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a b s t r a c t 

Detailed numerical simulations of detailed combustion systems require substantial computational re- 

sources, which limit their use for optimization and uncertainty quantification studies. Starting from a 

limited number of CFD simulations, reduced-order models can be derived using a few detailed function 

evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is consid- 

ered to identify accurate low-order models. PCA is used to identify and separate invariants of the system, 

the PCA modes, from the coefficients that are instead related to the characteristic operating conditions. 

Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that 

allows performing parameter exploration with reduced computational cost. Variations of the classical PCA 

approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on 

1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate 

models have been developed. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

In many engineering applications, complex physical systems can

only be described by high-fidelity expensive simulations. Due to

the non-linearity of these problems, changing the operating condi-

tions, namely the model’s input parameters, can drastically change

the state of the considered system. Complete knowledge about the

investigated system’s behavior for a full range of operating condi-

tions can therefore only be achieved by running these expensive

simulations several times with different inputs, until enough ob-

servations of the system’s state are obtained. 

In this study, we focus on combustion systems that fall in this

category as they are characterized by very complex physical in-

teractions, between chemistry, fluid-dynamics and heat transfer

processes. Our objective is to develop advanced Surrogate Models

(SMs) that can accurately represent the behavior of complex re-

acting systems in a wide range of conditions, without the need for

expensive Computational Fluid Dynamics (CFD) simulations. This is

particularly attractive for the development of digital counterparts
∗ Corresponding author. 
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f real systems, with application in monitoring, diagnostics and

rognostics ( Schleich et al., 2017; Uhlemann et al., 2017 ). To this

urpose, we derive techniques from the Machine Learning commu-

ity. 

In our approach a specific computationally-expensive CFD sim-

lation or computer code, referred to as Full-Order Model (FOM)

 Bizon and Continillo, 2012; Bizon et al., 2012 ), is treated as a black

ox that generates a certain output y (e.g. the temperature field)

iven a set of input parameters x (e.g. the equivalence ratio) and

ndicated by F(·) : 
 = F(x ) . (1)

he evaluation of the function F(·) usually requires many hours of

omputational time. After enough observations of the FOM’s out-

ut are available, y (x i ) ∀ i = 1 , . . . , M, a SM can be trained and

he output y ∗ for a particular set of unexplored inputs x ∗ can be

redicted without the need to evaluate F(x ∗) . The function F(·) is
herefore approximated by a new function M (·) whose evaluation

s very cheap compared to F(·) : 
 

∗ = F(x 

∗) ≈ M (x 

∗) . (2)

SMs are mathematical models based on available data that try

o approximate the underlying hidden relationship between in-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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S

ut and output. A very simple example of a SM is a linear re-

ression of available data. SMs are useful when this relationship

s either not known or comes in the form of a computation-

lly expensive computer code. This is the case of a CFD simula-

ion. SMs are constructed or trained from a relatively small set

f training observations of the models output, which correspond

o a set of training locations or points in the model parameter

pace. Once trained, SMs allow for a fast evaluation of the sys-

em’s state over a wide range of their input parameters. There-

ore, they are very appealing in the context of optimization stud-

es as well as for Uncertainty Quantification (UQ) ( Lin, 2017 ) and

lobal optimization problems ( Müller et al., 2013; Regis and Shoe-

aker, 2005 ). In Fürst et al. (2018) , SMs are used to optimize

he performance of chemical kinetics with respect to MILD com-

ustion. In Khuwaileh and Turinsky (2017) , SMs are employed in

 Bayesian approach to calibrate various neutronics and thermal-

ydraulics parameters. SMs are also used in the AlgoRithms for

lobal Optimization of coNstrAined grey-box compUTational prob-

ems (ARGONAUT) framework ( Beykal et al., 2018a ), which was also

tilised in Beykal et al. (2018b) for the optimization of the oper-

tion of an oilfield using water-flooding. Ideally, the trained SMs

hould preserve the physics of the investigated phenomena, and

e developed from a limited number of expensive function evalua-

ions, i.e. CFD simulations. Examples of SMs are Radial Basis Func-

ions and Polynomial Chaos Expansion ( Crestaux et al., 2009 ). Ex-

mples of SMs used in combustion applications can be found in

ancien et al. (2016) . 

SMs are generally constructed directly on the analyzed system’s

utput, i.e. directly on the variables of interest like the velocity

nd temperature fields. For each individual output variable a SM

s trained and a response surface is found, indicating the relation-

hip between the variable and the input parameters. If the number

f variables of interest is high, many SMs need to be trained. Be-

ides, any correlation between these variables of interest might be

ost in the process of training individual SMs. Reducing the num-

er of SMs to train is possible if the original set of variables can be

epresented by a new set of fewer scalars. This corresponds to the

dea that the original variables are actually realization of unknown

atent variables ( Bishop, 2013 ). 

Principal Component Analysis (PCA) ( Jolliffe, 2002 ) offer the po-

ential of preserving the physics of the system while reducing the

ize of the problem. PCA is a statistical technique used to find a

et of orthogonal low-dimensional basis functions, called Principal

omponents (PCs), to represent an ensemble of high-dimensional

ata. PCA finds a new, smaller set of uncorrelated variables, often

eferred to as PCA scores , which is representative of the original

ariables of interest. PCA is also used for data interpretation, usu-

lly combined with rotation methods ( Bellemans et al., 2018 ). Once

hese PCA scores are found, a SM can be built for each one of them.

hey are indicated as Reduced-Order (Surrogate) Models (ROMs). 

SMs usually include interpolation or regression techniques

hich depend on the choice of some particular design functions.

hese design functions are defined by a set of so-called hyper-

arameters (or also length-scales) whose values affect the SM’s

redictive abilities. Very often, a good estimation for the value

f these hyper-parameters comes via the solution of constrained

ptimization problems that involve local optima. As shown in

iao et al. (2010) , ROMs are less sensitive to the particular

esign functions chosen for their construction, which is desir-

ble. ROMs also have a reduced number of variables for which

 SM needs to be trained. This means that fewer optimiza-

ion problems are solved in order to estimate feasible values

or the hyper-parameters of the design functions. In addition, in

iao et al. (2010) it is also shown how ROMs usually scale better

han classic SMs for parallel computing. These features are what
akes PCA-based ROMs very attractive candidates for the develop-

ent of physics-preserving SMs. 

Combustion problems are well-known for being characterized

y a set of strongly inter-dependent variables. In fact, PCA has

een employed in Isaac et al. (2014, 2015) to re-parameterize the

hermo-chemical state of a reacting system by a small number

f progress variables, drastically reducing the number of transport

quations to solve, and in the process showing the intrinsic lower-

imensionality of these systems, which will be exploited in the

resent work. PCA has also been employed in the context of turbu-

ent combustion in Mirgolbabaei et al. (2014) , for the a-posteriori

alidation of a turbulent combustion model based on the solution

f transport equations for the principal components ( Coussement

t al., 2016 ; Echekki and Mirgolbabaei, 2015 ) and for on-line pro-

ess monitoring and fault diagnostics ( Yu, 2012 ). 

The objective is to develop advanced SMs, trained on a re-

uced number of full simulations, able to predict the full sys-

em state in unexplored conditions, without running a new sim-

lation. To this end, an approach based on the combination of

CA and Kriging was chosen. PCA is used to extract the invari-

nt (w.r.t. the input parameters) physics-related information of

n investigated combustion system and identify the system’s co-

fficients which instead depend on the operating conditions, the

CA scores. Kriging interpolation is then used to find a response

urface for these scores. With this strategy it was possible to

uild a ROM for parameter exploration with reduced computa-

ional cost. Kriging was chosen over other regression techniques

ot only because it provides an estimate of the prediction uncer-

ainty, but also because it allows the user to add prior knowl-

dge on the model by selecting different kernel functions. The

se of Kriging for CFD data has also produced encouraging re-

ults. In fact, Kriging was employed for the shape optimization of

 car engine intake port in Xiao et al. (2012) and for aerodynam-

cal shape optimization problems as shown in Xiao et al. (2014,

013) . However, the application was limited to non-reacting flow

roblems. 

