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ABSTRACT

Detailed numerical simulations of detailed combustion systems require substantial computational re-
sources, which limit their use for optimization and uncertainty quantification studies. Starting from a
limited number of CFD simulations, reduced-order models can be derived using a few detailed function
evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is consid-
ered to identify accurate low-order models. PCA is used to identify and separate invariants of the system,
the PCA modes, from the coefficients that are instead related to the characteristic operating conditions.
Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that
allows performing parameter exploration with reduced computational cost. Variations of the classical PCA
approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on
1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate
models have been developed.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In many engineering applications, complex physical systems can
only be described by high-fidelity expensive simulations. Due to
the non-linearity of these problems, changing the operating condi-
tions, namely the model’s input parameters, can drastically change
the state of the considered system. Complete knowledge about the
investigated system’s behavior for a full range of operating condi-
tions can therefore only be achieved by running these expensive
simulations several times with different inputs, until enough ob-
servations of the system’s state are obtained.

In this study, we focus on combustion systems that fall in this
category as they are characterized by very complex physical in-
teractions, between chemistry, fluid-dynamics and heat transfer
processes. Our objective is to develop advanced Surrogate Models
(SMs) that can accurately represent the behavior of complex re-
acting systems in a wide range of conditions, without the need for
expensive Computational Fluid Dynamics (CFD) simulations. This is
particularly attractive for the development of digital counterparts
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of real systems, with application in monitoring, diagnostics and
prognostics (Schleich et al., 2017; Uhlemann et al., 2017). To this
purpose, we derive techniques from the Machine Learning commu-
nity.

In our approach a specific computationally-expensive CFD sim-
ulation or computer code, referred to as Full-Order Model (FOM)
(Bizon and Continillo, 2012; Bizon et al., 2012), is treated as a black
box that generates a certain output y (e.g. the temperature field)
given a set of input parameters x (e.g. the equivalence ratio) and
indicated by F(-):

y=F(X). (1)
The evaluation of the function F(-) usually requires many hours of
computational time. After enough observations of the FOM’s out-
put are available, y(x;) Vi=1,...,M, a SM can be trained and
the output y* for a particular set of unexplored inputs x* can be
predicted without the need to evaluate F(x*). The function F(-) is
therefore approximated by a new function M(-) whose evaluation
is very cheap compared to F(-):

Yy =F(X) ~ M((X). (2)

SMs are mathematical models based on available data that try
to approximate the underlying hidden relationship between in-

0098-1354/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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put and output. A very simple example of a SM is a linear re-
gression of available data. SMs are useful when this relationship
is either not known or comes in the form of a computation-
ally expensive computer code. This is the case of a CFD simula-
tion. SMs are constructed or trained from a relatively small set
of training observations of the models output, which correspond
to a set of training locations or points in the model parameter
space. Once trained, SMs allow for a fast evaluation of the sys-
tem'’s state over a wide range of their input parameters. There-
fore, they are very appealing in the context of optimization stud-
ies as well as for Uncertainty Quantification (UQ) (Lin, 2017) and
global optimization problems (Miiller et al., 2013; Regis and Shoe-
maker, 2005). In Fiirst et al. (2018), SMs are used to optimize
the performance of chemical kinetics with respect to MILD com-
bustion. In Khuwaileh and Turinsky (2017), SMs are employed in
a Bayesian approach to calibrate various neutronics and thermal-
hydraulics parameters. SMs are also used in the AlgoRithms for
Global Optimization of coNstrAined grey-box compUTational prob-
lems (ARGONAUT) framework (Beykal et al., 2018a), which was also
utilised in Beykal et al. (2018b) for the optimization of the oper-
ation of an oilfield using water-flooding. Ideally, the trained SMs
should preserve the physics of the investigated phenomena, and
be developed from a limited number of expensive function evalua-
tions, i.e. CFD simulations. Examples of SMs are Radial Basis Func-
tions and Polynomial Chaos Expansion (Crestaux et al., 2009). Ex-
amples of SMs used in combustion applications can be found in
Lancien et al. (2016).

SMs are generally constructed directly on the analyzed system’s
output, i.e. directly on the variables of interest like the velocity
and temperature fields. For each individual output variable a SM
is trained and a response surface is found, indicating the relation-
ship between the variable and the input parameters. If the number
of variables of interest is high, many SMs need to be trained. Be-
sides, any correlation between these variables of interest might be
lost in the process of training individual SMs. Reducing the num-
ber of SMs to train is possible if the original set of variables can be
represented by a new set of fewer scalars. This corresponds to the
idea that the original variables are actually realization of unknown
latent variables (Bishop, 2013).

Principal Component Analysis (PCA) (Jolliffe, 2002) offer the po-
tential of preserving the physics of the system while reducing the
size of the problem. PCA is a statistical technique used to find a
set of orthogonal low-dimensional basis functions, called Principal
Components (PCs), to represent an ensemble of high-dimensional
data. PCA finds a new, smaller set of uncorrelated variables, often
referred to as PCA scores, which is representative of the original
variables of interest. PCA is also used for data interpretation, usu-
ally combined with rotation methods (Bellemans et al., 2018). Once
these PCA scores are found, a SM can be built for each one of them.
They are indicated as Reduced-Order (Surrogate) Models (ROMs).

