȳ + DY 0 ≈ Ȳ + D V q A q = 

˜ Y q , (6)

here A q = { a (x 1 ) , a (x 2 ) , . . . , a (x M 

) } is the matrix
toring all the PCA scores for different values of 
he input parameters; a ( x j ) = { a 1 ( x j ), . . . , a q ( x j )} T

s the vector containing observations of all the q
CA scores for x j and 

˜ Y q is the approximation of Y
btained with PCA, using only q PCs. Equivalently,
ne observation y ( x j ) ∈ R 

N contained in the data-
et matrix Y can be approximated as: y (x j ) ≈ ȳ +
 V q a (x j ) . 

.3. Kriging 

For a general scalar target y , every realization
 ( x ) is expressed in the Kriging method as a com-
ination of a trend function and a residual [19] : 

 (x ) = 

p ∑ 

i=0 

βi f i (x ) + z (x ) = βT f(x ) + z (x ) . (7)

he trend function is expressed as a weighted
inear combination of p + 1 polynomi-
ls, f(x ) = [ f 0 (x ) , . . . , f p (x )] T with the weights
= 

[
β0 , . . . , βp 

]T 
determined by generalized least

quares (GLS). The subscript p also indicates
he degree of the polynomial. The residuals z ( x )
re modeled by a Gaussian process with a kernel
r correlation function that depends on a set of 
yper-parameters θ to be evaluated by Maximum
ikelihood Estimation (MLE) [19–21] . The natural

og of the marginal likelihood is given by: 

n (L M 

) = 

M 

2 
ln (2 π ) + 

M 

2 
ln (σ 2 ) + 

M 

2 
ln (| R | ) 

+ 

1 
2 σ 2 

(y − F β) T R 

−1 (y − F β) , (8)

here F is the matrix of polynomials evaluated at
he training locations, R is the kernel matrix of the
raining data, M is the number of training points. 

The final form of the Kriging predictor for any
ealization y ( x ) is 

 (x ) = f(x ) T ˜ β + r (x ) T R 

−1 (y − F ̃

 β) . (9)

n (9) , r is the vector of correlations between the
raining points and the prediction point x . To make
 prediction, only the terms f( x ) and r ( x ) need
o be updated: y (x 

∗) = f(x 

∗) T ˜ β + r (x 

∗) T R 

−1 (y −
 ̃

 β) , where x 

∗ is the point in the input parameter
pace for which we wish to make a prediction. 

.4. Reduced-Order Bound-to-Bound Data 
ollaboration 

The constraints (2) and (3) can be reformulated
sing PCA. The model’s outputs and the exper-

mental data can be represented by the N × M
matrix Y . Each column of Y is encoded in its
corresponding set of PCA scores as follows: 

a (x m 

) = V q 
T D 

−1 ( y (x m 

) − ȳ ) (10)

a exp = V q 
T D 

−1 
(
y exp − ȳ 

)
. (11)

The subscript m = 1 , . . . , M indicates one of the
model’s outputs. 

For each PCA score a i , a SM is built using
the method introduced in Section 2.3 . A very high
number of predictions for the PCA scores is gen-
erated. The predicted QOIs are recovered from the
predicted PCA scores using (6) , and consistency is
achieved if (2) or (3) is satisfied. Computational
savings are achieved because less SMs are trained
( q � N ). 

Using PCA, the ellipsoid (3) can be approxi-
mated by: 

�a T m 

V q 
T D �−1 �−1 D V q �a m 

≤ α, (12)

where �a m 

= a (x m 

) − a exp . If the matrix �−1 D V q
is indicated by H q , the constraint (12) can be re-
expressed as: 

�a T m 

H q 
T H q �a m 

≤ α. (13)

One can notice that using (13) , the quantity H q , or
even H q 

T H q , can be pre-computed. This indicates
that evaluating (13) involves less operations than
evaluating (3) . 

Similarly, using PCA, the hyper-rectangle
(2) can be re-expressed as: 

−1 ≤ H q �a m 

≤ 1 . (14)

A schematic representation of the Reduced-
Order B2B DC procedure is reported in Fig. 1 : di-
mension reduction is carried out on a set of obser-
vations of the model’s output and later combined
with an interpolation technique. This leads to the
construction of a SM that can be used for parame-
ter exploration and consistency analysis. 

3. Application and results 

The Alstom Boiler Simulation Facility (BSF) is
a 15 MW th capacity, tangential-fired pilot facility,
located at Alstom Windsor, CT. The BSF is an at-
mospheric pressure, balanced draft combustion test
facility designed to replicate the time-temperature
stoichiometry history of typical utility boilers [12] .
Details about the CFD model used to simulate the
BSF can be found in [11,22] . The associated com-
putational cost is roughly 740.000 CPU hours per
simulation. Figure 2 shows wall Heat Flux profiles
from CFD simulations of the BSF. 