In the present work, the Kriging-PCA approach is extended to

ombustion applications, to develop a ROM that can faithfully re-

roduce the temperature and chemical species fields in a reacting

ow simulation. The methodology is demonstrated on a methane

aminar premixed flame, increasing the complexity of the problem

radually, in terms of number of input parameters (equivalence ra-

io, inlet temperature and fuel composition), and problem dimen-

ionality (from one to two-dimensional flames). The objective of

he present work is to demonstrate the applicability of the pro-

osed methodology for the development of reduced-order mod-

ls of multi-scale and multi-physics computer models. In this per-

pective, this work paves the way for the development of digital

wins ( Haag and Anderl, 2018 ) of realistic engineering systems. The

ethodology outlined in the present work shows the advantages

f the PCA+Kriging formulation in terms of predictive capabilities

nd computational efficiency. Indeed, these features are necessary

or the development of predictive models of engineering systems,

hich can be employed for visualization, real-time control, opti-

ization and troubleshooting. 

From the application perspective, this paper presents the first

pplication of the Kriging-PCA methodology to combustion prob-

ems. From the methodology point of view, this work combines, for

he first time, Kriging with a local and a constrained formulation

f PCA. 

This paper is organized as follows. Section 2 will cover the em-

loyed methodology in details, while in Section 3 , PCA and its

ariations, Kriging and a sampling strategy referred to as Adap-

ive Sampling are shown. Results are presented and discussed in

ection 4 . In Section 5 conclusions are drawn. 
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Fig. 1. Illustrative example of PCA applied to combustion data: one particular tem- 

perature spatial field is represented by a set of coordinates (the coefficients a i , 

called PCA scores) on the basis functions or Principal Components (PCs) found by 

PCA. 
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2. Methodology 

The methodology used in the present work is sketched in Fig. 1 .

Consider that a certain high-fidelity simulation model or Full Order

Model (FOM) y (x ) = F (x ) ∈ R 

N is available, such as a CFD combus-

tion solver. For one value of the input parameter(s) x , the solver

returns a vector y ( j ) of observations of all the involved physical

variables at every grid point: 

y ( j) = [ T (r 1 , x j ) , . . . , T (r L , x j ) , Y CH 4 (r 1 , x j ) , . . . , Y CH 4 (r L , x j ) , . . . ] 
T , 

(3)

where L is the total number of grid points, r i is the i th spatial loca-

tion and x j is the j th point in the input parameter space. This FOM

is solved for a limited amount M < N of training points in the in-

put parameter space X = { x (1) , x (2) , . . . , x (M) } ∈ D, where D is the

region spanned by the training points. Thus, only M simulations

are available, one for each of those points: Y = { y (1) , y (2) , . . . , y (M) } .
The full exploration of the region D is possible only by running

the expensive CFD-combustion solver F ( · ) for every x ∈ D. From

the data-set Y of available simulations, PCA is able to extract a set

of basis functions � = { φ1 , φ2 , . . . , φq } , with q < N usually, called

PCA modes that are invariant with respect to the input parameters

x . A set of coefficients a (x ) = { a 1 (x ) , a 2 (x ) , . . . , a q (x ) } , called PCA

scores and depending on x , is consequently found. An illustrative

example is reported in Fig. 2 , where a temperature spatial field is

represented as a set of coefficients that weight a set of basis func-

tions, i.e. the PCs. These coefficients are less in number than the

original number of variables as q < N and can be interpolated in

order to acquire knowledge about the system’s state for any unex-

plored point x ∗ ∈ D. 

One advantage of this approach is that a much smaller number

of variables, namely q PCA scores, are interpolated instead of N .

Another advantage is that the N original variables might be corre-

lated. The application of PCA for the detection of latent variables,

the PCA scores, preserves this correlation, which might be lost if

each original variable is interpolated independently. One additional

remark is that considering, for example, T ( r i , x j ) and T ( r j , x j ) as two

separate variables (rather than using the spatial locations r i as ad-

ditional input parameters) also reduces the computational costs, as

we shall see. 
. Theory 

.1. PCA 

The key idea of Principal Component Analysis (PCA) is to reduce

compress) a large number of interdependent variables (i.e. inde-

endent up to the second-order statistical moments) to a smaller

umber of uncorrelated variables while retaining as much of the

riginal data variance as possible ( Bizon et al., 2010; Coussement

t al., 2016; Parente and Sutherland, 2013; Parente et al., 2009;

utherland and Parente, 2009 ). 

For a data-set Y ( N × M ), containing M observations of N origi-

al variables, namely temperature and species mass fractions mea-

ured at each spatial location of a considered geometrical domain,

s described in Section 2 , PCA provides an approximation of the

riginal data-set using only q < N linear correlations between the N

ariables. The quantity q is referred to as approximation order. In

eneral, q ≤ min ( N, M ). Thus, the vector y ∈ R 

N of observed tem-

erature and species mass fractions can be encoded into a lower

imensional vector, a ∈ R 

q . 

Data are usually centered and scaled before PCA is carried out.

ere we report six different choices for the scaling of the data: 

1. Auto-scaling (STD), each variable is normalized by its standard

deviation; 

2. RANGE, each variable is normalized by its range; 

3. PARETO, each variable is scaled by the square root of its stan-

dard deviation; 

4. VAST, each variable is scaled by the standard deviation and co-

efficient of variation; 

5. LEVEL, each variable is normalized by the mean of the data; 

6. MAX, each variable is scaled by its maximum value. 

The centered and scaled data read: 

 0 = D 

−1 (Y − Ȳ ) , (4)

here D indicates a diagonal matrix of chosen scaling factors,

hile Ȳ is a matrix containing the mean of each of the N vari-
bles, namely [ T ( r 1 , x j ), . . . , T ( r L , x j ), Y CH 4 

(r 1 , x j ) , . . . , Y CH 4 
(r L , x j ) ,

 . . ] over the M observations. 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

d 1 0 0 · · · 0 

0 d 2 0 · · · 0 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 

0 0 0 · · · d N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

Ȳ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ȳ 1 ȳ 1 ȳ 1 · · · ȳ 1 

ȳ 2 ȳ 2 ȳ 2 · · · ȳ 2 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 

ȳ N ȳ N ȳ N · · · ȳ N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (5)

fter centering and scaling the data, the covariance matrix C is evaluated

s: 

 = 

1 

M − 1 
Y 0 Y 

T 
0 . (6)

his matrix is symmetric and its rank rank (C ) = rank (Y ) = min (N, M) .

he set of PCA directions, the Principal Components (PCs) or modes, is

ound by solving the following set of eigenproblems: C φi = λi φi ∀ i =
 , 2 , . . . , q . Each PCA mode φi has an associated eigenvalue, λi , which

epresents the variance of the original data taken into account by that

ode ( Williams, 2010 ). The PCA modes can be collected in a N × q matrix

= { φ1 , φ2 , . . . , φq } , sorted in descending order of importance. 

