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The effects of thermal radiation in a heated jet of water vapor are studied with a direct numerical simulation coupled to a Monte-Carlo solver. The adequacy of the numerical setup is first demonstrated in the uncoupled isothermal and heated turbulent plane jets with comparisons to experimental and numerical data. Radiative energy transfer is then accounted for with spectral dependency of the radiative properties described by the Correlated-k (ck) method.

Between the direct impact through modification of the temperature field by the additional radiative transfer and the indirect one where the varied flow density changes the turbulent mixing, the present study is able to clearly identify the second one in the jet developed region by considering conditions where effects of thermal radiation are moderate.

When using standard jet scaling laws, the different studied cases without radiation and with small-to-moderate radiative heat transfer yield different profiles even when thermal radiation becomes locally negligible. By deriving another scaling law for the decay of the temperature profile, self-similarity is obtained for the different turbulent jets. The results of the study allow for distinguishing whether thermal radiation modifies the nature of heat transfer mechanisms in the jet developed region or not while removing the indirect effects of modified density.

Introduction

Free shear flows compound an important branch of turbulent flows, its fundamental understanding is necessary to comprehend and to predict the transport processes in many industrial applications such as combustion, propulsion and environmental flows. Greats efforts have been made to describe the dynamics of these flows at the developed region where turbulent statistics are assumed independent of initial conditions and present universal similarity solutions [START_REF] Rajaratnam | Turbulent jets[END_REF][START_REF] Townsend | The structure of turbulent shear flow[END_REF][START_REF] Abramovich | The theory of turbulent jets[END_REF][START_REF] Pope | Turbulent flows[END_REF].

Early similarity solutions of the velocity field based on local velocity and length scales for constant-density free shear flows are derived in the work of Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF]. Following this work, self-similarity on a constant density plane jet was reported in the experimental studies of Bradbury [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF] and Heskestad [START_REF] Heskestad | Hot-wire measurements in a plane turbulent jet[END_REF] using hot-wire anemometry.

They collected data of mean velocity, turbulent intensities and shear stresses fields, as well as the turbulent kinetic energy balance in the developed region. Further experimental work was conducted by Gutmark and Wygnanski [START_REF] Gutmark | The planar turbulent jet[END_REF] applying conditional sampling techniques in order to provide data obtained exclusively within the turbulent zone.

Despite some scatter among these experimental works ( [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF][START_REF] Heskestad | Hot-wire measurements in a plane turbulent jet[END_REF][START_REF] Gutmark | The planar turbulent jet[END_REF]), data of the velocity field was found to be self-similar in the developed region when scaled using the classical parameters of Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF]. More recent experimental works using Reynolds average Navier-Stokes (RANS) include the studies of diffusion jet flames of Tessé et al. [START_REF] Tessé | Monte carlo modeling of radiative transfer in a turbulent sooty flame[END_REF] who pointed out the important role of soot particles in global radiative loss; and the work of Li and Modest [START_REF] Li | Importance of turbulence-radiation interactions in turbulent diffusion jet flames[END_REF] in which was found that TRI reduces the total drop in flame peak temperature caused by radiative heat losses. Additionally, a recent RANS coupled simulation in a high-pressure gas turbine combustion chamber was reported by Ren et al. [START_REF] Ren | Monte carlo simulation for radiative transfer in a high-pressure industrial gas turbine combustion chamber[END_REF].

In the coupled LES framework, Gupta et al. [START_REF] Gupta | Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames[END_REF] characterized contributions of subfilter-scale fluctuations to TRI in a diffusion flame; Ghosh et al. [START_REF] Ghosh | Effects of radiative heat transfer on the structure of turbulent supersonic channel flow[END_REF] observed that radiation counteract the effects of compressibility in a nonreactive supersonic channel flow; and Poitou et al. [START_REF] Poitou | Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations[END_REF] showed how radiation can change the flame brush structure. Still in the LES formulation, coupled simulations in complex geometries of combustion chambers include the works of Jones and Paul [START_REF] Jones | Combination of DOM with LES in a gas turbine combustor[END_REF], Berger et al. [START_REF] Berger | On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads[END_REF], and Koren et al. [START_REF] Koren | Multiphysics simulation combining large-eddy simulation, wall heat conduction and radiative energy transfer to predict wall temperature induced by a confined premixed swirling flame[END_REF]. Several coupled DNS works, for which all interactions are fully captured, have been performed on different systems: statistically 1-dimensional premixed [START_REF] Wu | Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems[END_REF][START_REF] Wu | A high-order photon monte carlo method for radiative transfer in direct numerical simulation[END_REF] and nonpremixed [START_REF] Deshmukh | Direct numerical simulation of turbulence-radiation interactions in a statistically onedimensional nonpremixed system[END_REF] flames; natural convection in a differentially heated cubical cavity [START_REF] Soucasse | Natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation at rayleigh numbers up to 3× 109[END_REF]; and nonreactive channel flow [START_REF] Zhang | Physical study of radiation effects on the boundary layer structure in a turbulent channel flow[END_REF][START_REF] Vicquelin | Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations[END_REF]; leading to an understanding of the mechanisms in which radiation modifies turbulence, and a direct quantification of TRI.

Given the complexity of combustion systems, it is desirable to simplify the problem by considering non-reactive free shear flows to understand the isolated impact of radiation in a more canonical configuration without wall interactions. With the exception of the LES study of Ghosh et al. [START_REF] Ghosh | Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers[END_REF], most coupled works addressing free shear flows problems correspond however to combustion systems. The effects of thermal radiation in nonreactive turbulent jets deserves then further investigation. As far as we know, the present set of simulations are the first DNS of a free shear flow to be fully coupled with a spectral radiative heat transfer solver.

Radiative heat transfer can modify the jet scaling laws in two ways: first, a different nature and balance of the different heat transfer mechanisms, and secondly a variation in density due to the modified temperature field. In order to fully characterize the first phenomenon of high interest, it is necessary to establish scaling laws that can distinguish both mechanisms. The present study aims then at analyzing the scaling laws of turbulent heated jets without radiation and with moderate radiative transfer to consider mainly the second mechanism. The results will indeed show that moderate radiation effects can change the classical jet scaling laws in the developed region although thermal radiation can be locally negligible in this region. Without any adaptation of the jet scaling laws for variable density, one wrongly concludes about the modified balance of heat transfers in the studied case. The paper considers then another set of scaling laws and derives a new one for the mean temperature field in particular to make cases without radiation and with small-to-moderate radiative effects self-similar. These results allow for a future clear identification of changes in the nature of heat transfer mechanisms due to radiation whether its magnitude is small, moderate or large.

In the considered case, a heated water vapor mixture discharges into a parallel low-speed coflow of cold water vapor. The numerical study is carried out with state-of-the-art fidelity to be as representative as possible of an actual jet in a participating medium. The turbulent jet is described by a DNS coupled to a reciprocal Monte-Carlo method to solve the radiative transfer equation. The spectral dependency of the radiative properties is accounted for with an accurate ck method.

The studied configuration and the adopted numerical methodology are described in §2. A detailed validation of the isothermal and heated plane jets without radiation is then presented in §3. Finally, results of the heated jet coupled with thermal radiation are analyzed in §4 using both the classical adimensionalization and a new scaling for the mean temperature decay.

Models and numerical approaches

Physical case: the plane jet

The present work studies the radiative transfer in a heated turbulent plane jet of water vapor discharging into a parallel low speed coflow of cold water vapor. The principal direction of the mean flow is x, the cross-stream coordinate is y, and z is the spanwise coordinate for which all the statistics are homogeneous. There is statistical symmetry about the plane y = 0. The flow statistics are stationary and two-dimensional. Figure 1 At the inlet boundary, the jet width opening is set to δ = 0.05 m. Computations are performed in a domain extension of 13.5δ ×10δ ×3δ in x, y and z directions, respectively, while mean results are computed in a 10δ ×10δ ×3δ

box. The jet has an initial mean velocity U 1 = 4.176 m/s and the mean coflow velocity is set to U 2 = U 1 /10. The jet temperature is fixed to T 1 = 860 K, while the temperature in the coflow is T 2 = 380 K, this temperature range has been chosen based on typical values found in a steam turbine [START_REF] Kehlhofer | Combined-cycle gas & steam turbine power plants[END_REF]. All simulations are carried out at atmospheric pressure (1 atm).