An UQ analysis was carried out to identify the
parameters which have the highest impact on the
predictions of the QOIs. The impact was defined
as the product uncertainty × sensitivity . This study
included mesh resolution, the CFL number, spatial
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Fig. 1. Flowchart for the Reduced-Order Bound-to-Bound Data Collaboration procedure. Dimension reduction is em- 
ployed on a set of available observations of the model’s output and combined with an interpolation technique. A surrogate 
model is built for parameter exploration and to find consistency with reference data. 

Fig. 2. CFD simulations for Alstom’s BSF Heat Flux pro- 
files. Figure from [12] . 
and temporal schemes, devolatilization param- 
eters such as the swelling factor, char oxidation 

parameters such as activation energies and pre- 
exponential factors for O 2 , H 2 O and CO 2 , wall 
thermal conductivity, scenario parameters such 

as particle size distribution and particle density. 
Three parameters are identified for the consistency 
analysis, namely T slag , k and τ . The ranges associ- 
ated to these parameters are [1350, 1600] K , [2.5, 
4.5] W /( m · K ) and [1, 2.5], respectively. In partic- 
ular, T slag represents the temperature at which the 
deposits on the wall starts changing phase, from 

solid to plastic (liquid). The parameter k represents 
the effective thermal conductivity on the wall [23] . 
The model’s parameter τ represents a constant that 
scales the activation energies of CO 2 , O 2 , and H 2 O 

simultaneously from their base values. A value for 
these parameters needs to be found so that the 
CFD model’s predictions are consistent with the 
experimental values available for the BSF. 

Measurements probes are present in the BSF 

at specific locations. A number of 22 simulations 
are run for different values of the described pa- 
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Fig. 3. The cumulative original data variance recovered 
when using an incresing number of principal components 
provides a criterion for the selection of the number of la- 
tent variables to be retained. 
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Fig. 4. Error for the reconstruction of the original data 
by PCA when using 3 PCs ( star ), 5 PCs ( circle ) and 10 
PCs ( cross ). This error is zero if all the PCs are kept. 
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ameters, identified by means of Latin Hyper-
ube Sampling. The parameter region or hyper-
ube H = [1350, 1600] K × [2.5, 4.5] W /( m · K )

[1, 2.5] is explored by using the 22 observa-
ions as training samples for a SM, and a consis-
ency region is sought. Because there are 121 QOIs
hat may be correlated, namely 95 Temperature and
6 Heat Flux measurements inside the BSF, PCA
s performed in order to identify a set of PCA
cores. 

Figure 3 shows the cumulative variance of the
riginal data that is recovered for each number of 
etained PCs. Figure 4 reports the mean relative
econstruction errors of the original data, for each
raining observations. These errors are reported
or a number of 3, 5 and 10 PCs. They are below a
alue of 1% when 5 or more PCs are used for the
ompression. These results suggest that the origi-
al 121 variable are indeed correlated. A number
f 5 PCs is enough to recover over 99% of the total
ariance. The original data-set Y of size (121 × 22)
can be compressed into the matrix of PCA scores A
of size (5 × 22), if 5 PCs are kept. A Kriging model
is trained for each of the PCs on the 22 available
observations. Once the Kriging models are trained,
a consistency analysis is carried out as discussed
in Sections 2.1 and 2.4 , with the bounds σ i be-
ing the experimental measurement uncertainties.
Figure 5 reports the two consistency regions found
by the two methodologies using the condition
(2) , with 5 PCs. A consistency analysis using the
constraint (3) on 5 scalars, namely the PCA scores,
is able to find the same consistency region of a full
consistency analysis carried out on 121 variables.
The PCA + Kriging model suggests consistency
also for lower values of τ and T slag . Using Eq. (3) ,
the two methodologies provide consistency ( Fig. 6 )
in two regions that differ by 24% in volume. These
volumes are computed by means of alpha-shapes
[24] . It is worth noting that the input parameters
are standardized when building SMs. If this space
is standardized, the volume difference between the
aforementioned regions is within 5%. The differ-
ence between the two consistency regions can be
explained by the fact that the manifold found
by PCA on the 22 observations recovers 99% of 
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Fig. 7. Parity plot for Temperature when using 5 PCs. 
Comparison between the reference experimental data and 
one consistent model’s prediction according to the con- 
straint (2) ( linear ) and (3) ( quadratic ). The dashed lines 
represent the 5% error. 
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Fig. 8. Consistency regions as in Fig. 5 but using the con- 
straint (3) with α = 11 . 
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Fig. 9. Consistency regions as in Fig. 5 but using the con- 
straint (3) with α = 20 . 
the data variance, but if more observations were
present, that same manifold might not recover
as much. The predictions from the SMs trained
on the 5 PCA scores are forced to stay on the
PCA manifold, while the predictions from SMs
trained on the original variables can lie outside of 
Table 1 
Comparison between the computational perform
ferent Kriging models. 