The number q of PCA modes that are retained is usually much

maller than the dimension N . The PCA modes with the highest

igenvalues are the ones that are kept. Once the PCA modes are

ound, the data can be encoded in a set of q scalars called PCA

cores. The PCA scores corresponding to the realization y ( x j ) are

iven by the projection: 

 i (x j ) = φT 
i y (x j ) (7)

ith ∀ i = 1 , . . . , q and ∀ j = 1 , . . . , M. The PCA reduction can be ex-
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Fig. 2. PCA finds the set of Principal Directions � = ( φ1 , φ2 , . . . , φq ) and encodes each observation y (i ) ∈ R N into a small set of scalars a (i ) 
1 

, . . . , a (i ) 
q for q < N . A Kriging 

response surface is then found for these scalars. 

Fig. 3. ( left ) A non-linear hyper-surface is approximated by only one hyper-plane in the data space. ( right ) The same hyper-surface is approximated by a set of local hyper- 

planes. The application of PCA can lead to better performances if local regions in the data space are detected and PCA is applied locally and independently in each region. 
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o  
ressed in matrix form as: 

 = Ȳ + DY 0 ≈ Ȳ + D �A = 

˜ Y , (8)

here Y is the data matrix as described in Section 2 , A =
 a (x 1 ) , a (x 2 ) , . . . , a (x M 

) } with a ∈ R 

q is the matrix where all the

CA scores for different values of the input parameters are stored

nd 

˜ Y is the reconstruction of the data matrix Y after the compres-

ion achieved by PCA. 

.2. Local PCA 

PCA is a linear combination of basis functions. A large number

f PCs may be required when applying PCA on highly non-linear

ystems ( Parente et al., 2009; Sutherland and Parente, 2009 ). Lo-

al PCA (LPCA) constructs local models, each pertaining to a differ-

nt disjoint region of the data space ( Kambhatla and Leen, 1997 ).

ithin each region, the model complexity is limited, and thus it

s possible to construct linear models using PCA ( Kambhatla and

een, 1997; Sahyoun and Djouadi, 2013 ). Fig. 3 provides a gen-

ral representation for a set of 3-dimensional observations form-

ng a curved surface. Each axis shows the co-domain for each of

he three scalar components that identify the 3-dimensional obser-

ations. The figure shows how a local representation of the curved

urface can provide a better representation with respect to a single

yper-plane. 

The partition in local clusters, where PCA is carried out, is ac-

omplished using a Vector Quantization (VQ) algorithm that min-

mizes the reconstruction error. The reconstruction error is the

quared Euclidean distance from one point or observation in the

ata-space to the linear manifold that is found by applying PCA in

he local region. Mathematically, it can be expressed in a general

ashion as: 

(z , r (i ) ) = 

(
z − r (i ) 

)T 
�(i ) T �(i ) 

(
z − r (i ) 

)
, (9) 

here z is the object to be assigned to the cluster R 

(i ) , repre-

ented by the reference vector r ( i ) , defined as the centroid of the

 th region: r (i ) = E[ z ∈ R 

(i ) ] . The cluster i is defined as: 

 

(i ) = { z | d (z , r (i ) ) ≤ d (z , r ( j) ) ; ∀ j � = i } . (10) 

n this work, the objects to be assigned to different clusters are
hosen to be the vectors of observations of one single variable,
amely the rows of the data-matrix: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

T ( r 1 , x 1 ) T ( r 1 , x 2 ) T ( r 1 , x 3 ) · · · T ( r 1 , x M ) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

T ( r L , x 1 ) T ( r L , x 2 ) T ( r L , x 3 ) · · · T ( r L , x M ) 

Y CH 4 
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⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (11) 

.3. Constrained PCA 

The truncation of the PCA basis may inevitably involve the vio-

ation of important physical laws such as the conservation of mass

hen the observations y ( x j ) ∀ j = 1 , . . . , M are reconstructed from

he PCA scores. To avoid that, the PCA scores can be evaluated by

olving a constrained minimization problem, where the functional

o be minimized is the PCA reconstruction error ( Xiao et al., 2010 ).

his approach is usually referred to as Constrained PCA (CPCA). The

onstraints are the physical laws which are intended not to be vio-

ated. This minimization problem can be mathematically expressed

s: 

inimize : J 

(
γ (i ) 

)
= 

1 

2 

‖ y (i ) −
(
ȳ + �k γ

(i ) 
)‖ 

2 (12) 

s.t. : l j 
(
ȳ + �k γ

(i ) 
)

= l j 
(
y (i ) 

)
= 0 ∀ j = 1 , . . . , N c 

here y ( i ) represent the vector y ( x i ) ∀ i = 1 , . . . , M, also introduced

n Sections 2, 3.1 and 3.2 , γ are the CPCA scores (they have been

ndicated with a different symbol to differentiate them from the

CA scores), l j ( · ) is the function related to the j th constraint and

 c is the number of constraints, which can also be inequality con-

traints. Minimizing the functional J (·) when no constraints are

nforced leads to the PCA scores a . 

It is preferable that the solution of this system be not too com-

utationally expensive. In Xiao et al. (2010) , the constrained opti-

ization problem has a straightforward solution due to the linear-

ty of the imposed constraints, which allows for a fast evaluation

f the CPCA coefficients. If more complex constraints are imposed,
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the solution of the constrained optimization problem for the eval-

uation of the CPCA scores might involve the reconstruction of the

considered physical fields (via Eq. (8) ) and the use of more expen-

sive optimization algorithms, making the evaluation of the afore-

mentioned coefficients unfeasible. 

3.4. Kriging 

Accurate prediction of the PCA scores at unexplored points x ∗ ∈
D in the input parameter space (e.g. inlet temperature, equiva-

lence ratio, etc.) translate into accurate estimation of the original

variables as the mapping from a ( x ∗) to y ( x ∗) is known and ex-

plained in Section 3.1 . The data-set A = { a (x 1 ) , a (x 2 ) , . . . , a (x M 

) }
of PCA scores evaluated at different training points, with

a ( x ) = [ a 1 (x ) , a 2 (x ) , . . . , a q (x )] , is used to build a response surface

in the region D spanned by X . 

Kriging is an interpolation method in which every realization

a ( x ), where a is one PCA score indicated with no subscript for

brevity, is expressed as a combination of a trend function and a

residual ( Constantine et al., 2014 ): 

a (x ) = μ(x ) + z(x ) = 

p ∑ 

i =0 

βi f i (x ) + z(x ) = f T (x ) β + z(x ) (13)

The trend function μ( x ) is a low-order polynomial regression and

provides a global model in the input space. The term z ( x ) cre-

ates a localized deviation weighting the points in the training set

that are closer to the target point x . The trend function μ( x ) is

expressed as a weighted linear combination of p + 1 polynomi-

als f (x ) = [ f 0 (x ) , . . . , f p (x )] T with the weights β = [ β0 , . . . , βp ] 
T 

determined by generalized least squares (GLS). The subscript p

also indicates the degree of the polynomial. The residuals z ( x ) are

modeled by a Gaussian process with a kernel or correlation func-

tion that depends on a set of hyper-parameters θ to be evaluated

by Maximum Likelihood Estimation (MLE). Many possible correla-

tion functions are available: linear, quadratic, exponential, Gaus-

sian, Matern 3/2, Matern 5/2, just to name a few ( Constantine

et al., 2014; Lophaven et al., 2002 ). A detailed discussion about

these functions can be found in Seeger (2004) . One of the main

differences among these kernels is their smoothness. 

In the definition of both the trend function and the residual, it

is up to the designer to choose the polynomials f ( x ) and the corre-

lation model or kernel. In this way, the designer has the possibility

to add prior knowledge into the problem and subsequently let the

data speak for themselves by estimating the hyper-parameters θ. 