The corresponding Reynolds number based on the width opening δ is

Re = ρ(T 1 )∆U 0 δ µ(T 1 ) = 1500, (1) 
where ∆U 0 = U 1 -U 2 . This Reynolds number is moderate compared with previous DNS studies of the turbulent plane jet. For example, Klein et al. [START_REF] Klein | Investigation of the influence of the reynolds number on a plane jet using direct numerical simulation[END_REF] investigated the influence of the Reynolds number in the range of 1000 to 6000, and Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] simulated the plane jet using a Reynolds number of 3000. In our study, the Reynolds number is kept moderate in order to afford the computational cost of a coupled simulation with thermal radiation while featuring a fully turbulent flow as seen in Fig. 1. The half width of the jet y 1/2 (x) displayed in Fig. 1 is a mean quantity useful to describe the jet spreading rate. It is defined as the distance from the jet centerline at which the mean velocity corrected by the coflow velocity is half of the value at the jet centerline. In the isothermal turbulent plane jet, the local Reynolds number based on y 1/2 and the jet centerline velocity grows downstream in the fully turbulent region as x 1/2 .

Experimental studies of the plane jet show that mean turbulent fields can be divided into two distinct regions along the x direction [START_REF] Rajaratnam | Turbulent jets[END_REF]. The first region is the initial zone located in the vicinity of the nozzle. In this region the jet is surrounded by a mixing layer on top and bottom, and turbulence penetrates inwards toward the centerline of the jet. Until the growth of these mixing layers does not reach the jet centerline, there is a region called potential core, unaffected by the turbulence from these shear layers. In the potential core, the injected hot mixture remains uniform. The length of the initial zone is strongly affected by the inlet conditions as reported by experimental [START_REF] Deo | The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet[END_REF] and numerical [START_REF] Klein | Investigation of the influence of the reynolds number on a plane jet using direct numerical simulation[END_REF] studies. In the second region, called fully turbulent, turbulence has penetrated into the centerline of the jet and the mean streamwise velocity profile has a rounded shape. In this region, the mean fields of the isothermal plane jet become self-similar.

Flow simulation

Governing equations

The governing equations used to describe the dynamics of the plane jet are the Navier-Stokes equations for a compressible fluid. These are the continuity equation, the momentum and energy transport equations, respectively:

∂ρ ∂t + ∂ (ρu i ) ∂x i = 0, ( 2 
)
∂ρu j ∂t + ∂ (ρu i u j ) ∂x i = - ∂p ∂x j + ∂τ ij ∂x i , (3) 
∂ρe t ∂t + ∂ (ρe t u i ) ∂x i = - ∂(pu j ) ∂x j + ∂(τ ij u i ) ∂x j + ∂ ∂x i λ ∂T ∂x i + P rad , (4) 
where ρ, t, u j , p, τ ij , e t , λ and T denote density, time, instantaneous velocity, pressure, stress tensor, total energy, thermal conductivity and temperature, respectively. The mixture is homogeneous and made of pure water vapor.

P rad is the radiative power further discussed in § 2.2.3. Assuming Newtonian fluid, the stress tensor τ i,j is defined as

τ ij = µ ∂u i ∂x j + ∂u j ∂x i - 2 3 δ ij ∂u k ∂x k , ( 5 
)
where µ is the dynamic viscosity and δ ij is the Kronecker delta operator. The energy transport is defined based on the total energy e t , which accounts for the sum of internal and kinetic energies: e t = 1 2 u i u i + e, where e is the internal energy. The enthalpy is denoted by h = e + rT where r = R/W and R is the universal gas constant. W stands for the molar weight of the mixture which is here pure water vapor.

The ideal gas equation is used to compute the pressure as

p = ρrT. (6) 
Computation of the transport properties of water vapor is based on the data of Lemmon et al. [START_REF] Lemmon | Thermophysical properties of fluid systems, NIST chemistry webbook[END_REF]. Heat capacity at constant pressure is assumed constant since it varies less than 6.4% in the considered temperature range, while µ and λ vary around 163 % and 205%, respectively [START_REF] Lemmon | Thermophysical properties of fluid systems, NIST chemistry webbook[END_REF]. A polynomial regression of order two is then carried out in order to approximate the dynamic viscosity µ and thermal conductivity λ as follows

µ(T ) = a 0 + a 1 T T ref + a 2 T T ref 2
, and λ(T

) = b 0 + b 1 T T ref + b 2 T T ref 2 , ( 7 
)
where T is in Kelvin, T ref is a reference temperature T ref = 400 K, a 0 = -5.9340 × 10 -6 P a • s, a 1 = 1.9303 × 

Numerical techniques

The governing equations are numerically solved on a structured mesh using a 4 th -order centered finite-difference scheme for the spatial derivatives and an explicit 4 th -order Runge-Kutta method for the time integration, an overview of such methods can be found in the work of Kennedy and Carpenter [START_REF] Kennedy | Several new numerical methods for compressible shear-layer simulations[END_REF]. In addition, an implicit filter of 8 th -order proposed in the work of Gaitonde and Visbal [START_REF] Gaitonde | Further development of a navier stokes solution procedure based on higher-order formulas[END_REF] is used for stability purposes. 

U in (y) = U 1 + U 2 2 + U 1 -U 2 2 tanh δ/2 -|y| 2θ , ( 8 
)
where θ is the shear layer momentum thickness set to θ = 0.07δ. Those values are similar to a previous work of a DNS plane jet [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF]. Low values of the shear layer momentum thickness promote the jet growth but required more mesh refinement to well describe the velocity gradients in the jet edge.

The Reynolds averaging and the time Favre averaging operations for any variable φ are here defined as φ and {φ}, while φ and φ denote their respective fluctuating parts. Then, the Favre averaged velocity profile at the inlet section is shown in Fig. 3a where {U e } denotes the Favre average velocity excess {U e } = {u} -U 2 , and ∆ {U c } is the Favre average velocity excess at the jet centerline

∆ {U c } = {U c } -U 2 .
The inlet temperature profile that defines the heated jet is

T in (y) = T 1 + T 2 2 + T 1 -T 2 2 tanh δ/2 -|y| 2θ . (9) 
The inlet profile of the Favre average excess temperature defined as {T e } = {T } -T 2 adimensionalized by the Favre average excess temperature at the jet centerline ∆{T c } = {T c } -T 2 is presented in Fig. 3b. Similarly, the mean density profile at the inlet is shown in Fig. 3c.

Synthetic turbulence generated using a Passot Pouquet model [START_REF] Passot | Numerical simulation of compressible homogeneous flows in the turbulent regime[END_REF] is combined with the mean inlet velocity profile at the jet region. This technique promotes turbulent instabilities and reduces the initial region of the jet. The Passot Pouquet model defines the turbulent kinetic energy spectrum E(K) as

E(K) = A K K e 4 exp -2 K K e 2 , ( 10 
)
where K is the wavenumber, K e is the wavenumber associated with the largest turbulent scales, A is an independent variable of K defined by A = 16n 3 u 2 Ke 2/π, u stands for the characteristic turbulent velocity and n is the number of dimensions (here n = 3). Defining the auto-correlation integral scale L c as

L c = 2βn 3K e 2/π with β =    2 if n = 2 π/2 if n = 3 , (11) 
the turbulent kinetic energy spectrum is defined by fixing the auto-correlation integral scale L c and the turbulent velocity u . In the present work, these values are set to L c = δ/2 and u = U 1 /20. Velocity fluctuations have its maximum value at the jet centerline while are set to zero at the coflow following an hyperbolic profile analogous to the ones of the inlet streamwise velocity and the inlet temperature. The resultant inlet averaged root-mean-square (rms) velocity fluctuations are shown in Fig. 3d.