SMs usually include interpolation or regression techniques
which depend on the choice of some particular design functions.
These design functions are defined by a set of so-called hyper-
parameters (or also length-scales) whose values affect the SM’s
predictive abilities. Very often, a good estimation for the value
of these hyper-parameters comes via the solution of constrained
optimization problems that involve local optima. As shown in
Xiao et al. (2010), ROMs are less sensitive to the particular
design functions chosen for their construction, which is desir-
able. ROMs also have a reduced number of variables for which
a SM needs to be trained. This means that fewer optimiza-
tion problems are solved in order to estimate feasible values
for the hyper-parameters of the design functions. In addition, in
Xiao et al. (2010) it is also shown how ROMs usually scale better
than classic SMs for parallel computing. These features are what

makes PCA-based ROMs very attractive candidates for the develop-
ment of physics-preserving SMs.

Combustion problems are well-known for being characterized
by a set of strongly inter-dependent variables. In fact, PCA has
been employed in Isaac et al. (2014, 2015) to re-parameterize the
thermo-chemical state of a reacting system by a small number
of progress variables, drastically reducing the number of transport
equations to solve, and in the process showing the intrinsic lower-
dimensionality of these systems, which will be exploited in the
present work. PCA has also been employed in the context of turbu-
lent combustion in Mirgolbabaei et al. (2014), for the a-posteriori
validation of a turbulent combustion model based on the solution
of transport equations for the principal components (Coussement
et al.,, 2016; Echekki and Mirgolbabaei, 2015) and for on-line pro-
cess monitoring and fault diagnostics (Yu, 2012).

The objective is to develop advanced SMs, trained on a re-
duced number of full simulations, able to predict the full sys-
tem state in unexplored conditions, without running a new sim-
ulation. To this end, an approach based on the combination of
PCA and Kriging was chosen. PCA is used to extract the invari-
ant (w.r.t. the input parameters) physics-related information of
an investigated combustion system and identify the system’s co-
efficients which instead depend on the operating conditions, the
PCA scores. Kriging interpolation is then used to find a response
surface for these scores. With this strategy it was possible to
build a ROM for parameter exploration with reduced computa-
tional cost. Kriging was chosen over other regression techniques
not only because it provides an estimate of the prediction uncer-
tainty, but also because it allows the user to add prior knowl-
edge on the model by selecting different kernel functions. The
use of Kriging for CFD data has also produced encouraging re-
sults. In fact, Kriging was employed for the shape optimization of
a car engine intake port in Xiao et al. (2012) and for aerodynam-
ical shape optimization problems as shown in Xiao et al. (2014,
2013). However, the application was limited to non-reacting flow
problems.

In the present work, the Kriging-PCA approach is extended to
combustion applications, to develop a ROM that can faithfully re-
produce the temperature and chemical species fields in a reacting
flow simulation. The methodology is demonstrated on a methane
laminar premixed flame, increasing the complexity of the problem
gradually, in terms of number of input parameters (equivalence ra-
tio, inlet temperature and fuel composition), and problem dimen-
sionality (from one to two-dimensional flames). The objective of
the present work is to demonstrate the applicability of the pro-
posed methodology for the development of reduced-order mod-
els of multi-scale and multi-physics computer models. In this per-
spective, this work paves the way for the development of digital
twins (Haag and Anderl, 2018) of realistic engineering systems. The
methodology outlined in the present work shows the advantages
of the PCA+Kriging formulation in terms of predictive capabilities
and computational efficiency. Indeed, these features are necessary
for the development of predictive models of engineering systems,
which can be employed for visualization, real-time control, opti-
mization and troubleshooting.

From the application perspective, this paper presents the first
application of the Kriging-PCA methodology to combustion prob-
lems. From the methodology point of view, this work combines, for
the first time, Kriging with a local and a constrained formulation
of PCA.

This paper is organized as follows. Section 2 will cover the em-
ployed methodology in details, while in Section 3, PCA and its
variations, Kriging and a sampling strategy referred to as Adap-
tive Sampling are shown. Results are presented and discussed in
Section 4. In Section 5 conclusions are drawn.
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Fig. 1. Illustrative example of PCA applied to combustion data: one particular tem-
perature spatial field is represented by a set of coordinates (the coefficients a;,
called PCA scores) on the basis functions or Principal Components (PCs) found by
PCA.

2. Methodology

The methodology used in the present work is sketched in Fig. 1.
Consider that a certain high-fidelity simulation model or Full Order
Model (FOM) y(x) = F(x) € RN is available, such as a CFD combus-
tion solver. For one value of the input parameter(s) X, the solver
returns a vector yU) of observations of all the involved physical
variables at every grid point:

Yy = [T, X)), T X)), You, (11, %), - Yo, (LX), T

3)

where L is the total number of grid points, r; is the ith spatial loca-
tion and x; is the jth point in the input parameter space. This FOM
is solved for a limited amount M <N of training points in the in-
put parameter space X = {x(1,x@ .. xM} e D, where D is the
region spanned by the training points. Thus, only M simulations
are available, one for each of those points: Y = {y(),y@ . y®™},
The full exploration of the region D is possible only by running
the expensive CFD-combustion solver F(-) for every x € D. From
the data-set Y of available simulations, PCA is able to extract a set
of basis functions ® = {¢,¢,, ..., @,}, with <N usually, called
PCA modes that are invariant with respect to the input parameters
X. A set of coefficients a(x) = {a;(X), ay(X), ..., aq(x)}, called PCA
scores and depending on X, is consequently found. An illustrative
example is reported in Fig. 2, where a temperature spatial field is
represented as a set of coefficients that weight a set of basis func-
tions, i.e. the PCs. These coefficients are less in number than the
original number of variables as ¢ <N and can be interpolated in
order to acquire knowledge about the system’s state for any unex-
plored point x* € D.