3.5. Adaptive sampling 

The sampling strategy employed to explore the region D of

the input space can affect the construction of a PCA+Kriging-based

ROM. The construction of high-performing ROMs with a very lim-

ited number of samples is possible if an effective sampling strat-

egy is developed. As a PCA-based model strongly depends on its

modal basis, a first step towards the improvement of this kind of

model consists in improving the basis ( Guenot et al., 2013 ). Given

a set of (centered-scaled) observations Y = { y (1) , . . . , y (M) } and its

corresponding PCA-based model, we want to choose a new sample

point, x new 

, that will meet the trade-off between the modal basis

improvement and the parametric space exploration. Firstly, the in-

fluence of each observation on the modal basis is computed. The

influence of the j th observation on the i th mode is defined by: 

Inflφi 
(x j ) = 

1 

| φT 
i φ

− j 
i | − 1 , (14)

where φ− j 
i 

is the i th basis function evaluated from a data set: 

Y = { y (1) , . . . , y ( j−1) , 0 , y ( j+1) , . . . , y (M) } . (15)
he influence of the observation y ( x j ) on the modal basis is defined

y: 

nflBasis (x j ) = 

K ∑ 

i =1 

s i Inflφi 
(x j ) , (16)

here s i is the singular value of the i th mode. The relative influ-

nce of the j th observation on the modal basis is given by: 

nfl
Rel 
Basis (x j ) = 

InflBasis (x j ) ∑ M 

l=1 InflBasis (x l ) 
. (17)

fter the computation of this equation for each x j , the parametric

pace is heavily sampled via a LHS technique and the resulting set

f samples is denoted by Q = { ν1 , ..., νb } . The size b of this set of

amples can be chosen as 100 times the parametric space dimen-

ion. Then the potential of enrichment PotBasis ( νi ) of each candi-

ate sample is computed with respect to the trade-off between the

nput space exploration and the improvement of the modal basis

s: 

otBasis ( νi ) = d 
(
νi , x j 

)
Infl

Rel 
Basis (x j ) , (18)

here j = argmin k d ( νi , x k ) with d ( · , · ) denoting the Euclidean

istance. Finally, the new point will be selected to fulfill the fol-

owing condition: 

 new 

= argmax ν∈ Q PotBasis ( ν) . (19)

 new sample is chosen as far from the other samples as possible,

ut at the same time as close to the samples with the highest rel-

tive influence as possible. This sampling methodology is named

daptive Sampling (AS). 

. Results 

.1. 1D flame with one input parameter 

The Kriging-PCA approach was tested on a 1D methane/air lam-

nar flame. OpenSMOKE++ ( Cuoci et al., 2013a; 2013b ) was used

o produce a data-set of 21 observations { y (1) , y (2) , . . . , y ( M ) } of

ethane/air flames with GRI 3.0 mechanism for different values

f the equivalence ratio ψ , in the range 0.5–2, with a step of 0.05.

 subset of size M = 21 of the total 31 observations was used as

raining data-set to build a ROM and referred to as training obser-

ations or data. The corresponding values of ψ for the training ob-

ervations are named training points. The 21 training observations

ere chosen using the Adaptive Sampling technique described in

ection 3.5 . The remaining 10 observations were used as test data

o assess the accuracy of the reduced model. These 10 observations

re referred to as validation data. The objective was to predict the

alidation data with acceptable accuracy. 

In this paper, the term reconstruction is used to indicate the re-

onstruction of the training data after the compression achieved by

CA, whilst the term prediction is used when testing the predictive

apabilities of the developed ROM on the validation data. 

Each observation y ( i ) of the data-set Y = { y (1) , y (2) , . . . , y (M) }
as a vector of N = 10 , 780 variables: 53 chemical species plus

emperature and axial-velocity evaluated at 196 grid points. The

ize of the matrix Y was N × M = 10 , 780 × 21 . Because N > M , PCA

ould find at most M − 1 = 20 PCs. Alternatively said, PCA could

ncode the 10 vectors y m 

∈ R 

N contained in the data matrix Y into

 set of at most 20 scalars a m 

∈ R 

20 . The data-set was scaled ac-

ording to the auto-scaling criterion. This criterion was chosen as

ther criteria tend to prioritize some variables over the others as
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Fig. 4. (a) Starting from 4 initial samples, the relative influence of each sample on the modal basis was evaluated and a new training point was chosen (as explained in 

Section 3.5 ). Then, the relative influence of the 5 samples was evaluated again, and a 6th training point was chosen, and so on. (b) Relative influence of each observation on 

the modal basis evaluated according to Section 3.5 once that a number of 21 total training observation was reached. 

Fig. 5. (a) The spectrum of the eigenvalues associated to each PC provides a criterion for sorting the PCs in descending order as these eigenvalues can be interpreted as 

the importance of the PC they correspond to. Auto-scaling. (b) The cumulative original data variance that is captured when adding more PCs provides a criterion for the 

selection of the number of PCs to keep when using global PCA. Auto-scaling. One-parameter case. 
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hown in Parente and Sutherland (2013) . In Fig. 4 a, an online eval-

ation of the relative influence of each current training observa-

ion on the modal basis (evaluated according to Section 3.5) is re-

orted. Four samples were present at the start (iteration 0), and

he 5th training sample was chosen in the region of high values for

he equivalence ratio as the already present training observations

n that region had a higher relative influence. Once this observa-

ion was added to the training data-set, the relative influence of

ach sample was re-evaluated (iteration 1) and a 6th training ob-

ervation was chosen. Thus, the relative influence of the new set of

amples was re-evaluated (iteration 2). And so on, until the desired

umber of training samples was reached. In Fig. 4 b, the relative in-

uence of each observation on the modal basis is shown, after that

1 training observations have been chosen. Note that the relative

nfluence of each snapshot changes when new observations are in-

roduced. 

Fig. 5 a shows the eigenvalue spectrum of the PCs found by PCA.

ig. 5 b shows the cumulative original data variance that was cap-

ured when retaining more PCs. Interestingly, a few number of PCs

ere enough to recover most of this variance. As the maximum

umber of PCs that could be found was limited by the number of

raining observations, the cumulative recovered original data vari-

nce, reported in Fig. 5 b, could also be used to determine if the

umber of available training observations was enough for the ROM

evelopment. In this case, 5 PCs could recover 98.4% of the original

ata variance and 10 PCs 99.8%, thus suggesting that a number of

1 training observations could be considered sufficient. In Fig. 6 a,

he R 

2 values for the reconstruction of the training data are re-
 E  
orted for different numbers of retained PCs, q . These values, log-

cally, increased with the approximation order, q , because more of

he original data variance was accounted for by the reduced basis.

nalysis on the R 

2 values and, thus, on the reconstruction error is

 good estimate about the amount of information lost due to com-

ression, and provides a criterion for the choice of the number of

equired PCs. Fig. 6 b shows the R 

2 values for the prediction of the

alidation data by means of PCA+Kriging. These values are reported

or two PCA+Kriging models with a number of 5 PCs retained: with

 linear and with a quadratic trend function. Both models used

 Matern52 kernel. From these results, we can conclude that the

CA+Kriging model with a linear trend function performed better

n terms of predicting capabilities for the present data-set. 