Computational mesh. The grid is non-uniform in the x and y directions while it is uniform in the spanwise direction. Computations are performed in a domain extension of 13.5δ ×10δ ×3δ in x, y and z directions, respectively, while a domain extension of 10δ × 10δ × 3δ is considered to compute the statistics of the flow. The spanwise box size is determined from an estimation of the integral length scale based on the work of Klein et al. [START_REF] Klein | Investigation of the influence of the reynolds number on a plane jet using direct numerical simulation[END_REF]. The flow solution is computed using a structured grid with 566×469×149 nodes, in the x, y and z directions, respectively, which corresponds to approximately 39.5 × 10 6 nodes. The grid spacings relevant for direct numerical simulation can be anticipated from the known behavior of turbulent plane jets. Indeed, from scaling laws of decaying centerline profiles of temperature and velocity [START_REF] Jenkins | Mean temperature and velocity in a plane turbulent jet[END_REF], it is possible to estimate T c (x) and U c (x) for the present inlet values. Assuming constant atmospheric pressure, ρ can be estimated from Eq. 6, and the dynamic viscosity µ can be computed from Eq. 7. Estimating the dimensionless turbulent kinetic energy dissipation * from previous DNS results [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF], can be scaled for the present simulation. Then, the grid spacing along x-axis is set to be locally maximum twice the local Kolmogorov scale η ≡ (µ/ρ) 3 1/4 . The grid spacing along y-axis is such that the inner region of the jet (y < y 1/2 (x)) is as much refined as in the x direction.

Finally, the grid spacing along z-axis is uniform and equal to ∆z = δ/50, which is a close value to the ∆x and ∆y averages.

The Acoustic Speed Reduction method. The DNS results are here obtained by solving the compressible Navier-Stokes equations through a fully-explicit formulation. Such formulation has a strong benefit for highperformance computing since no implicit linear system needs to be solved.

When using an explicit formulation, the time step is limited by the Courant-Friedrichs-Lewy (CFL) condition expressed for the Courant number

C dt < C crit min ∆x i |u i + c| , ∆x i |u i -c| , (12) 
and by the Fourier number (Fo) condition

dt < Fo crit min ∆x 2 i µ/ρ , (13) 
where ∆x i is the characteristic cell size on each i direction, c is the speed of sound, and C crit and Fo crit are the critical stability values for the retained numerical schemes, respectively. In the present work, the CFL condition is more restrictive than the Fo condition. For the studied jet characterized by a low Mach number (Ma = 5.89 × 10 -3 ), compressible effects are negligible. In such cases, explicit numerical formulations have a notorious tendency to be poorly efficient in terms of computational cost because of the difference between convective and sound velocities. In this context, the so called pseudo-compressibility or artificial compressibility methods try to reduce the gap between convective and sound velocities with artificial manipulation of the governing equations. Choi and Merkle [START_REF] Choi | The application of preconditioning in viscous flows[END_REF] classified the artificial compressibility methods in (1) pre-conditioning methods in which the time derivatives in the governing equations are multiplied by a matrix which scales the eigenvalues of the system to the same order of magnitude [START_REF] Choi | The application of preconditioning in viscous flows[END_REF][START_REF] Darmofal | The importance of eigenvectors for local preconditioners of the euler equations[END_REF][START_REF] Van Leer | Characteristic time-stepping or local preconditioning of the euler equations[END_REF][START_REF] Liu | High order finite difference and multigrid methods for spatially evolving instability in a planar channel[END_REF][START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF], and (2) perturbation methods in which specific terms in the governing equations are manipulated in order to replace physical acoustic waves by pseudo-acoustic modes [START_REF] O'rourke | Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames[END_REF][START_REF] Ramshaw | Pressure gradient scaling method for fluid flow with nearly uniform pressure[END_REF][START_REF] Wang | Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion[END_REF][START_REF] Salinas-Vázquez | A low-mach number method for the numerical simulation of complex flows[END_REF]. The present work takes advantage of such a perturbation method called Acoustic Speed Reduction (ASR) presented by Wang et al. [START_REF] Wang | Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion[END_REF]. The method enlarges the allowed time step by artificially reducing the sound velocity and increasing the Mach number while keeping compressible effects negligible. Consequently, the computational resources needed to achieve statistical convergence are strongly reduced. In practice, the ASR method modifies Eq. ( 4) by adding two new terms S conv and S diff :

∂ρe t ∂t + ∂ (ρe t u i ) ∂x i = - ∂(pu j ) ∂x j + ∂(τ ij u i ) ∂x j + ∂ ∂x i λ ∂T ∂x i + P rad + S conv + S diff , (14) 
where

S conv = 1 - 1 α 2 γp γ -1 ∂u j ∂x j and S diff = -1 - 1 α 2 τ i,j ∂u i ∂x j + ∂ ∂x j λ ∂T ∂x j + P rad . (15) 
The ASR method reduces the speed of sound by an adjustable factor α accelerating the convergence of the solution by this same factor. In the present study, the value of the factor α is set to α = 8. Such value equalizes the Courant-Friedrichs-Lewy and the Fourier conditions within the same order of magnitude for the current simulation.

Radiation simulation

A Monte Carlo Method is used in order to compute the radiative heat transfer in a participating medium. This method consists on tracing the history of a statistically meaningful random sample of photons from their points of emission to their points of absorption, a general description of this method applied to radiative heat transfer in participating medium can be found in [START_REF] Modest | Radiative heat transfer[END_REF]. An efficient Monte-Carlo method described in Ref. [START_REF] Palluotto | Comparison of monte carlo methods efficiency to solve radiative energy transfer in high fidelity unsteady 3d simulations[END_REF] is used. The retained approach is based on an Emission-based Reciprocity Monte-Carlo method (ERM) [START_REF] Tessé | Radiative transfer in real gases using reciprocal and forward monte carlo methods and a correlated-k approach[END_REF] and a randomized Quasi Monte Carlo (QMC) [START_REF] Christiane | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF] relying on low-discrepancy Sobol sequences [START_REF] Joe | Constructing sobol sequences with better two-dimensional projections[END_REF] that replace the pseudo-random number generator to accelerate the calculation. The spectral optical properties for H 2 O are modelled by means of the correlated-k (ck) narrow band model [START_REF] Goody | Atmospheric radiation: theoretical basis[END_REF][START_REF] Taine | Gas IR radiative properties: from spectroscopic data to approximate models[END_REF]. The present ck model is based on updated parameters of Riviere and Soufiani [START_REF] Rivière | Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature[END_REF].

The quantity of interest that is the radiative power at node i is computed from the reprocity principle as the sum of the exchanged power P exch i,j

between i and all the other cells j, i.e.,

P rad = j P exch ij , (16) 
where P exch ij is given by

P exch ij = ν κ ν (T i ) [I • ν (T j ) -I • ν (T i )] 4π A ij,ν dΩ dν. (17) 
A ij,ν accounts for all the paths between emission from the node i and absorption in any point of the cell j, after transmission, scattering and possible wall reflections along the paths, further details of the Monte-Carlo formulation can be found in [START_REF] Tessé | Radiative transfer in real gases using reciprocal and forward monte carlo methods and a correlated-k approach[END_REF].

The Monte-Carlo method is used in this work to take advantage of its capabilities to solve the RTE with detailed spectral radiative properties with a relatively low additional computational cost when compared with deterministic methods such as the Discrete Ordinates Method (DOM). Also, the use of the Monte-Carlo allows for controlling the computation error determined as the standard deviation of the Monte-Carlo statistical estimate.