One advantage of this approach is that a much smaller number
of variables, namely q PCA scores, are interpolated instead of N.
Another advantage is that the N original variables might be corre-
lated. The application of PCA for the detection of latent variables,
the PCA scores, preserves this correlation, which might be lost if
each original variable is interpolated independently. One additional
remark is that considering, for example, T(r;, X;) and T(r}, X;) as two
separate variables (rather than using the spatial locations r; as ad-
ditional input parameters) also reduces the computational costs, as
we shall see.

3. Theory
3.1 PCA

The key idea of Principal Component Analysis (PCA) is to reduce
(compress) a large number of interdependent variables (i.e. inde-
pendent up to the second-order statistical moments) to a smaller
number of uncorrelated variables while retaining as much of the
original data variance as possible (Bizon et al., 2010; Coussement
et al,, 2016; Parente and Sutherland, 2013; Parente et al., 2009;
Sutherland and Parente, 2009).

For a data-set Y(N x M), containing M observations of N origi-
nal variables, namely temperature and species mass fractions mea-
sured at each spatial location of a considered geometrical domain,
as described in Section 2, PCA provides an approximation of the
original data-set using only q < N linear correlations between the N
variables. The quantity g is referred to as approximation order. In
general, g <min(N, M). Thus, the vector y € RN of observed tem-
perature and species mass fractions can be encoded into a lower
dimensional vector, a € RY.

Data are usually centered and scaled before PCA is carried out.
Here we report six different choices for the scaling of the data:

1. Auto-scaling (STD), each variable is normalized by its standard
deviation;

2. RANGE, each variable is normalized by its range;

3. PARETO, each variable is scaled by the square root of its stan-
dard deviation;

4, VAST, each variable is scaled by the standard deviation and co-
efficient of variation;

5. LEVEL, each variable is normalized by the mean of the data;

6. MAX, each variable is scaled by its maximum value.

The centered and scaled data read:
Yo=D1(Y-V), (4)

where D indicates a diagonal matrix of chosen scaling factors,
while Y is a matrix containing the mean of each of the N vari-

ables, namely [T(ry, X;), T(ry, X;), Yeu, (11, Xj), .., Yen, (1, X;),
...] over the M observations.
dd 0 0 - 0 2 T 2 W Z BRI 7
0 d 0 - 0 I R 2 T R 7
D= Y= (5)
0 0 0 dy v YN YN - YN

After centering and scaling the data, the covariance matrix C is evaluated
as:

C= ﬁvovg. (6)
This matrix is symmetric and its rank rank(C) = rank(Y) = min(N, M).
The set of PCA directions, the Principal Components (PCs) or modes, is
found by solving the following set of eigenproblems: C¢; =A;¢p; Vi=
1, 2, ..., g. Each PCA mode ¢; has an associated eigenvalue, ;, which
represents the variance of the original data taken into account by that
mode (Williams, 2010). The PCA modes can be collected in a N x ¢ matrix
D ={d;.¢,, ..., ¢,}, sorted in descending order of importance.

The number q of PCA modes that are retained is usually much
smaller than the dimension N. The PCA modes with the highest
eigenvalues are the ones that are kept. Once the PCA modes are
found, the data can be encoded in a set of g scalars called PCA
scores. The PCA scores corresponding to the realization y(x;) are
given by the projection:

a(x;) = ¢; Y(x;) 7
with Vi=1,...,qand Vj=1,..., M. The PCA reduction can be ex-



G. Aversano, A. Bellemans and Z. Li et al./Computers and Chemical Engineering 121 (2019) 422-441 425
(1) (1)
M = F(x® ay 5 -ees Gg
g@) - ]:Ex@); o, .., af Kriging response
— PCA — — surface for the
o (M) (M) o .
1) — F(x(n) a™ ol PCA scores
P = (¢17 ¢27 R ¢q)

Fig. 2. PCA finds the set of Principal Directions ® = (¢;, ¢,. ..., ¢q) and encodes each observation y® e RN into a small set of scalars a§”, a((,i) for ¢ <N. A Kriging

response surface is then found for these scalars.

Fig. 3. (left) A non-linear hyper-surface is approximated by only one hyper-plane in the data space. (right) The same hyper-surface is approximated by a set of local hyper-
planes. The application of PCA can lead to better performances if local regions in the data space are detected and PCA is applied locally and independently in each region.

pressed in matrix form as:

Y=Y+DYy~Y+DPA=Y, (8)
where Y is the data matrix as described in Section 2, A=
{a(x1),a(xp),...,a(Xy)} with a e RY is the matrix where all the

PCA scores for different values of the input parameters are stored
and Y is the reconstruction of the data matrix Y after the compres-
sion achieved by PCA.

3.2. Local PCA

PCA is a linear combination of basis functions. A large number
of PCs may be required when applying PCA on highly non-linear
systems (Parente et al., 2009; Sutherland and Parente, 2009). Lo-
cal PCA (LPCA) constructs local models, each pertaining to a differ-
ent disjoint region of the data space (Kambhatla and Leen, 1997).
Within each region, the model complexity is limited, and thus it
is possible to construct linear models using PCA (Kambhatla and
Leen, 1997; Sahyoun and Djouadi, 2013). Fig. 3 provides a gen-
eral representation for a set of 3-dimensional observations form-
ing a curved surface. Each axis shows the co-domain for each of
the three scalar components that identify the 3-dimensional obser-
vations. The figure shows how a local representation of the curved
surface can provide a better representation with respect to a single
hyper-plane.