In Figs. 7 a and b, the effects of the choice for the approxima-

ion order q and the choice of different trend functions and ker-

els for the Kriging interpolation are investigated. A reduction on

rediction errors could be observed when increasing the approxi-

ation order q . Differences with the data (prediction errors) were

till present due to Kriging interpolation and the fact that the data

sed for validation were not included in the data used to find the

CA modes. For the evaluation of these errors, the validation data-

et and the one predicted by the model were scaled (range-scaling)

nd their difference was evaluated and stored in a new matrix. A

ean value for each observation in this matrix was then used as

rediction error. The formula for this error is: 

r r (x i ) = 

1 

N 

N ∑ 

j=1 

y j (x i ) − ˜ y j (x i ) 

y max 
j 

− y min 
j 

, (20)
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Fig. 6. (a) R-squared values for the reconstruction of the original data by PCA, for different numbers of retained PCs. (b) R-squared values for the prediction of the original 

data with two different trend functions for Kriging. 5 PCs retained. Matern52 correlation function. One-parameter case. 

Fig. 7. Prediction errors for different numbers of retained PCs. Global PCA+Kriging. (a) Constant trend function and exponential kernel. (b) Linear trend function and Gaussian 

kernel. (c) Quadratic trend function and Matern12 kernel. (d) Linear trend function and Matern52 kernel. One-parameter case. 
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where x i is the i th prediction point, N is the number of variables,

y j ( x i ) is the true value of the j th variable for the i th prediction

point and ˜ y j (x i ) is the ROM’s prediction for the same variable, for

the same prediction point. These errors were below a value of 4%

for all observations when q > 1. Different choices of trend and cor-

relation function for the Kriging interpolation led to different re-

sults. For example, the choice of a Gaussian kernel (see Fig. 7 b) for

a PCA+Kriging model for this data-set could not reduce the pre-

diction errors further, when increasing q from 2 to 5 or 9. Indeed,

although increasing q means accounting for more of the original

data variance, it also means that more scalars have to be interpo-

lated. 

Next, the effects of performing PCA in separated clusters (lo-

cal PCA) on the quality of the reduced model was investigated.
he effects of the choice of the scaling criterion were also exam-

ned. Fig. 8 a reports the data reconstruction errors when increas-

ng the number of clusters, for different scaling criteria. Increas-

ng the number of clusters translated into better data reconstruc-

ions. The auto-scaling and the Pareto scaling criteria emerged as

he ones with the lowest reconstruction errors. The general trend

as a decreasing reconstruction error as the number of clusters

as increased. Fig. 8 b reports the local PCA reconstruction error

hen the number of retained PCs was increased (auto-scaling), for

ifferent number of clusters. It can be observed that the impact of

luster addition on the reconstruction error became less and less

ignificant as the number of clusters increased, indicating the exis-

ence of a trade-off, depending on the problem dimensionality and

on-linearity. Prediction errors also decreased when adding clus-
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Fig. 8. Local PCA reconstruction errors. (a) Reconstruction errors decreases as the number of clusters used is increased. (b) Reconstruction errors decrease as more PCs are 

retained (auto-scaling criterion). One-parameter case. 

Fig. 9. Local PCA prediction errors for q = 2 . (a) 5 clusters, auto-scaling, constant trend function. (b) 10 clusters, auto-scaling, constant trend function. One-parameter case. 

Fig. 10. Prediction of the spatial profile of temperature and HO 2 mass fraction. Comparison between PCA and LPCA (15 clusters) combined with Kriging. One-parameter case. 
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ers in the local PCA formulation. This can be observed in Figs. 9 a

nd b. Local PCA, in combination with Kriging, provided better per-

ormances, in terms of both reconstruction at the training points

nd predictions. Moreover, the gain in accuracy for the prediction

oints is a clear proof that also Kriging benefits from the local

ormulation. Fig. 10 reports the predictions of the spatial profiles

f temperature and HO 2 mass fraction by PCA+Kriging and local

CA+Kriging, showing the superior performances of local PCA over

CA. 
The clustering strategy explained in Section 3.2 was used to

roup the rows of the data matrix Y ∈ R 

N×M into clusters. The

eneral encoding process for one observation in the data matrix

 , which can be stated as y ∈ R 

N → a ∈ R 

q with q 
 N , was possi-

le via the detection of a lower-dimensional manifold spanned by

he M = 21 observations y m 

∈ R 

N ∀ m = 1 , . . . , M. The dimension of

his lower-dimensional manifold was thus M − 1 = 20 . A new ob-

ervation y ∗ not already present in the data-set was approximated

y a point on the lower-dimensional manifold even if there is no
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Fig. 11. Parity plots for the reconstruction of the CO, HO 2 , OH mass fractions and temperature. PCA: 3 PCs retained. 20 clusters for Local CPCA. Dashed line: 5% error. Dotted 

line: 10% error. One-parameter case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Reconstruction of the spatial CO mass fraction profile. Comparison between 

PCA, CPCA and LCPCA (15 clusters). One-parameter case. 
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guarantee that this new observation lay close to this manifold. The

clustering process reduced the number of variables for each clus-

ter. This means we were moving closer to a situation where the M

samples were enough for the detection of a manifold which could

accurately approximate unseen observations. 

The PCA-reconstructed mass fraction spatial profile included

negative values as shown in the parity plots ( Fig. 11 ). This is a

known issue with PCA ( Isaac et al., 2015; Parente et al., 2011 ) since

the method itself cannot guarantee that physical constraints are

verified, such as the positivity of mass fractions and the conser-

vation of mass ( 
∑ 

Y i = 1 ). An increase of the approximation order

could indirectly lead to a solution to this issue, but it is here in-

teresting to investigate if the implementation of a constrained ver-

sion of PCA (CPCA) could guarantee the non-violation of the afore-

mentioned physical laws, even at high compression. As discussed

in Section 3.3 , the CPCA implementation used in the present work

consisted in forcing each rebuilt mass fraction, on every grid point,

to be positive. 

However, one of the challenges of using CPCA in combination

with Kriging is that the chemical species fields recovered from the

interpolated CPCA scores might still violate the set of imposed con-

straints. Even if for each training point a constrained optimiza-

tion problem is solved for the evaluation of the CPCA scores, no

constraint is imposed when these coefficients are interpolated by

means of Kriging. Thus, there is no guarantee that the predicted

CPCA scores belong to the feasible region delimited by the con-

straints l j ( γ ) = 0 of (12) . CPCA in combination with local PCA

guaranteed the satisfaction of the physical constraint, since the re-

construction accuracy improved, as shown in Figs. 11 and 12 . Not

only the imposed constraint was satisfied by the LCPCA+Kriging

model’s predictions, but a very satisfactory level of accuracy was

also achieved as indicated by the parity plots in Fig. 13 , with most

of the predicted values being within the 5% or 10% error lines. The

R 

2 values for the prediction of the validation data, as the number

s  
f training samples increased, are reported in Fig. 14 . These values

ncreased as more observations were employed for the training of

he model, as expected. 

The results presented in this section showed that different

hoices for the Kriging kernels, PCA formulation (standard, local

nd constrained) affect the ROM’s predictive capabilities. 

.2. 1D flame with two input parameters 

The methodology explained in Section 2 was tested on the

ame system presented in Section 4.1 , using two input parameters.
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Fig. 13. Parity plots for the predictions of the CO, HO 2 , OH mass fractions and temperature. PCA: 3 PCs retained. 50 clusters for local PCA. Kriging: linear trend function, 

Matern52 kernel. Dashed line: 5% error. Dotted line: 10% error. One-parameter case. 