Because the computational cost of the Monte-Carlo method remains large, the grid to compute the radiative solution fields is based on a coarser mesh than the DNS one: one out of two points is considered in each direction.

Then, the radiative solution is computed in 282 × 235 × 75 grid nodes in the x, y and z directions, respectively, which corresponds to approximately 5 × 10 6 nodes. In order to assess the loss in accuracy embedded in considering a coarser mesh for the radiative solver, radiative power fields have been computed using the aforementioned DNS mesh and the coarser mesh for a given instantaneous temperature field. Then, a comparison of the instantaneous radiative power downstream evolution along the jet centerline for both meshes is presented in Fig. 4a, while cross-section profiles of instantaneous radiative power at x = 10δ computed on both meshes are shown in Fig. 4b. From the results presented in Fig. 4, it can be seen that despite some relative difference between both meshes are observed, the coarse mesh is able to correctly capture the trends and magnitude of the radiative power. Radiative computations on the DNS fine mesh increases by a factor of 8 the required computational time when compared with the coarse mesh. In spite of the slight degradation on accuracy, the coarser mesh is then retained in order to keep feasible coupled DNS computations in terms of amount of CPU time and memory requirements.

Periodic boundary conditions are set in the spanwise direction: if a ray gets off the domain, for example at the point (x, y, L z ), it will get in at the point (x, y, 0) with the same propagation direction. All other boundaries are treated as black-surfaces at the local temperature of the boundary node.

An additional advantage of ERM is to allow the Monte-Carlo convergence to be locally controlled. All the present simulations are considered converged when a local error lower than 5 % of the radiative power is achieved. The error is characterized in terms of statistical standard deviation of the estimated quantity of interest. In regions where the mean radiative power is close to 0 and so the relative error is difficult to converge, an absolute value of the error of 2000 W/m 3 is considered to achieve convergence. This value corresponds to approximately 0.5% of the maximum value in magnitude of the radiative power in the domain. Finally, if these two criteria are not accomplished at a specific grid point, a maximum of 2.5 × 10 3 rays are considered.

The radiation computation is updated every 58 iterations of the fluid flow solver. This coupling period is chosen keeping the coupling error below 5 % based on the Euclidean norm of the difference between the radiative power in an iteration i, set as a reference (P i rad ), with respect to the radiative power after N iterations (P i+N rad ), that is

||P i+N rad -P i rad || 2 = x D P i+N rad ( x) -P i rad ( x) 2 , ( 18 
)
where D is the computational domain. The coupling error below 5 % is chosen since the radiative solution is considered converged when a local error lower than 5 % of the radiative power is achieved.

Separate validation of numerical setups in uncoupled simulations

Results of an isothermal jet at 610 K and of the uncoupled heated jet described in §2.1 without including radiation are first compared with experimental and numerical data available in the literature in order to validate the numerical set up of the fluid flow solver.

In order to accelerate convergence of statistical values, all mean quantities have been averaged in the spanwise direction. In addition, the symmetry plane about y = 0 is used to double the averaging samples.

Results of the isothermal plane jet

The statistics are obtained by averaging the data over approximately τ = 2.4 s of physical time. This time corresponds to approximately 11 flow time units defined as in the work of Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] as

τ (U 1 +U 2 )/(2L x ) = 11,
where L x is the domain size in the x direction L x = 10δ.

In the developed region of plane jets, the jet half-width y 1/2 (x) has a linear relationship with the streamwise coordinate [START_REF] Rajaratnam | Turbulent jets[END_REF],

y 1/2 δ = K 1,u x δ + K 2,u , (19) 
while the mean streamwise velocity excess at the jet centerline ∆{U c } = {u} y=0 -U 2 is found to vary as

x -1/2 , ∆U 0 ∆{U c } 2 = C 1,u x δ + C 2,u , (20) 
where ∆U 0 = U 1 -U 2 . The slope coefficients, K 1,u and C 1,u , in the fully developed region are known to be universal in an incompressible jet; that is to say that, for large Reynolds number, they are independent of the jet conditions.

Similarly, properly scaled non-dimensional profiles become self-similar in the same region.

Figure 5a presents the results of the growth of the jet half-width y 1/2 (x). Similarly, the adimensionalized mean excess velocity decay ∆U0 ∆{Uc} 2 along the jet centerline is presented in Fig. 5b. In both figures, the linear regression in the developed region and the experimental results from the work of Thomas and Chu [START_REF] Thomas | An experimental investigation of the transition of a planar jet: Subharmonic suppression and upstream feedback[END_REF] are also shown for the sake of comparison. Figure 5 shows that both the jet half-width and the mean velocity decay have a linear dependence on x/δ beyond x = 8δ, which is the same value reported by Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF]. Hence, the coefficients for the linear fitting shown in Fig. 5 are computed using values in the range 8δ < x < 10δ.

(a) (b) The present results of the linear fitting coefficients in the self-similar zone are summarized in Table 1 along with some experimental [START_REF] Gutmark | The planar turbulent jet[END_REF][START_REF] Jenkins | Mean temperature and velocity in a plane turbulent jet[END_REF][START_REF] Thomas | An experimental investigation of the transition of a planar jet: Subharmonic suppression and upstream feedback[END_REF][START_REF] Goldschmidt | Energy spectrum and turbulent scales in a plane air jet[END_REF] and DNS [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] results. The results of the virtual origins (K 2,u and C 2,u ) differ among the referred works since they have a strong dependence on the inflow conditions [START_REF] Klein | Investigation of the influence of the reynolds number on a plane jet using direct numerical simulation[END_REF][START_REF] Stanley | Influence of nozzle conditions and discrete forcing on turbulent planar jets[END_REF]. On the other hand, the predicted slope coefficients (K 1,u and C 1,u ) compare generally well with previous results, although C 1,u is somewhat lower. Mean profiles of the excess streamwise velocity ({U e } = {u} -U 2 ) and the cross-stream velocity {v} adimensionalized by ∆{U c } = {U c } -U 2 against y/y 1/2 become self-similar, that is, they collapse onto a single curve as long as the jet is developed. Fig. 6a and 6b show that velocity profiles at x = 10δ are in good agreement with self-similar profiles from experimental [START_REF] Gutmark | The planar turbulent jet[END_REF] and numerical [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] studies. The beginning of the developed zone associated with the self-similarity of streamwise velocity profiles is considered to begin at x = 8δ where profiles of streamwise velocity collapse onto almost the same curve, as shown in Fig. 7. This is the same value reported by Le Ribault et al. [START_REF] Le Ribault | Large eddy simulation of a plane jet[END_REF]. Likewise, the numerical study of Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] obtained similar values, they found that the streamwise velocity profiles collapse around x = 10δ. Nevertheless, experimental studies report much larger values, for example, Gutmark and Wygnanski [START_REF] Gutmark | The planar turbulent jet[END_REF] estimate that self-similarity begins beyond x = 40δ while Bradbury [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF] Reynolds stresses in the developed turbulent zone are also expected to become self-similar when adimensionalized by ∆{U c } and plotted against y/y 1/2 . Figure 8 compares the Reynolds stresses results at x = 10δ with experimental data of Thomas and Prakash [START_REF] Thomas | An experimental investigation of the natural transition of an untuned planar jet[END_REF], Ramaprian and Chandrasekhara [START_REF] Ramaprian | LDA measurements in plane turbulent jets[END_REF] and Bradbury [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF] as well as numerical results

of Stanley at al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF]. Predicted Reynolds stresses profiles are satisfactory although one can notice the spread of the reported profiles in the literature.