The partition in local clusters, where PCA is carried out, is ac-
complished using a Vector Quantization (VQ) algorithm that min-
imizes the reconstruction error. The reconstruction error is the
squared Euclidean distance from one point or observation in the
data-space to the linear manifold that is found by applying PCA in
the local region. Mathematically, it can be expressed in a general
fashion as:

d(z, ) = (z_r(i))T(I,(i) "o (z 1), 9)
where z is the object to be assigned to the cluster R, repre-
sented by thg reference vector r(), defined as the centroid of the
ith region: r® = E[z e R®]. The cluster i is defined as:
RO ={z | d(z,r?) <d(@z,r?); V j£i}. (10)

In this work, the objects to be assigned to different clusters are
chosen to be the vectors of observations of one single variable,

namely the rows of the data-matrix:

M T(r,%1) T(r1,%2) T(r1,x3) T(r1,Xm) 7]

T(r. X1)

Yer, (11, X1)

T(r1,%x2)

Yery (1. X2)

T(r1,X3)

Yer, (1. X3)

T(re, xm)

Yer, (11, Xm)

(1)

You, (ri.X1)  Yon, (. X2)  You, (11, X3) Yen, (11, Xum)

3.3. Constrained PCA

The truncation of the PCA basis may inevitably involve the vio-
lation of important physical laws such as the conservation of mass
when the observations y(x;) Vj=1,..., M are reconstructed from
the PCA scores. To avoid that, the PCA scores can be evaluated by
solving a constrained minimization problem, where the functional
to be minimized is the PCA reconstruction error (Xiao et al., 2010).
This approach is usually referred to as Constrained PCA (CPCA). The
constraints are the physical laws which are intended not to be vio-
lated. This minimization problem can be mathematically expressed
as:

minimize : 7 (y©) = %Ily(” -+ ) (12)

lj(fH- (Dky(i)) = lj(y(l)) =0 V]

where y( represent the vector y(x;) Vi=1,..., M, also introduced
in Sections 2, 3.1 and 3.2, p are the CPCA scores (they have been
indicated with a different symbol to differentiate them from the
PCA scores), [;(-) is the function related to the jth constraint and
N. is the number of constraints, which can also be inequality con-
straints. Minimizing the functional 7 (-) when no constraints are
enforced leads to the PCA scores a.

It is preferable that the solution of this system be not too com-
putationally expensive. In Xiao et al. (2010), the constrained opti-
mization problem has a straightforward solution due to the linear-
ity of the imposed constraints, which allows for a fast evaluation
of the CPCA coefficients. If more complex constraints are imposed,

S.t.: =1,...,N¢
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the solution of the constrained optimization problem for the eval-
uation of the CPCA scores might involve the reconstruction of the
considered physical fields (via Eq. (8)) and the use of more expen-
sive optimization algorithms, making the evaluation of the afore-
mentioned coefficients unfeasible.

3.4. Kriging

Accurate prediction of the PCA scores at unexplored points x* €
D in the input parameter space (e.g. inlet temperature, equiva-
lence ratio, etc.) translate into accurate estimation of the original
variables as the mapping from a(x*) to y(x*) is known and ex-
plained in Section 3.1. The data-set A = {a(xy), a(Xy), ..., a(Xp)}
of PCA scores evaluated at different training points, with
a(x) = [a1(X), az(X), ..., ag(x)], is used to build a response surface
in the region D spanned by X.

Kriging is an interpolation method in which every realization
a(x), where a is one PCA score indicated with no subscript for
brevity, is expressed as a combination of a trend function and a
residual (Constantine et al., 2014):

P
ax) =puX) +z(x) =Y Bifi0)+zx) = B +z(x)  (13)
i=0

The trend function wu(x) is a low-order polynomial regression and
provides a global model in the input space. The term z(x) cre-
ates a localized deviation weighting the points in the training set
that are closer to the target point X. The trend function w(x) is
expressed as a weighted linear combination of p+1 polynomi-
als f(x) = [fo(X), ..., fp(®)]T with the weights 8 =B, ..., Bpl"
determined by generalized least squares (GLS). The subscript p
also indicates the degree of the polynomial. The residuals z(x) are
modeled by a Gaussian process with a kernel or correlation func-
tion that depends on a set of hyper-parameters @ to be evaluated
by Maximum Likelihood Estimation (MLE). Many possible correla-
tion functions are available: linear, quadratic, exponential, Gaus-
sian, Matern 3/2, Matern 5/2, just to name a few (Constantine
et al, 2014; Lophaven et al., 2002). A detailed discussion about
these functions can be found in Seeger (2004). One of the main
differences among these kernels is their smoothness.

In the definition of both the trend function and the residual, it
is up to the designer to choose the polynomials f(x) and the corre-
lation model or kernel. In this way, the designer has the possibility
to add prior knowledge into the problem and subsequently let the
data speak for themselves by estimating the hyper-parameters 6.

3.5. Adaptive sampling

The sampling strategy employed to explore the region D of
the input space can affect the construction of a PCA+Kriging-based
ROM. The construction of high-performing ROMs with a very lim-
ited number of samples is possible if an effective sampling strat-
egy is developed. As a PCA-based model strongly depends on its
modal basis, a first step towards the improvement of this kind of
model consists in improving the basis (Guenot et al., 2013). Given
a set of (centered-scaled) observations Y = {y(", ..., y™} and its
corresponding PCA-based model, we want to choose a new sample
point, Xpew, that will meet the trade-off between the modal basis
improvement and the parametric space exploration. Firstly, the in-
fluence of each observation on the modal basis is computed. The
influence of the jth observation on the ith mode is defined by:

1
Infly, (Xj) = —— -1, (14)
P 1ele ]

where d)i’j is the ith basis function evaluated from a data set:

Y={y®, ..., yi D o yith, .. . y™} (15)

The influence of the observation y(x;) on the modal basis is defined
by:

K
Inflpasis (X;) = ZSilﬂpr,- (%), (16)

i=1

where s; is the singular value of the ith mode. The relative influ-
ence of the jth observation on the modal basis is given by:

lnﬂB.alsis (xj)
S Inflgagis (X))

After the computation of this equation for each x;, the parametric
space is heavily sampled via a LHS technique and the resulting set
of samples is denoted by Q = {vq, ..., v;}. The size b of this set of
samples can be chosen as 100 times the parametric space dimen-
sion. Then the potential of enrichment PotBasis(v;) of each candi-
date sample is computed with respect to the trade-off between the
input space exploration and the improvement of the modal basis
as:

Infliy (x;) = (17)

PotBasis(v;) = d(;, xj)lnﬂgglsis (x;), (18)

where j = argmin, d(v;,X,) with d(-, -) denoting the Euclidean
distance. Finally, the new point will be selected to fulfill the fol-
lowing condition:

Xpew = argmax,qPotBasis(v). (19)

A new sample is chosen as far from the other samples as possible,
but at the same time as close to the samples with the highest rel-
ative influence as possible. This sampling methodology is named
Adaptive Sampling (AS).

4. Results
4.1. 1D flame with one input parameter

The Kriging-PCA approach was tested on a 1D methane/air lam-
inar flame. OpenSMOKE++ (Cuoci et al., 2013a; 2013b) was used
to produce a data-set of 21 observations {y(!), y@, ..., yM)} of
methane/air flames with GRI 3.0 mechanism for different values
of the equivalence ratio v, in the range 0.5-2, with a step of 0.05.
A subset of size M =21 of the total 31 observations was used as
training data-set to build a ROM and referred to as training obser-
vations or data. The corresponding values of i/ for the training ob-
servations are named training points. The 21 training observations
were chosen using the Adaptive Sampling technique described in
Section 3.5. The remaining 10 observations were used as test data
to assess the accuracy of the reduced model. These 10 observations
are referred to as validation data. The objective was to predict the
validation data with acceptable accuracy.

In this paper, the term reconstruction is used to indicate the re-
construction of the training data after the compression achieved by
PCA, whilst the term prediction is used when testing the predictive
capabilities of the developed ROM on the validation data.

Each observation y() of the data-set Y = {y(», y@ . . y®™)}
was a vector of N = 10,780 variables: 53 chemical species plus
temperature and axial-velocity evaluated at 196 grid points. The
size of the matrix Y was N x M = 10, 780 x 21. Because N > M, PCA
could find at most M — 1 =20 PCs. Alternatively said, PCA could
encode the 10 vectors y,; € RN contained in the data matrix Y into
a set of at most 20 scalars a,; € R?°. The data-set was scaled ac-
cording to the auto-scaling criterion. This criterion was chosen as
other criteria tend to prioritize some variables over the others as
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shown in Parente and Sutherland (2013). In Fig. 4a, an online eval-
uation of the relative influence of each current training observa-
tion on the modal basis (evaluated according to Section 3.5) is re-
ported. Four samples were present at the start (iteration 0), and
the 5th training sample was chosen in the region of high values for
the equivalence ratio as the already present training observations
in that region had a higher relative influence. Once this observa-
tion was added to the training data-set, the relative influence of
each sample was re-evaluated (iteration 1) and a 6th training ob-
servation was chosen. Thus, the relative influence of the new set of
samples was re-evaluated (iteration 2). And so on, until the desired
number of training samples was reached. In Fig. 4b, the relative in-
fluence of each observation on the modal basis is shown, after that
21 training observations have been chosen. Note that the relative
influence of each snapshot changes when new observations are in-
troduced.

Fig. 5a shows the eigenvalue spectrum of the PCs found by PCA.
Fig. 5b shows the cumulative original data variance that was cap-
tured when retaining more PCs. Interestingly, a few number of PCs
were enough to recover most of this variance. As the maximum
number of PCs that could be found was limited by the number of
training observations, the cumulative recovered original data vari-
ance, reported in Fig. 5b, could also be used to determine if the
number of available training observations was enough for the ROM
development. In this case, 5 PCs could recover 98.4% of the original
data variance and 10 PCs 99.8%, thus suggesting that a number of
21 training observations could be considered sufficient. In Fig. 6a,
the R? values for the reconstruction of the training data are re-

ported for different numbers of retained PCs, q. These values, log-
ically, increased with the approximation order, g, because more of
the original data variance was accounted for by the reduced basis.
Analysis on the R? values and, thus, on the reconstruction error is
a good estimate about the amount of information lost due to com-
pression, and provides a criterion for the choice of the number of
required PCs. Fig. 6b shows the R? values for the prediction of the
validation data by means of PCA+Kriging. These values are reported
for two PCA+Kriging models with a number of 5 PCs retained: with
a linear and with a quadratic trend function. Both models used
a Matern52 kernel. From these results, we can conclude that the
PCA+Kriging model with a linear trend function performed better
in terms of predicting capabilities for the present data-set.

In Figs. 7a and b, the effects of the choice for the approxima-
tion order q and the choice of different trend functions and ker-
nels for the Kriging interpolation are investigated. A reduction on
prediction errors could be observed when increasing the approxi-
mation order g. Differences with the data (prediction errors) were
still present due to Kriging interpolation and the fact that the data
used for validation were not included in the data used to find the
PCA modes. For the evaluation of these errors, the validation data-
set and the one predicted by the model were scaled (range-scaling)
and their difference was evaluated and stored in a new matrix. A
mean value for each observation in this matrix was then used as
prediction error. The formula for this error is:

N ~
Err(x;) = % Z M (20)

max __ y,min
= Vi 7Y
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where x; is the ith prediction point, N is the number of variables,
yj(x;) is the true value of the jth variable for the ith prediction
point and J;(x;) is the ROM’s prediction for the same variable, for
the same prediction point. These errors were below a value of 4%
for all observations when g > 1. Different choices of trend and cor-
relation function for the Kriging interpolation led to different re-
sults. For example, the choice of a Gaussian kernel (see Fig. 7b) for
a PCA+Kriging model for this data-set could not reduce the pre-
diction errors further, when increasing q from 2 to 5 or 9. Indeed,
although increasing ¢ means accounting for more of the original
data variance, it also means that more scalars have to be interpo-
lated.