Fig. 14. Global R 2 values for the prediction of the validation data, as the number 

of training observations increases. Local PCA+Kriging with linear trend function and 

Matern12 kernel. 
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a  
 molar fraction of N 2 was introduced in the inlet stream. A to-

al of 147 observations were generated by OpenSMOKE++ in the

ange 0.5–1.5 for the equivalence ratio and 0.4–1.0 for the molar

raction of N 2 . A set of 75 observations was selected with the AS

trategy explained in Section 3.5 for the training of the SM. The

emaining observations were used as test data. Fig. 15 a reports the

igenvalue spectrum of the PCs, for different scaling criteria used.

ig. 15 b shows the cumulative original data variance that was cap-

ured when more PCs were retained in the reduced basis. This is

eported for different scaling criteria applied to the data-set. As
or the one-parameter case, most of the total data variance was

oncentrated on the first few PCs, indicating that PCA was a valid

trategy for the reduction of the problem size. Besides, considered

hat 75 training observations were used, a number of 15 PCs could

ecover over 99% of the original data variance, indicating that the

hosen number of training observations was sufficient, as the pre-

iction errors for this case will indicate. 

Fig. 16 a shows the prediction errors for 72 validation points, us-

ng PCA+Kriging with 20 PCs, a constant trend function and expo-

ential kernel. The prediction errors for a local PCA+Kriging with

0 clusters and direct Kriging (applied directly on the original vari-

bles without the use of PCA) are also reported. The prediction er-

ors for the three models are shown in Fig. 16 b, replacing the expo-

ential kernel with the Gaussian one. The results confirm that data

lustering and the kernel type have a significant impact on pre-

iction errors. Interestingly, direct Kriging provided reconstruction

rrors higher than the ones obtained combining Kriging with (lo-

al) PCA, showing the advantage associated to reducing the num-

er of scalars to regress. In Fig. 17 , the parity plots for the pre-

icted values of temperature and CH 4 , OH, CO mass fractions are

hown. The number of retained PCs was 20, corresponding to a re-

overed original data variance of 99.78% with the auto-scaling cri-

erion, while the number of clusters was 50. The figure shows that

he PCA+Kriging methodology performed efficiently, with clear im-

rovements when the data are clustered. The sum of mass frac-

ions of all chemical species added up to 1 with a maximum error

f 4 × 10 −3 . 

The use of CPCA was also investigated for this case. In Fig. 18 a,

he rebuilt spatial profiles for CO by means of PCA, CPCA and

CPCA are reported and compared. While the reconstructed CO

patial profile showed negative values when rebuilt by PCA, CPCA

rovided a non-negative spatial profile. Fig. 18 b shows that such

 constraint was not violated even after Kriging interpolation,
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Fig. 15. (a) The spectrum of the eigenvalues associated to each PC provides a criterion for sorting the PCs in descending order as these eigenvalues can be interpreted as 

the importance of the PC they correspond to. (b) The cumulative original data variance that is captured when adding more PCs provides a criterion for the selection of the 

number of PCs when using global PCA. Two-parameters case. 

Fig. 16. Prediction errors reported for 3 different SMs. Auto-scaling. Kriging: (a) constant trend function and exponential kernel; (b) constant trend function and Gaussian 

kernel. Two-parameters case. 

Fig. 17. Parity plots for the prediction of temperature and of the CH 4 , OH, CO mass fractions. PCA: 20 PCs retained. Local PCA: 50 clusters. Kriging: linear trend function, 

Gaussian kernel. Dashed line: 5% error. Dotted line: 10% error. Two-parameter case. 
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Fig. 18. (a) Reconstruction of the spatial CO mass fraction profile. Comparison between PCA, CPCA and LCPCA (50 clusters). (b) Prediction of the spatial H2 mass fraction 

profile. Comparison between PCA, CPCA and LCPCA (50 clusters) combined with Kriging. Two-parameter case. 

Fig. 19. Parity plots for the predictions of temperature and the OH, CO, CH 4 mass fractions, using 46 training observations. PCA: 30 PCs retained. Local PCA: 90 clusters. 

Kriging: linear trend function, Gaussian kernel. Dashed line: 5% error. Dotted line: 10% error. Two-parameter case with less training observations. 
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eaning that the interpolated values for the CPCA scores remained

ithin the feasible region delimited by the constraints indicated

n (12) . Finally, the spatial profiles provided by the CPCA+Kriging

howed significant deviations in the post-reaction zone, while the

econstruction accuracy was significnalty improved using the local

CA formulation. 

As explained, most of the data variance was recovered by a

mall number of PCs, i.e. 15, in comparison to the number of avail-

ble training samples, i.e. 75. In order to further test the proposed

ethodology, and to be sure that the observed accuracy was not to

ue to the high number of samples used for training, another ROM

as developed with a smaller number of training observations, i.e.

6. The parity plots for the prediction of temperature and OH, CO,

H 4 mass fractions are shown in Fig. 19 . It is clear that even reduc-

ng the number of training points, the accuracy of predictions was

ery satisfactory, indicating that the analysis based on the cumula-

t  
ive data variance recovered by the PCs is an efficient indicator for

he amount of information fed to the model by the training sam-

les. 

The promising results obtained from the application of the pro-

osed methodology for the one-parameter case, were confirmed

ith two input parameters. The results confirmed that the com-

ination of PCA, and its variants, with Kriging is a valid choice for

he development of reduced-order surrogate models. In the next

ection, the complexity of the case is increased by adding a third

nput parameter. 

.3. 1D flame with three input parameters 

After validating the predictive capabilities of a ROM developed

n the combination of PCA and Kriging on systems with one or

wo input parameters, one more parameter was added to the sys-

em, namely the inlet stream temperature in the range 298–798 K.
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Fig. 20. (a) The spectrum of the eigenvalues associated to each PC provides a criterion for sorting the PCs in descending order as these eigenvalues can be interpreted as the 

importance of the PC they correspond to. Reported for different scaling criteria. (b) The cumulative original data variance that is captured when adding more PCs provides a 

criterion for the selection of the number of PCs when using global PCA. Reported for different scaling criteria. Three-parameters case. 

Fig. 21. Parity plots for the prediction of temperature and OH, CO, NO mass fractions. PCA: 48 PCs. LPCA: 20 clusters, 48 PCs. Kriging: quadratic trend function, Matern52 

kernel. Dashed line: 5% error. Dotted line: 10% error. Three-parameter case. 
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Two sets of observations were again generated by OpenSMOKE++.

A set of 180 solutions, selected using the AS strategy, was used to

train the model. The other set (702 solutions) was used for the val-

idation of the ROM’s predictions. Figs. 20 a and b show the eigen-

value spectra and original data variance recovery for the different

scaling criteria, respectively. Over 99% of the original data variance

was captured by 28 PCs. Fig. 21 shows predictions of temperature,

CO, OH and NO mass fractions for the PCA+Kriging (48 PCs) and

LPCA+Kriging (20 clusters) models, with a quadratic trend func-

tion and Matern52 kernel. The application of Local PCA+Kriging

notably improved the predictions for some species like OH and

NO, whereas good predictions of temperature and CO were already

achieved by PCA+Kriging. 

The application on the 1D flame allowed to test the potential

and limitations of the PCA+Kriging approach. For this reason, it is

w  
nteresting to test the proposed methodology on a 2D flame with

etailed chemistry and transport phenomena. 

.4. 2D flame with two input parameters 

The methodology described in Section 2 was applied to a mul-

idimensional flame in more complex configurations in order to

est its potential. The configuration of the simulated flame is de-

cribed in Cao et al. (2013) and in Cao et al. (2015) . The compu-

ational domain started from the exit of the nozzle and extended

22 mm further downstream. The radial direction was expanded

o 42.88 mm. A 2D structured axi-symmetric mesh with around

5,600 cells was used and the nozzle radius was resolved with 12

ells. The laminarBuoyantSimpleSMOKE solver was applied. Gravity

as turned on. The multi-component diffusion model was adopted
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Fig. 22. (a) The spectrum of the eigenvalues associated to each PC provides a criterion for sorting the PCs in descending order as these eigenvalues can be interpreted as the 

importance of the PC they correspond to. Reported for different scaling criteria. (b) The cumulative original data variance that is captured when adding more PCs provides a 

criterion for the selection of the number of PCs when using global PCA. Reported for different scaling criteria. 2D flame. 