Kriging 

TRAINING TIME 34.5 s 
SPEED-UP 1 
RECONSTRUCTION ERROR −
# HYPER-PARAMETERS 

Linear trend 484 
Gaussian kernel 363 
# COEFFICIENTS −
it. Figure 7 shows a parity plot of the reference ex- 
perimental data and the predictions from one SM, 
using the values of the input parameters belonging 
to the consistency regions shown in Figs 5 and 6 . 
The difference between the predicted and reference 
temperature data are generally within 5%, confirm- 
ing that the calibration of the input parameters 
can improve the model’s predictive capabilities. 
Figures 8 and 9 show how the consistency re- 
gion found using the constraint (3) changes when 

changing the value of α. For α = 11 , a consistency 
region can still be found. The choice for the value 
of α depends on how strict a consistency between 

the model’s predictions and the experimental data 
is sought. From the perspective of the proposed 

Reduced-Order B2B-DC methodology, in compar- 
ison with a classic B2B-DC, the focus is on the fact 
that the two consistency regions (direct and using a 
reduced number of PCs) both shrink or grow larger 
together. In conclusion, there is no need to train 

121 SMs, because 5 PCs are enough to perform an 

accurate consistency analysis. This ensures compu- 
tational savings and preservation of correlations 
among variables. In the case of larger data-sets 
(comparable number of output variables, more 
than 8 input parameters and more than 10 4 obser- 
vations), where the training process might cost tens 
or hundreds of CPU hours, computational savings 
would be even more relevant. Table 1 reports the 
ances and reconstruction errors of 4 dif- 

10 PCs 5 PCs 3 PCs 

2.78 s 1.76 s 0.93 s 
12.4 19.6 37.0 
0.5% 1% 3% 

40 20 12 
30 15 9 
1452 847 605 
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omputational performances of the two method-
logies, in the form of reconstruction errors, train-

ng times, number of hyper-parameters to train and
umber of coefficients to store in memory. While
o reconstruction error is present for direct Krig-

ng, very small (below 3%) errors are introduced by
he PCA compression. On the other hand, it is clear
hat direct Kriging has more hyper-parameters to
rain. Although Kriging on 5 PCs has more coef-
cients to store in memory, namely 2 vectors (121
ean values and 121 scaling factors) and 5 PCA
odes of 121 coefficients each, the computation

f these coefficients is straightforward compared
o the solution of the optimization problems that
ead to the estimation of the hyper-parameters. 

. Conclusions 

In this work the B2B-DC framework is com-
ined with PCA. Experimental data are available

or Temperature and Heat Flux measurements
or the Alstom BSF test facility. A CFD model
f the BSF is also available [11,22] but not fully
efined, as the values of 3 input parameters
re uncertain. These parameters are indicated
s T slag , k and τ . The model’s output is con-
istent with the experimental data only if suit-
ble values for these parameters are chosen.
he latter can be found using the B2B-DC ap-
roach, carrying out consistency analysis between
he experimental data and the model’s output. The
vailable data consist of experimental values for
21 QOIs, namely 95 Temperature and 26 Heat
lux values. A set of 22 full-order CFD simula-

ions was carried out, each time with a different
riplet of values for the 3 model parameters. In the
lassic B2B-DC approach, a consistency analysis is
erformed with a set of SMs built from these sim-
lations for each of these QOIs, for a total of 121. 

In the present work, a consistency analysis is
arried out using only 5 trained SMs. This is possi-
le if a reduction technique such as PCA is used to
ompress the original data. The set of 121 original
OIs is encoded into a set of 5 scalars, namely the
CA scores, and thus only 5 SMs are needed for

he consistency analysis. This approach is referred
o as Reduced-Order B2B-DC. This is the first
ime, to the authors knowledge, that a B2B-DC
s developed in terms of latent variables rather
han original physical variables. Results obtained
rom the Reduced-Order B2B-DC approach are
ompared with the standard B2B-DC approach.
he results show that the consistency region identi-
ed using the Reduced-Order B2B-DC approach is
ery similar to the one identified using the B2B-DC
pproach, the difference between the consistency
olumes being below 5%, if the input space is stan-
ardized. The advantages of the approach include
computational savings since less SMs need to be
trained: less hyper-parameters need to be found for
the construction of the SMs, which is very often
not a simple task, especially when the number of 
input parameters is high. Finally, the CFD model’s
predictive capabilities for the BSF are improved by
defining suitable ranges for the 3 most influential
parameters affecting the predictions. 
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