Next, the effects of performing PCA in separated clusters (lo-
cal PCA) on the quality of the reduced model was investigated.

The effects of the choice of the scaling criterion were also exam-
ined. Fig. 8a reports the data reconstruction errors when increas-
ing the number of clusters, for different scaling criteria. Increas-
ing the number of clusters translated into better data reconstruc-
tions. The auto-scaling and the Pareto scaling criteria emerged as
the ones with the lowest reconstruction errors. The general trend
was a decreasing reconstruction error as the number of clusters
was increased. Fig. 8b reports the local PCA reconstruction error
when the number of retained PCs was increased (auto-scaling), for
different number of clusters. It can be observed that the impact of
cluster addition on the reconstruction error became less and less
significant as the number of clusters increased, indicating the exis-
tence of a trade-off, depending on the problem dimensionality and
non-linearity. Prediction errors also decreased when adding clus-
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Fig. 10. Prediction of the spatial profile of temperature and HO, mass fraction. Comparison between PCA and LPCA (15 clusters) combined with Kriging. One-parameter case.

ters in the local PCA formulation. This can be observed in Figs. 9a
and b. Local PCA, in combination with Kriging, provided better per-
formances, in terms of both reconstruction at the training points
and predictions. Moreover, the gain in accuracy for the prediction
points is a clear proof that also Kriging benefits from the local
formulation. Fig. 10 reports the predictions of the spatial profiles
of temperature and HO, mass fraction by PCA+Kriging and local
PCA+Kriging, showing the superior performances of local PCA over
PCA.

The clustering strategy explained in Section 3.2 was used to
group the rows of the data matrix Y e RNM into clusters. The
general encoding process for one observation in the data matrix
Y, which can be stated as y € RN — a € R? with g <N, was possi-
ble via the detection of a lower-dimensional manifold spanned by
the M = 21 observations y, € RN V m =1, ..., M. The dimension of
this lower-dimensional manifold was thus M — 1 = 20. A new ob-
servation y* not already present in the data-set was approximated
by a point on the lower-dimensional manifold even if there is no
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guarantee that this new observation lay close to this manifold. The
clustering process reduced the number of variables for each clus-
ter. This means we were moving closer to a situation where the M
samples were enough for the detection of a manifold which could
accurately approximate unseen observations.

The PCA-reconstructed mass fraction spatial profile included
negative values as shown in the parity plots (Fig. 11). This is a
known issue with PCA (Isaac et al., 2015; Parente et al., 2011) since
the method itself cannot guarantee that physical constraints are
verified, such as the positivity of mass fractions and the conser-
vation of mass (}_Y; = 1). An increase of the approximation order
could indirectly lead to a solution to this issue, but it is here in-
teresting to investigate if the implementation of a constrained ver-
sion of PCA (CPCA) could guarantee the non-violation of the afore-
mentioned physical laws, even at high compression. As discussed
in Section 3.3, the CPCA implementation used in the present work
consisted in forcing each rebuilt mass fraction, on every grid point,
to be positive.

However, one of the challenges of using CPCA in combination
with Kriging is that the chemical species fields recovered from the
interpolated CPCA scores might still violate the set of imposed con-
straints. Even if for each training point a constrained optimiza-
tion problem is solved for the evaluation of the CPCA scores, no
constraint is imposed when these coefficients are interpolated by
means of Kriging. Thus, there is no guarantee that the predicted
CPCA scores belong to the feasible region delimited by the con-
straints [;(¥) =0 of (12). CPCA in combination with local PCA
guaranteed the satisfaction of the physical constraint, since the re-
construction accuracy improved, as shown in Figs. 11 and 12. Not
only the imposed constraint was satisfied by the LCPCA+Kriging
model’s predictions, but a very satisfactory level of accuracy was
also achieved as indicated by the parity plots in Fig. 13, with most
of the predicted values being within the 5% or 10% error lines. The
R? values for the prediction of the validation data, as the number
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Fig. 12. Reconstruction of the spatial CO mass fraction profile. Comparison between
PCA, CPCA and LCPCA (15 clusters). One-parameter case.

of training samples increased, are reported in Fig. 14. These values
increased as more observations were employed for the training of
the model, as expected.

The results presented in this section showed that different
choices for the Kriging kernels, PCA formulation (standard, local
and constrained) affect the ROM’s predictive capabilities.

4.2. 1D flame with two input parameters

The methodology explained in Section 2 was tested on the
same system presented in Section 4.1, using two input parameters.
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A molar fraction of N, was introduced in the inlet stream. A to-
tal of 147 observations were generated by OpenSMOKE++ in the
range 0.5-1.5 for the equivalence ratio and 0.4-1.0 for the molar
fraction of N,. A set of 75 observations was selected with the AS
strategy explained in Section 3.5 for the training of the SM. The
remaining observations were used as test data. Fig. 15a reports the
eigenvalue spectrum of the PCs, for different scaling criteria used.
Fig. 15b shows the cumulative original data variance that was cap-
tured when more PCs were retained in the reduced basis. This is
reported for different scaling criteria applied to the data-set. As

for the one-parameter case, most of the total data variance was
concentrated on the first few PCs, indicating that PCA was a valid
strategy for the reduction of the problem size. Besides, considered
that 75 training observations were used, a number of 15 PCs could
recover over 99% of the original data variance, indicating that the
chosen number of training observations was sufficient, as the pre-
diction errors for this case will indicate.