The general definition of turbulent kinetic energy for a variable density flow is a Favre average of the massweighted fluctuations u i , i.e, k = 1 2 {u 2 i } = 1 2 ρu 2 i / ρ . Following the work of Chassaing et al. [START_REF] Chassaing | Variable density fluid turbulence[END_REF] or Huang et al. [START_REF] Huang | Compressible turbulent channel flows: Dns results and modelling[END_REF], the transport equation of the turbulent kinetic energy is expressed as

1 2 ∂ ρu 2 i ∂t + ∂ ∂x j 1 2 ρu 2 i {u j } Advection, ρ Dk Dt = -ρu i u j ∂{u i } ∂x j Production, P - τ i,j ∂u i ∂x j Viscous dissipation, (21) 
- ∂ ( P u i ) ∂x i - ∂ P u i ∂x i + ∂ τ i,j u i ∂x j - ∂ ∂x j ρu j u 2 i 2 Diffusion terms, • T + P ∂u i ∂x i . Pressure-Dilatation, Π , (22) 
where the different diffusive fluxes (pressure diffusion, viscous diffusion and turbulent diffusion) have been gathered

in the quantity denoted as T . Since velocity and Reynolds stresses profiles adimensionalized by ∆{U c } are self-similar and independent of Re in the developed region for the isothermal jet, so are the different terms in the transport equation for turbulent kinetic energy profiles when they are adimensionalized by the scaling factor y 1/2 /(∆{U c } 3 ρ ).

The dimensionless transport equation of the turbulent kinetic energy is then expressed as:

Dk * Dt + • T * = P * - * + Π * , (23) 
where * denotes adimensionalized quantities. The budget of the turbulent kinetic energy in the self-similiar zone is presented in Fig. 9a has a negligible contribution; in consequence, it is not included in Fig. 9. All trends in the budget are well captured and compare reasonably good with experimental results, even improving the results from past numerical simulations.

The two main terms in the energy budget are production and dissipation. Viscous dissipation is almost constant in the core of the jet (y < y 1/2 ) while production has a strong peak around y = 0.8y 1/2 in agreement with the Reynolds stresses presented in Fig. 8. The turbulent kinetic energy generated at the peak of production is advected to the jet centerline through entrainment velocity while turbulent diffusion spread the turbulent kinetic energy to both the jet centerline and the jet edge. At the center of the jet, turbulent fluctuations are maintained solely through advection and turbulent diffusion. The low value of the unbalance among all terms (-Unbalance, in Fig. 9a) points out that the simulation is capturing all the physical mechanism in which turbulence is produced, dissipated and transported.

Figure 10 presents the one-dimensional autospectrum along the homogeneous spanwise direction of the streamwise velocity fluctuations, E u (K), at x = 10δ in the jet centerline, which is adimensionalized by the streamwise velocity fluctuations {u u } at the jet centerline and the jet half width y 1/2 . The one-dimensional autospectrum is plotted against two different horizontal axis: at the bottom one, wavenumbers are scaled by the length of large turbulent motions; while in the top horizontal axis, wavenumbers are scaled by the characteristic length of the smallest eddies η ≡ (µ/ρ) 3 1/4 . Moreover, the one-dimensional autospectrum from Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] is also plotted for the sake of comparison. Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] reported results of the autospectrum in time of the streamwise velocity on the centreline of the jet at x = 10δ, their results are here plotted in terms of the wavenumber by invoking the Taylor hypothesis. Applying here such an hypothesis results in a spatial spectrum along the streamwise direction, which is homogeneous in the developed region when appropriately scaled, but not isotropic. Then, a disagreement is found in the large scale motions due to its high correlation along the streamwise direction. However, the present results are in very good agreement with [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] at higher wavenumbers (say (K/2π)y 1/2 > 4) since all fluctuations are isotropic in this region. Furthermore, the present DNS simulation even improves the resolution at the dissipative region comparing with the spectrum in [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF]. When looking at the top horizontal axis in Fig. 10, the dive of the profile occurs at a location close to the expected wavenumber when compared to reference dissipative spectra presented, for example, in [START_REF] Pope | Turbulent flows[END_REF]. The presented spectra together with the low value of the unbalance term in Fig. 9a demonstrate that the dissipation can be attributed to the physical viscous dissipation, rather than to the numerical dissipation introduced by the retained discretization scheme or filtering.

Results of the uncoupled heated plane jet

Mean results of the uncoupled heated jet are computed by averaging the data over approximately τ = 2.4 s of physical time, which is equivalent to 11 flow time units. In the case of the uncoupled studied heated jet described in §2.1, one is interested in the turbulent mixing of the temperature field. Additionally, the associated variable density field can modify the turbulent transfer of momentum and make the temperature mixing deviate from the behavior of a passive scalar in a turbulent jet. In this subsection, the solution of the heated jet is compared with reported experimental data of the slightly heated plane jet and numerical data of the evolution of a passive scalar field in a plane jet. is half the corrected temperature at the jet center ∆{T c } = {T } y=0 -T 2 . In Figure 11a, results of the evolution of the half-width of the jet based on temperature are compared with the numerical results of Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] and the experimental data of Browne et al. [START_REF] Browne | Interaction region of a two-dimensional turbulent plane jet in still air[END_REF]. The results of the current heated jet show a slow initial developing when compared with the data of Browne et al. [START_REF] Browne | Interaction region of a two-dimensional turbulent plane jet in still air[END_REF] and Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] in which the half-width linear growth appears beyond x = 4δ and x = 6δ, respectively; while for the present results linear growth is shown beyond x = 7δ. As for the results of the velocity fields in the isothermal plane jet, the strong dependence of the initial developing zone on the inflow conditions explains the scatter among the different works, while the slope of the downstream evolution of y 1/2,T compares well with previous works. Figure 11b shows the temperature decay in the jet centerline in which

∆T 0 = T 1 -T 2 and ∆{T c } = {T } y=0 -T 2 .
The results of the temperature decay are in good agreement with the mean scalar decay of Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF]. Results of the temperature decay of Browne et al. [START_REF] Browne | Interaction region of a two-dimensional turbulent plane jet in still air[END_REF] have a faster initial developing, probably due to the inflow conditions, while the decay rate is greater than the decay predicted by both the current numerical results and the simulation of Stanley et al. [START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF].

In Figure 12a, the Favre averaged temperature corrected by the coflow temperature {T e } = {T } -T 2 adimension- alized by ∆{T c } = {T } y=0 -T 2 is plotted against y/y 1/2,T at x = 10δ and compared with experimental results from Davies et al. [START_REF] Davies | Spread of a heated plane turbulent jet[END_REF] who set an initial excess temperature of ∆T 0 = 14.6 K, the study of Jenkins and Goldschmidt [START_REF] Jenkins | Mean temperature and velocity in a plane turbulent jet[END_REF] that fixed this value to ∆T 0 = 20.7 K, and the experimental results of Antonia et al. [START_REF] Antonia | Budget of the temperature variance in a turbulent plane jet[END_REF] with an excess temperature at the inlet section of ∆T 0 = 25 K; while the excess temperature in the current simulation is ∆T 0 = T 1 -T 2 = 480 K.