Fig. 23. Left halves: true data. Right halves: (a) reconstruction of the temperature field by PCA; (b) reconstruction of the temperature field by local PCA; (c) reconstruction 

of the CO 2 mass fraction field by PCA; (d) reconstruction of the CO 2 mass fraction field by local PCA. Inlet velocity: 24 cm/s; inlet CH 4 molar fraction: 40%. 2D flame. PCA: 5 

PCs. Local PCA: 100 clusters. 
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o consider molecular diffusion. The GRI3.0 mechanism without

O x (35 species and 219 reactions) was chosen. For the velocity

oundary condition, the profile provided from Cao et al. (2013) and

n Cao et al. (2015) was used. The input parameters were two,

amely the inlet velocity and the molar fraction of CH 4 in the inlet

tream, which was a mixture of CH 4 and N 2 . A total of 30 sam-

les was produced by OpenFOAM, spanning the two input param-

ters in the range 24–89 cm/s and 40–100% for the inlet velocity

nd inlet molar fraction of CH 4 , respectively. A total of 36 physi-

al variables was considered: 35 chemical species and temperature.

5 observations were chosen to train a PCA+Kriging model using

he adaptive strategy described in Section 3.5 . Fig. 22 a reports the

igenvalue spectrum of a PCA performed on this data-set, for dif-

erent scaling criteria. Fig. 22 b shows the cumulative original data

ariance that was recovered when more PCs were retained. The re-

overy of 99% of the original data variance was achieved with 20

Cs for all scaling criteria. This indicated that, despite the high di-

ensionality of the system, recurrent structures could be found in

he data. At the same time, the fact that 20 PCs were needed to

ecover 99% of the data variance, and that 25 observations were

sed for the training of the model, also suggested that more train-
ng observations were needed, or that a narrower parameter re-

ion should have been explored, as we shall see in Section 4.5 .

ig. 23 shows the temperature field for an inlet velocity of 24 cm/s

nd an inlet CH 4 molar fraction of 40%. The original field is shown

n the left half of the figures, while PCA and local PCA reconstruc-

ions are shown on the right half of the figure. PCA was performed

y retaining 5 PCs, while a number of 100 clusters was used for

ocal PCA. The data-set was centered and scaled according to the

AST scaling criterion. The reconstruction performed by PCA could

learly be improved by the local PCA formulation. The mean recon-

truction errors were 7% for PCA and 3% for local PCA. The over-

ll performance of the model for the reconstruction of the original

ata can be analyzed from Fig. 25 . These figures report the par-

ty plots for the reconstructed temperature and CO 2 , CH 4 , CO mass

raction fields. The dashed lines correspond to the 5% error. The

otted lines correspond to the 10% error. It is easily noticeable that

he grey points, corresponding to the PCA reconstruction, are more

cattered, while the black ones, corresponding to the local PCA re-

onstruction, lie within the reported 5% or 10% error lines more

requently ( Fig. 25 ). 
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Fig. 24. Left halves: true data. Right halves: (a) reconstruction of the temperature field by PCA; (b) reconstruction of the temperature field by local PCA; (c) reconstruction 

of the CO 2 mass fraction field by PCA; (d) reconstruction of the CO 2 mass fraction field by local PCA. Inlet velocity: 89 cm/s; inlet CH 4 molar fraction: 85%. 2D flame. PCA: 

10 PCs. Local PCA: 100 clusters. 

Fig. 25. Parity plot for the reconstruction of temperature and CO 2 , CH 4 , CO mass fractions (using 25 training samples): comparison between PCA and LPCA (5 PCs, 100 

clusters). Dashed line: 5% error. Dotted line: 10% error. 2D flame. 
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Next, the predictive capabilities of a PCA+Kriging and local

PCA+Kriging ROM for the 2D system were investigated. Fig. 26 re-

ports the true temperature field for an inlet velocity of 64 cm/s

and an inlet CH 4 molar fraction of 70%, as well as the predictions

provided by PCA with 5 PCs, and local PCA with 100 clusters and 5

PCs, both in combination with the same Kriging model (quadratic

trend function and exponential kernel). The mean error of the
CA+Kriging model for the temperature field was 8%, and the lat-

er was halved using LPCA+Kriging. Similarly, Fig. 27 reports the CO

nd OH mass fractions fields for an inlet velocity of 64 cm/s and

n inlet CH 4 molar fraction of 70%. The resuls qualitatively con-

rmed that the local PCA formulation could better reproduce the

istribution (shape and extension) of the chemical species contours

hen compared to PCA. Parity plots for the prediction of temper-
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Fig. 26. Left halves: true data. Right halves: (a) prediction of the temperature field by PCA; (b) prediction of the temperature field by local PCA; (c) prediction of the CO 2 
mass fraction field by PCA; (d) prediction of the CO 2 mass fraction field by local PCA. Inlet velocity: 64 cm/s; inlet CH 4 molar fraction: 70%. 2D flame. PCA: 5 PCs. Local PCA: 

100 clusters. Kriging: quadratic trend function, exponential kernel. 

Fig. 27. Left halves: true data. Right halves: (a) prediction of the CO mass fraction field by PCA; (b) prediction of the CO mass fraction field by local PCA; (c) prediction of 

the OH mass fraction field by PCA; (d) prediction of the OH mass fraction field by local PCA. Inlet velocity: 64 cm/s; inlet CH 4 molar fraction: 70%. PCA: 5 PCs. Local PCA: 

100 clusters. Kriging: quadratic trend function, exponential kernel. 2D flame. 
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ture and CO 2 , CH 4 , CO mass fractions are reported in Fig. 28 . The

% and 10% error lines are shown again in dashed red and yel-

ow, respectively. The predictions of the local PCA+Kriging model,

n black, lie within the 10% error lines more than the PCA+Kriging

redictions, in gray, indicating the overall better performance of

ocal PCA+Kriging. 

.5. 2D flame with two input parameters, using a smaller parameter 

egion 

The 2D data-set discussed above included observations for a

igh range of velocities. The parameter region to be explored in-
luded strong non-linearities which were difficult to model with

nly 30 training observations, thus limiting the predictive capa-

ilities of the developed ROM. To confirm that, new observations

ere produced for a narrower range of velocities (24–55 m/s). A

otal of 23 observations were used for the training of a new ROM

ased on PCA and Kriging in this region. Predictions were vali-

ated for 4 combinations of input parameters: 45% CH 4 - 35 m/s,

5% CH 4 - 30 m/s, 75% CH 4 - 40 m/s, 95% CH 4 - 40 m/s. Figs. 29

nd 30 report the prediction of the temperature field and of the

O 2 , CO, OH mass fraction fields by means of PCA+Kriging and lo-

al PCA+Kriging, for an inlet velocity of 40 cm/s and an inlet CH 
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Fig. 28. Parity plot for the predictions of temperature and CO 2 , CH 4 , CO mass fractions (using 25 training samples): comparison between PCA and LPCA (5 PCs, 100 clusters). 

Kriging: quadratic trend function, Matern52 kernel. Dashed line: 5% error. Dotted line: 10% error. 2D flame. 