Fig. 16a shows the prediction errors for 72 validation points, us-
ing PCA+Kriging with 20 PCs, a constant trend function and expo-
nential kernel. The prediction errors for a local PCA+Kriging with
50 clusters and direct Kriging (applied directly on the original vari-
ables without the use of PCA) are also reported. The prediction er-
rors for the three models are shown in Fig. 16b, replacing the expo-
nential kernel with the Gaussian one. The results confirm that data
clustering and the kernel type have a significant impact on pre-
diction errors. Interestingly, direct Kriging provided reconstruction
errors higher than the ones obtained combining Kriging with (lo-
cal) PCA, showing the advantage associated to reducing the num-
ber of scalars to regress. In Fig. 17, the parity plots for the pre-
dicted values of temperature and CH4, OH, CO mass fractions are
shown. The number of retained PCs was 20, corresponding to a re-
covered original data variance of 99.78% with the auto-scaling cri-
terion, while the number of clusters was 50. The figure shows that
the PCA+Kriging methodology performed efficiently, with clear im-
provements when the data are clustered. The sum of mass frac-
tions of all chemical species added up to 1 with a maximum error
of 4 x 1073.

The use of CPCA was also investigated for this case. In Fig. 18a,
the rebuilt spatial profiles for CO by means of PCA, CPCA and
LCPCA are reported and compared. While the reconstructed CO
spatial profile showed negative values when rebuilt by PCA, CPCA
provided a non-negative spatial profile. Fig. 18b shows that such
a constraint was not violated even after Kriging interpolation,
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meaning that the interpolated values for the CPCA scores remained
within the feasible region delimited by the constraints indicated
in (12). Finally, the spatial profiles provided by the CPCA+Kriging
showed significant deviations in the post-reaction zone, while the
reconstruction accuracy was significnalty improved using the local
PCA formulation.

As explained, most of the data variance was recovered by a
small number of PCs, i.e. 15, in comparison to the number of avail-
able training samples, i.e. 75. In order to further test the proposed
methodology, and to be sure that the observed accuracy was not to
due to the high number of samples used for training, another ROM
was developed with a smaller number of training observations, i.e.
46. The parity plots for the prediction of temperature and OH, CO,
CH,4 mass fractions are shown in Fig. 19. It is clear that even reduc-
ing the number of training points, the accuracy of predictions was
very satisfactory, indicating that the analysis based on the cumula-

tive data variance recovered by the PCs is an efficient indicator for
the amount of information fed to the model by the training sam-
ples.

The promising results obtained from the application of the pro-
posed methodology for the one-parameter case, were confirmed
with two input parameters. The results confirmed that the com-
bination of PCA, and its variants, with Kriging is a valid choice for
the development of reduced-order surrogate models. In the next
section, the complexity of the case is increased by adding a third
input parameter.

4.3. 1D flame with three input parameters

After validating the predictive capabilities of a ROM developed
on the combination of PCA and Kriging on systems with one or
two input parameters, one more parameter was added to the sys-
tem, namely the inlet stream temperature in the range 298-798 K.
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kernel. Dashed line: 5% error. Dotted line: 10% error. Three-parameter case.

Two sets of observations were again generated by OpenSMOKE++.
A set of 180 solutions, selected using the AS strategy, was used to
train the model. The other set (702 solutions) was used for the val-
idation of the ROM’s predictions. Figs. 20a and b show the eigen-
value spectra and original data variance recovery for the different
scaling criteria, respectively. Over 99% of the original data variance
was captured by 28 PCs. Fig. 21 shows predictions of temperature,
CO, OH and NO mass fractions for the PCA+Kriging (48 PCs) and
LPCA+Kriging (20 clusters) models, with a quadratic trend func-
tion and Matern52 kernel. The application of Local PCA+Kriging
notably improved the predictions for some species like OH and
NO, whereas good predictions of temperature and CO were already
achieved by PCA+Kriging.

The application on the 1D flame allowed to test the potential
and limitations of the PCA+Kriging approach. For this reason, it is

interesting to test the proposed methodology on a 2D flame with
detailed chemistry and transport phenomena.

4.4. 2D flame with two input parameters

The methodology described in Section 2 was applied to a mul-
tidimensional flame in more complex configurations in order to
test its potential. The configuration of the simulated flame is de-
scribed in Cao et al. (2013) and in Cao et al. (2015). The compu-
tational domain started from the exit of the nozzle and extended
122 mm further downstream. The radial direction was expanded
to 42.88 mm. A 2D structured axi-symmetric mesh with around
25,600 cells was used and the nozzle radius was resolved with 12
cells. The laminarBuoyantSimpleSMOKE solver was applied. Gravity
was turned on. The multi-component diffusion model was adopted
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Fig. 23. Left halves: true data. Right halves: (a) reconstruction of the temperature field by PCA; (b) reconstruction of the temperature field by local PCA; (c) reconstruction
of the CO, mass fraction field by PCA; (d) reconstruction of the CO, mass fraction field by local PCA. Inlet velocity: 24 cm/s; inlet CH4 molar fraction: 40%. 2D flame. PCA: 5

PCs. Local PCA: 100 clusters.