Despite the ∆T 0 disparity among the present work and the values found in the literature, the dimensionless temperature profile is in good agreement with experimental results. Additionally, Figure 12b Integrating the x-momentum boundary-layer equation with respect to y, the momentum flow rate per unit span, defined as +∞ -∞ ρu 2 dy, is constant along the streamwise direction of the plane jet. Due to the presence of a coflow stream, this quantity is infinite and is here replaced by

Ṁx = +∞ -∞ ρu 2 -ρ 2 U 2 2 dy, (24) 
Results of the momentum flow rate adimensionalized by its value at the initial cross-section are presented in Fig. 13 for both the isothermal and the heated jets. Additionally, an horizontal dashed line corresponding to the ideal behaviour of the jet is included in Fig. 13. As expected, the momentum flow rate is almost constant along the streamwise direction for both cases, i.e., Ṁx deviations from the ideal plane jet are less than 1.3%. As detailed in the work of Foysi et al. [START_REF] Foysi | Large-eddy simulation of variable-density round and plane jets[END_REF], the conservation of momentum flux in the developed region yields that the ratio between ρ c ∆{U c } 2 y 1/2 and ρ 0 ∆U 2 0 δ is constant, where ρ c is the mean density at the jet centerline and ρ 0 is the jet density at the exit nozzle. An equivalent jet opening r = δ (ρ 0 / ρ c ) is defined, where the exit nozzle density is considered as the bulk average ρ 0 = 1 δ δ ρ |x=0 dy. As reported in the work of Richards and Pitts [START_REF] Richards | Global density effects on the self-preservation behaviour of turbulent free jets[END_REF], r can be interpreted physically as the width opening of a hypothetical jet of density ρ c with the same initial mass and momentum fluxes as the jet under consideration. Then, the conservation of momentum flux can be written as

∆{U c } 2 y 1/2 ∆U 2 0 r ∼ constant, (25) 
As shown in Fig. 14, the velocity decays of the heated and isothermal jets almost collapse on the same curve when (∆U 0 /{U c }) 2 is plotted against x/r (Fig. 14b), while these curves have a clearly different slope when plotted against

x/δ (Fig. 14a). Note, that the scaled velocity decay of the heated jet in Fig. 14b has values beyond x = 10r since r < δ.

(a) (b) 

Results of the heated plane jet coupled with radiative energy transfer

In this section, the effects of radiation on mean quantities and its fluctuations are analyzed by comparing the heated jet without radiation (NR) and including radiation (R). The statistics are obtained by averaging the data over approximately τ = 1 s of physical time. This time corresponds to approximately 4.6 flow time units defined as τ (U 1 + U 2 )/(2L x ) = 4.6, where L x is the domain size in the x direction L x = 10δ. For the same amount of physical time, the computational resources to compute the coupled jet are approximately 3.5 times greater than the uncoupled simulation.

Velocity field

Radiation effects on velocity are indirectly caused by changes in density due to the modified temperature field.

As shown in Fig. 15a, the inclusion of radiation has a negligible effect on the scaled mean velocity profiles at x = 10δ.

Moreover, the downstream centerline velocity decay presented in Fig. 15b shows that, when scaled by r , radiation does not modify the velocity decay since the slightly changes in density are compensated by r . Reynolds stresses are slightly modified by thermal radiation. Figure 16 shows cross-sections profiles of normal and shear Reynolds stresses at x = 10δ for the radiative and non-radiative cases. In accordance with previous coupled DNS studies [START_REF] Ghosh | Effects of radiative heat transfer on the structure of turbulent supersonic channel flow[END_REF][START_REF] Zhang | Physical study of radiation effects on the boundary layer structure in a turbulent channel flow[END_REF][START_REF] Vicquelin | Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations[END_REF][START_REF] Ghosh | Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers[END_REF], weak radiation effects on first and second moment orders of velocity are observed in non-reactive flows. Radiation effects on velocity are indirectly caused by changes in density, while effects on temperature are directly caused by the radiative power field.

Radiative power field

A slice of the instantaneous radiative power at z = 0 is presented in Fig. 17a, while Fig. 17b shows the averaged radiative power P rad . Radiative power is a balance between the power lost by emission and the power gained due to absorption, thus regions with negative values of P rad are cooling down by the effect of radiation, while regions with positive values are heating up due to radiation. As expected, Fig. 17 shows that the centerline of the jet, which is the hottest region of the flow, loses heat by radiation. On the other hand, thermal radiation energy is further absorbed at colder regions of the jet, tending to a null radiative power as the distance to the jet centerline increases.

In Fig. 17b, in which radiative power averaged over time is shown, the emission dominated region has been delimited from the absorption dominated region by a solid black line corresponding to the isoline of P rad = 0. . The initial zone in which the jet develops is the most affected region by radiation due to the large temperature gradients. Then, radiative power at the jet centerline tends to zero downstream. Regarding a cross-section profile of the jet, a large radiative power is emitted in the centerline, then radiative power tends to zero in the jet edge while an absorption dominated zone is developed at the outer region of the jet. In the developed region the temperature and its gradients are lower and the heat transport by radiation decreases significantly. To characterize the effects of radiation in the heat transport, the averaged energy balance in terms of enthalpy for the plane jet is analyzed. It can be simplified assuming statistically steady state and a low mach number as

∂ ( ρ {u i }{h}) ∂x i Mean flow advection + ∂ ( ρ {u i h }) ∂x i Turbulent convective heat flux = ∂ ∂x i λ ∂T ∂x i Molecular diffusion + P rad .
Radiative power [START_REF] Modest | Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications[END_REF] The enthalpy balance for both the radiative and non-radiative cases is analyzed in the developing zone in Fig. 19 in while in the radiative jet, showed in Fig. 19b, a significant enthalpy transport occurs in the jet core due to radiation Mean temperature decay which provides a measure of the overall cooling of the jet is shown in Fig. 21a where ∆T 0 = T 1 -T 2 and ∆{T c } = {T } y=0 -T 2 . Surprisingly, despite the fact that radiation has no effects on the developed zone, as shown in Fig. 20, the mean temperature at the jet centerline decays faster in the radiative case than in the non-radiative case. In Figure 20 fitted lines are added in the region 8 < x/δ < 10. Figure 21b shows that the jet half-with based on temperature for the radiative case is slightly larger than for the non-radiative case. Temperature profiles of the uncoupled and coupled heated jets, shown in Fig. 21c, collapse almost in the same curve when the y coordinate is adimensionalized by y 1/2,T . As observed in Fig. 21a, the classical adimensionalization fails to give the same slope for the temperature decay between radiative and non-radiative cases despite the negligible contribution of radiation in the developed region.

In this section, a novel adimensionalization based on approximate conservation of the convective heat flux is derived in order to collapse the temperature decay of different heated jets even though developing conditions are different.

This assumption is exact for negligible coflow and radiative effects. It allows here to correct variable density effects for the investigated case with moderate radiative transfer. This adimensionalization can then be used to distinguish whether radiation changes the dynamic mechanisms in the developed region or not.

Conservation of the convective heat flux in a free jet can be expressed by the equation

∂ ∂x +∞ -∞
ρ {u}∆{T e }dy = 0,

For the new scaling, temperature and density fields are assumed self-similar in the form ∆{T e } = ∆{T c }f T (η) and ρ = ρ c f ρ (η). Considering a strong jet with minor co-flow effects, velocity self-similarity is expressed in the form {u} = {U c }f u (η). Note that ∆{T c }, ρ c and {U c } are respectively temperature, density and velocity scales that depend only on downstream position, while f T (η), f ρ (η) and f u (η) are distribution functions depending on the dimensionless coordinate η = y/y 1/2,T . The choice of a unique length scale, in this case y 1/2,T , implies that selfsimilarity on temperature, density and velocity can be described with the same local length scale, which is consistent since the jet growths are proportional among them. Then, Eq. 27 can be written as

ρ c {U c }∆{T c }y 1/2,T +∞ -∞ f T (η)f ρ (η)f u (η)dη = constant, (28) 
which implies that the product ρ c {U c }∆{T c }y 1/2,T is independent of x in the self-similar region. Then, in this region, the convective heat flux conservation can be expressed as

ρ c {U c }∆{T c }y 1/2,T ρ 0 u 0 ∆T 0 δ = constant. ( 29 
)
where u 0 = 1 δ δ U in (y)dy is analogous to ρ 0 defined in §3.2 Similar to the derivation of the scaling for the velocity decay in the jet centerline [START_REF] Foysi | Large-eddy simulation of variable-density round and plane jets[END_REF], it is possible to deduce a scaling for the temperature decay. Defining an equivalent heat jet opening characterizing thermal transfer, r ,T , as

r ,T = δ 2 y 1/2,T ρ 0 ρ c 2 u 0 {U c } 2 , (30) 
the convective heat flux conservation presented in Eq. ( 29) can be expressed as

∆{T c } ∆T 0 2 y 1/2,T r ,T = constant. (31) 
Then, similar to Eqs. ( 19) and ( 20), the temperature decay (∆T 0 /∆{T c }) 2 in the self-similar region has a linear relationship with the streamwise coordinate in the form

∆T 0 ∆{T c } 2 = Q 1,T x r ,T + Q 2,T , (32) 
assuming self-preserving temperature, density and velocity distributions; the temperature decay of heated jets has a universal behavior in the self-similar region when adimensionalized by the equivalent heat jet opening introduced in Eq. (30).