Fig. 29. Left halves: true data. Right halves: (a) prediction of the temperature field by PCA; (b) prediction of the temperature field by local PCA; (c) prediction of the CO 2 
mass fraction field by PCA; (d) prediction of the CO 2 mass fraction field by local PCA. Inlet velocity: 40 cm/s; inlet CH 4 molar fraction: 75%. PCA: 5 PCs. Local PCA: 100 

clusters. Kriging: quadratic trend function, exponential kernel. 2D flame with a smaller range of velocities. 
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molar fraction of 75%. PCA was performed with a number of 5 PCs,

local PCA with a number of 100 clusters. Kriging was performed

with a quadratic trend function and an exponential kernel. Fig. 31

reports the parity plots for the predicted values of temperature

and CO 2 , CH 4 , CO mass fractions. These figures clearly indicate that

better predictions were obtained in the region of low inlet veloci-

ties in comparison to Fig. 28 , where the data spread was higher.

In particular, it is observable that most predictions by the local
CA+Kriging model fell within the 5% error region (dashed red).

he limitations of the predictive model observed in the previous

ase were due to the wide range of explored conditions: the in-

et velocity was indeed allowed to change roughly by a factor of 4,

hich led to substantial modifications in the flame topology and

tructure. Limiting the ratio of velocity to a factor of 2 allowed to

evelop a ROM whose reliability in the range of conditions was

ignificantly higher. 
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Fig. 30. Left halves: true data. Right halves: (a) prediction of the CO mass fraction field by PCA; (b) prediction of the CO mass fraction field by local PCA; (c) prediction of 

the OH mass fraction field by PCA; (d) prediction of the OH mass fraction field by local PCA. Inlet velocity: 40 cm/s; inlet CH 4 molar fraction: 75%. PCA: 5 PCs. Local PCA: 

100 clusters. Kriging: quadratic trend function, exponential kernel. 2D flame with a smaller range of velocities. 

Fig. 31. Parity plot for the predictions of temperature and CO 2 , CH 4 , CO mass fractions: comparison between PCA and LPCA (5 PCs, 100 clusters). Kriging: quadratic trend 

function, Matern52 kernel. Dashed line: 5% error. Dotted line: 10% error. 2D flame with a smaller range of velocities. 
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Fig. 32 a reports the cumulative data variance captured by the

Cs. In the previous case, the number of training samples was 25

nd 20 PCs were needed to capture over 99% of the data variance.

n the present case, 15 PCs were sufficient to recover over 99% of

ata variance for 23 training observations, thus confirming that the

arameter region was more efficiently sampled. Fig. 32 b reports

he global R 

2 values for the prediction of the validation data as

he number of samples used for the training of a local PCA+Kriging

p  
odel increased. As expected, these values increased to unity as

ore training samples were used. 

.6. Performance evaluation 

The computational cost of the two-dimensional CFD with two

nput parameters, described in Section 4.4 , was over 30 CPU-hours

er simulation. By developing a ROM, as shown throughout this
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Fig. 32. (a) The cumulative original data variance that is captured when adding more PCs provides a criterion for the selection of the number of PCs when using global PCA. 

VAST-scaling. 2D flame with a smaller range of velocities. (b) Global R 2 values for the validation data as the number of training observations increases. Local PCA+Kriging 

with quadratic trend function and Matern52 kernel. 

Table 1 

Comparison between the computational performances of differ- 

ent Kriging models: a direct Kriging model, a PCA+Kriging model 

with 10 PCs, and a local PCA+Kriging model with 10 PCs and 100 

clusters. 

Kriging 10 PCs 100 clusters 

Training time 9.7 hrs 4 s 9 s 

Clustering time -s -s 53 min 

Speed-up 1 8,712 11 

# Hyper-parameters 945,360 30 3,0 0 0 

# Coefficients 0 5,672,160 5,672,160 
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paper, the outcome of such simulations could be predicted instan-

taneously. Besides, the costs associated to the training process of

a ROM based on PCA and Kriging were also smaller when com-

pared to the computational burden needed for direct Kriging (no

PCA compression is performed and one Kriging model is trained

per original number of variables). 

Table 1 summarizes the training costs associated to different

models, namely: a direct Kriging model, a PCA+Kriging model with

10 PCs, and a local PCA+Kriging model with 10 PCs and 100 clus-

ters. As clearly shown in Table 1 , the training costs and the num-

ber of hyper-parameters associated to a Direct Kriging model were

very high when compared to the two ROMs based on PCA or lo-

cal PCA. On the other hand, after training a (local) PCA+Kriging

model, there was the need for additional coefficients to be stored

in memory, due to the centering and scaling procedure, and the

PCA compression. For a PCA+Kriging model with 10 PCs, 2 vectors

of mean values and scaling factors had to be stored as well as 10

PCA modes, for a total of 12 vectors of size 472,680, as the data-set

was composed of 36 physical variables evaluated at 13,130 spatial

locations (half of the original mesh was analyzed exploiting the

problem’s symmetry). The same number of coefficients needed to

be stored for the local PCA+Kriging model with 10 PCs and 100

clusters. 

5. Conclusions 

In the present work, a methodology for the development of ac-

curate and robust ROM generation using a combination of PCA and

Kriging was presented. The methodology was demonstrated for a

1D laminar flame with an increasing number of input parameters

(equivalence ratio, composition of the fuel, inlet temperature), and

for a 2D flame with two input parameters (inlet velocity and inlet

fuel composition). In all three cases and for the 2D flame as well,

both training and test data were available. The training data was
mployed to generate the ROM. The test data was used to assess

he ROM’s predictive capabilities. 

The results showed that the combination of PCA with Kriging is

 valid solution for the development of physics-based SMs. Mainly,

e want to stress the following points: 

• The developed surrogate models can be used for parameter ex-

ploration with low prediction errors: < 10%. 
• The local PCA formulation provides an improvement over PCA,

as it better deals with the non-linearities and the high dimen-

sionality of the original system. 
• CPCA guarantees that the imposed physical constraints are not

violated when the data are reconstructed. In this work, the im-

posed constraint is the positivity of the chemcial specie mass

fractions. This is not guaranteed by PCA, while local PCA alle-

viates this issue by simply improving the accuracy of the data

reconstruction. 
• Once a ROM is correctly trained, predictions are possible at

a reduced computational cost, making parameter exploration

much easier, even for very CPU-intensive systems. 

The present work represents the first application of the

CA+Kriging methodology to combustion problems. As such, it is

ntended to be a proof of concept that will pave the way for the

pplication of this methodology to more complex systems. Indeed,

s 3D simulations of practical combustion systems usually require

ignificant computational resources, having a low-order model that

an reliably and instantaneously predict the outcome of these sim-

lations is precious. Moreover, the promptness of the ROM’s pre-

ictions is paramount for the development of digital twins for real

ystems, which can be employed for system control and visual-

zation. A correctly trained ROM also grants the possibility of per-

orming sensitivity analysis of the investigated system w.r.t. its in-

ut parameters, and can be employed to solve optimization prob-

ems in the context of system design, where the evaluation of the

bjective function is the computational burden. The training cost

f PCA+Kriging ROMs is also lower compared to SMs with no com-

ression. This is very useful when updating a developed ROM in

he event of new available data. Despite the relative simplicity of

he selected test cases, the present work allowed to investigate the

dvantages and limitations of the method, as well as its poten-

ial for applications to more complex combustion systems. A sub-

tantial reduction in the system dimensionality was accomplished

ia PCA (e.g. from 10,780 to 5 scalars in the one-parameter case),

hile the use of Kriging allowed to capture the non-linear rela-

ion between the reduced set of coefficients and the input pa-

ameters, enabling the prediction of non-observed system states.
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uture work will extend the proposed methodology to more com-

lex cases, including three-dimensional turbulent reacting flows. 
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