Radiation effects on temperature using the new scaling

Figure 23 shows again the centerline temperature decay and temperature profiles of the uncoupled and coupled jets but this time using the equivalent heat jet opening based on the convective heat flux conservation to scale the results.

Additionally, the linear regressions of the centerline temperature decay in the developed region (8δ < x < 10δ) is shown in Fig. 23a. In contrast with Fig. 21a, it can be observed that in Fig. 23a the temperature decays of the radiative and the non-radiative jets collapse into almost the same curve presenting nearly the same slope when the xcoordinate is scaled by r ,T . Figure 23b shows the collapse of temperature profiles for the radiative and non-radiative jets at the same x = 9r ,T which actually corresponds to x = 9.76δ for the non-radiative jet and to x = 9.15δ for the radiative jet, although the classical scaling was already collapsing mean temperature profiles onto almost the same curve. In order to quantitatively compare the behavior of the temperature decay between the radiative and non-radiative jets, results of the linear fitting coefficients in the self-similar zone (beyond x = 7δ) for both the new scaling (using r ,T in Eq. 32) and the classical scaling (using δ instead of r ,T in Eq. 32) are summarized in Table 2.

On the one hand, values of Q 2,T differ between R and NR cases for both scalings due to the inclusion of the radiative heat exchange which affects the developing zone. On the other hand, while Q 1,T coefficients are significantly different (22.2%) when comparing R and NR cases using the classical scaling, they have a small difference (0.32 %) using the new scaling based on the equivalent heat jet opening.

Temperature fluctuations along the jet centerline for the radiative and non-radiative jets are shown in Fig. 24a adimensionalized using r ,T . The intensity of the temperature fluctuations is first slightly lower for the radiative case at the developing region in which radiation has a significant impact on the flow. However, once in the developed region, the intensity of temperature fluctuations at the jet centerline collapses almost into the same value. Additionally, The negligible contribution of radiation in the enthalpy balance at the developed region entails that the heat transport physical mechanisms remain the same for both the radiative and the non-radiative cases in the developed region. However, the effects of radiation in the developing region modify indeed temperature and density fields generating different heated jets downstream. The new scaling based on the equivalent heat jet opening has shown to counterbalance the differences of density and velocity between the uncoupled and coupled heated jets, allowing to identify a same nature of heat transfer for cases without radiation and cases with small-to-moderate radiative effects.

Conclusions

Direct numerical simulations of heated jets uncoupled and coupled with thermal radiation are analyzed to discuss the scaling of variable density jets. Before presenting coupled simulations, velocity and Reynolds stresses profiles of the isothermal plane jet are validated by comparison with previous experimental and numerical studies. Additionally, the turbulent kinetic energy balance of the isothermal jet is checked and each term is compared with available data.

Regarding the heated jet without including radiation, the profile of mean temperature and the downstream evolution of temperature fluctuations are compared with previous experimental works. The constancy of the momentum flow rate per unit span is checked for the isothermal and heated jets. Moreover, the scaled velocity decay of the heated and isothermal jets collapses almost onto the same curve. These uncoupled results demonstrate the adequacy of the DNS numerical setup. The inlet velocity profile is here combined with artificial turbulence to shorten the domain with a quick destabilization of the potential core to yield a reduced computational time. Despite the limited extent of the present domain; the obtained profiles of first and second order moments of velocity fields beyond x = 8δ compare quite well with previous self-similar profiles, and besides, linearity in the velocity decay rate and the jet half-width growth is observed in the region 8δ ≤ x ≤ 10δ.

In the coupled case with radiation, an analysis of the enthalpy balance at the initial zone shows that radiation has a major contribution of heat transport modifying temperature and density fields. On the other hand, a negligible radiative contribution is found in the developed region. Thus, for both uncoupled and coupled heated jets, the nature of heat transfer remain the same, which is here the turbulent heat transport. However, despite this minor contribution of radiation in the developed region, the classical jet scaling law fails to give the same temperature decay slope between the radiative and non-radiative cases. This could wrongly lead to conclude on a modified balance of heat transport mechanisms in the studied case. In fact, thermal radiation can have two kind of effects on the temperature profile: a direct one from radiative energy transfer and an indirect one due to the modified flow density.

The proposed equivalent heat jet opening deduced from the convective heat flux conservation equation has shown to compensate density differences to collapse both radiative and non-radiative jets profiles onto the same temperature decay rate in the developed region. This scaling accounts for the indirect effects of variable density in cases with radiation. It allows for distinguishing whether radiation modifies the heat transfer mechanisms in the developed region or not. In the studied case, it is now clearly identified that is does not.

The present results achieved with DNS coupled to a ck model and Monte-Carlo to describe radiation may serve as a reference case to compare simplified approaches such as LES for the turbulence model, or Weighted Sum of Gray Gases (WSGG) and its modern variants for modeling radiative properties combined with deterministic approaches to solve the RTE like DOM.

Further investigations with larger impact of radiation will be carried out in the future and will benefit from the derived scaling law to discriminate strong radiative impact from indirect effects on the modification of the density field.
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 221 Figure 1: Schematic representation of the turbulent structures of a heated plane jet identified by the Q-criterion.
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 2 Figure 2: Schematic representation of boundary conditions in a snapshot of turbulent eddies identified by the Q-criterion coloured by temperature.
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 3 Figure 3: Cross-section profiles of mean (a) streamwise velocity, (b) temperature, (c) density, and (d) Reynolds stresses profiles at the inlet boundary.

Figure 4 :

 4 Figure 4: Radiative power results comparison between the coarse and DNS meshes for the radiative computations. (a) Downstream evolution of the radiative power and (b) Cross-section profiles of radiative power at x = 10δ
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 5 Figure 5: Comparison of the present isothermal plane jet results with the experimental work of Thomas and Chu [72]: downstream evolution of (a) spread rate and (b) velocity decay. Additionally, fitted lines for y 1/2 and ∆U 0 ∆{Uc} 2
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 6 Figure 6: Self-similar profiles of (a) streamwise and (b) cross-stream velocities of the isothermal plane jet at x = 10δ.
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 7 Figure 7: Cross-section profiles of streamwise velocity at several distances for the isothermal jet.

  , while Figs. 9b to 9e show the results of each term in the turbulent kinetic energy equation compared with experimental data of Terashima et al. [79] and numerical results of Stanley et al. [11]. The profiles are obtained by averaging the scaled simulation fields in the range 9δ < x < 10δ. The pressure-dilatation term (Π * )

Figure 8 :

 8 Figure 8: Self-similar Reynolds stresses profiles of the isothermal plane jet in the (a) x direction, (b) z direction, (c) y direction; and (d) shear stress at x = 10δ.
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 9 Figure 9: (a) Budget of dimensionless turbulent kinetic energy of the isothermal plane in the developed region. Components of the turbulent kinetic energy budget: (b) production, (c) turbulent diffusion, (d) advection and (e) dissipation compared with experimental data of Terashima et al. [79] and numerical results of Stanley et al. [11].

Figure 10 :

 10 Figure 10: One-dimensional autospectra along the homogeneous spanwise direction of the centerline longitudinal velocity fluctuations at x = 10δ adimensionalized by the streamwise velocity fluctuations {u u } at the jet centerline and the jet half width y 1/2 for the present work (dashed black line). Results from Stanley et al. [11] (solid blue line). Bottom horizontal axis: wavenumbers scaled by the length of large turbulent motions. Top horizontal axis: wavenumbers scaled by the characteristic length of the smallest eddies.
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 11 Figure 11 describes key features of the downstream evolution of mean temperature and compares them with numerical results of Stanley et al.[START_REF] Stanley | A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[END_REF] who analyzed the evolution of a passive scalar field using a unity Schmidt number, and with experimental results of a heated plane jet of Browne et al.[START_REF] Browne | Interaction region of a two-dimensional turbulent plane jet in still air[END_REF] who set an initial excess temperature of ∆T 0 = T 1 -T 2 = 25 K. Similar to the jet half-width based on the mean streamwise velocity y 1/2 , the half-width based on temperature y 1/2,T is the distance from the center of the jet where the corrected temperature {T e } = {T }-T 2
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 11 Figure 11: Downstream evolution of mean temperature field: (a) jet spread based on temperature and (b) temperature decay along the jet centerline.

  compares the downstream evolution of the temperature fluctuations along the jet centerline with experimental results of Browne et al. [80] and the growth of the centerline scalar fluctuations of Stanley et al. [11]. Results from Browne et al. [80] have a faster initial developing and higher fluctuations intensity, this may explain the results of the temperature decay presented in Fig. 11b. The current results of temperature fluctuations have the same tendency as previous data, which is a strong growth of the fluctuations at the end of the initial developing zone followed by a slow decay downstream.
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 12 Figure 12: (a) Dimensionless Favre averaged temperature profiles of the heated plane jet without including radiation at x = 10δ compared with experimental results of Davies et al. [21], Jenkins and Goldschmidt [20], and Antonia et al. [22]. (b) Downstream evolution of temperature fluctuations at the jet centerline compared with experimental data of Browne et al. [80] and numerical results of Stanley et al. [11].
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 13 Figure 13: Evolution of momentum flow rate per unit span along x direction.

Figure 14 :

 14 Figure 14: Centerline velocity decay against (a) x/δ and (b) x/r .
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 15 Figure 15: Comparisons between the radiative (R) and the non-radiative (NR) cases of (a) the cross-section streamwise velocity profiles at x = 10δ and (b) the downstream velocity decay along the jet centerline scaled by r .
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 16 Figure 16: Comparisons of the dimensionless Reynolds stresses profiles at x = 10δ in the (a) streamwise, (b) cross-stream and (c) spanwise directions, and (d) Reynolds shear stress profiles between the radiative (R) and the non-radiative (NR) cases.
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 17 Figure 17: (a) Instantaneous radiative power field at z = 0. (b) Mean exchanged radiative power field, a solid black line delimits the emission dominated region from the absorption dominated region.

4. 3 .

 3 Radiation effects on temperature using classical adimensionalization Mean temperature fields are slightly modified by radiation as shown in Figs. 18a and 18b. Radiation enhances the energy transport specially in the entrance zone at which large temperature gradients are present. Then, radiation slightly shortens the temperature potential core and smooths the gradients of mean temperature. Comparing the temperature rms adimensionalized by the local Favre averaged temperature shown in Figs. 18c with Fig. 18d, it can be seen that the fields are similar. The maximum difference in temperature fluctuations is approximately 10%.

  (a) Favre averaged temperature of the heated jet including radiation. (b) Favre averaged temperature of the heated jet without radiation. (c) Favre averaged temperature fluctuations of the heated jet including radiation. (d) Favre averaged temperature fluctuations of the heated jet without radiation.

Figure 18 :

 18 Figure 18: Comparison of averaged temperature fields and its fluctuations between the radiative (a,c) and the non-radiative (b,d) heated plane jet.

  and it is compensated by mean flow advection. Mean flow advection and turbulent convective heat flux have opposite effects. However, because turbulence has not yet penetrated in the jet centerline in the developing zone, turbulent convective heat flux has null effects in the jet core.

Figure 19 :

 19 Figure 19: Cross-section profiles of the enthalpy budget main terms at x = δ for (a) the non-radiative and (b) the radiative jets.

Figure 20

 20 Figure 20 shows an analysis of the enthalpy balances in the developed region (x=10δ). Again, all terms of the balances have been adimensionalized by the factor y 1/2 / (∆{U c }C p ∆{T c } ρ ). It can be seen that the mean flow advection and the turbulent convective heat flux term strongly dominate the enthalpy balance in the studied case.The radiation term in the balance of Eq. 26 has a negligible contribution at the developed zone but it is significant in the developing zone. This situation is produced due to the lower temperature gradients involved in the developed zone and the increased turbulent fluctuations in the developed zone which enhance the turbulent convective heat flux.

Figure 20 :

 20 Figure 20: Cross-section profiles of the enthalpy budget main terms at x = 10δ for (a) the non-radiative and (b) the radiative jets.

( a )

 a Downstream temperature decay along the jet centerline. (b) Downstream jet spread based on temperature. (c) Cross-section profile of mean excess temperature adimensionalized by the mean excess centerline temperature at x = 10δ .

Figure 21 :0 ∆{Tc} 2 =

 212 Figure 21: Comparison of mean temperature-related quantities between the radiative (R) and the non-radiative (NR) jets. Fitted lines ∆T 0 ∆{Tc} 2

Figure

  Figure22ashows the root-mean-square of temperature fluctuations along the jet centerline adimensionalized

  (a) Downstream evolution of dimensionless temperature fluctuations along the jet centerline. (b) Cross-section profile of dimensionless temperature fluctuations at x = 10δ.

Figure 22 :

 22 Figure 22: Comparison of temperature fluctuations-related quantities between the radiative and the non-radiative plane jet.

( a )

 a Scaled downstream temperature decay along the jet centerline. (b) Cross-section profile of mean excess temperature adimensionalized by the mean excess centerline temperature at x = 9r ,T .

Figure 23 :∆{Tc} 2 =

 232 Figure 23: Comparison of mean temperature-related quantities between the radiative (R) and the non-radiative (NR) jets scaled using r ,T . Fitted lines ∆T 0 ∆{Tc} 2

Table 2 :

 2 Comparison of decay and spread of temperature fitted coefficients for the radiative and non-radiative jets using scaling based on the convective heat flux conservation. cross-section temperature fluctuation profiles for the radiative and non-radiative jets at the same x = 9r ,T is presented in Fig.24b.

( a )

 a Downstream evolution of dimensionless temperature fluctuations along the jet centerline. (b) Cross-section profile of dimensionless temperature fluctuations at x = 9r ,T .

Figure 24 :

 24 Figure 24: Comparison of temperature fluctuations-related quantities between the radiative (R) and the non-radiative (NR) plane jets scaled using r ,T .

Table 1 :

 1 Comparison of the jet growth rate and the centerline velocity decay rate at the self-similar region between the current results and some experimental and numerical reference values.

		K 1,u	K 2,u	C 1,u	C 2,u
	Jenkins & Goldschmidt [20]	0.088	-4.5	0.160	4.0
	Gutmark & Wygnanski [7]	0.100	-2.00	0.189	-4.72
	Goldschmidt & Young [73]	0.0875	-8.75	0.150	-1.25
	Thomas & Chu [72]	0.110	0.14	0.220	-1.19
	Stanley et al. [11]	0.092	2.63	0.201	1.23
	This work	0.088	0.721	0.146	1.181
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which cross-section profiles at x = 1δ of terms in Eqs. 26 are adimensionalized by the factor y 1/2 / (∆{U c }C p ∆{T c } ρ ).

In the developing zone, the transport of enthalpy occurs around the jet edge for the non-radiative jet (Fig. 19a);