to consider molecular diffusion. The GRI3.0 mechanism without
NOx (35 species and 219 reactions) was chosen. For the velocity
boundary condition, the profile provided from Cao et al. (2013) and
in Cao et al. (2015) was used. The input parameters were two,
namely the inlet velocity and the molar fraction of CHy4 in the inlet
stream, which was a mixture of CHy and N,. A total of 30 sam-
ples was produced by OpenFOAM, spanning the two input param-
eters in the range 24-89 cm/s and 40-100% for the inlet velocity
and inlet molar fraction of CHy, respectively. A total of 36 physi-
cal variables was considered: 35 chemical species and temperature.
25 observations were chosen to train a PCA+Kriging model using
the adaptive strategy described in Section 3.5. Fig. 22a reports the
eigenvalue spectrum of a PCA performed on this data-set, for dif-
ferent scaling criteria. Fig. 22b shows the cumulative original data
variance that was recovered when more PCs were retained. The re-
covery of 99% of the original data variance was achieved with 20
PCs for all scaling criteria. This indicated that, despite the high di-
mensionality of the system, recurrent structures could be found in
the data. At the same time, the fact that 20 PCs were needed to
recover 99% of the data variance, and that 25 observations were
used for the training of the model, also suggested that more train-

ing observations were needed, or that a narrower parameter re-
gion should have been explored, as we shall see in Section 4.5.
Fig. 23 shows the temperature field for an inlet velocity of 24 cm/s
and an inlet CH4 molar fraction of 40%. The original field is shown
on the left half of the figures, while PCA and local PCA reconstruc-
tions are shown on the right half of the figure. PCA was performed
by retaining 5 PCs, while a number of 100 clusters was used for
local PCA. The data-set was centered and scaled according to the
VAST scaling criterion. The reconstruction performed by PCA could
clearly be improved by the local PCA formulation. The mean recon-
struction errors were 7% for PCA and 3% for local PCA. The over-
all performance of the model for the reconstruction of the original
data can be analyzed from Fig. 25. These figures report the par-
ity plots for the reconstructed temperature and CO,, CH4, CO mass
fraction fields. The dashed lines correspond to the 5% error. The
dotted lines correspond to the 10% error. It is easily noticeable that
the grey points, corresponding to the PCA reconstruction, are more
scattered, while the black ones, corresponding to the local PCA re-
construction, lie within the reported 5% or 10% error lines more
frequently (Fig. 25).
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Next, the predictive capabilities of a PCA+Kriging and local
PCA+Kriging ROM for the 2D system were investigated. Fig. 26 re-
ports the true temperature field for an inlet velocity of 64 cm/s
and an inlet CH4 molar fraction of 70%, as well as the predictions
provided by PCA with 5 PCs, and local PCA with 100 clusters and 5
PCs, both in combination with the same Kriging model (quadratic
trend function and exponential kernel). The mean error of the

PCA+Kriging model for the temperature field was 8%, and the lat-
ter was halved using LPCA+Kriging. Similarly, Fig. 27 reports the CO
and OH mass fractions fields for an inlet velocity of 64 cm/s and
an inlet CH4 molar fraction of 70%. The resuls qualitatively con-
firmed that the local PCA formulation could better reproduce the
distribution (shape and extension) of the chemical species contours
when compared to PCA. Parity plots for the prediction of temper-
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ature and CO,, CH4, CO mass fractions are reported in Fig. 28. The
5% and 10% error lines are shown again in dashed red and yel-
low, respectively. The predictions of the local PCA+Kriging model,
in black, lie within the 10% error lines more than the PCA+Kriging
predictions, in gray, indicating the overall better performance of
local PCA+Kriging.

4.5. 2D flame with two input parameters, using a smaller parameter
region

The 2D data-set discussed above included observations for a
high range of velocities. The parameter region to be explored in-

cluded strong non-linearities which were difficult to model with
only 30 training observations, thus limiting the predictive capa-
bilities of the developed ROM. To confirm that, new observations
were produced for a narrower range of velocities (24-55 m/s). A
total of 23 observations were used for the training of a new ROM
based on PCA and Kriging in this region. Predictions were vali-
dated for 4 combinations of input parameters: 45% CHy- 35 m/s,
65% CH4 - 30 m/s, 75% CH4 - 40 m/s, 95% CH,4 - 40 m/s. Figs. 29
and 30 report the prediction of the temperature field and of the
CO,, CO, OH mass fraction fields by means of PCA+Kriging and lo-
cal PCA+Kriging, for an inlet velocity of 40 cm/s and an inlet CHy
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clusters. Kriging: quadratic trend function, exponential kernel. 2D flame with a smaller range of velocities.

molar fraction of 75%. PCA was performed with a number of 5 PCs,
local PCA with a number of 100 clusters. Kriging was performed
with a quadratic trend function and an exponential kernel. Fig. 31
reports the parity plots for the predicted values of temperature
and CO,, CHy, CO mass fractions. These figures clearly indicate that
better predictions were obtained in the region of low inlet veloci-
ties in comparison to Fig. 28, where the data spread was higher.
In particular, it is observable that most predictions by the local

PCA+Kriging model fell within the 5% error region (dashed red).
The limitations of the predictive model observed in the previous
case were due to the wide range of explored conditions: the in-
let velocity was indeed allowed to change roughly by a factor of 4,
which led to substantial modifications in the flame topology and
structure. Limiting the ratio of velocity to a factor of 2 allowed to
develop a ROM whose reliability in the range of conditions was
significantly higher.
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Fig. 32a reports the cumulative data variance captured by the
PCs. In the previous case, the number of training samples was 25
and 20 PCs were needed to capture over 99% of the data variance.
In the present case, 15 PCs were sufficient to recover over 99% of .

. .. . . 4.6. Performance evaluation
data variance for 23 training observations, thus confirming that the
parameter rezglon ‘as_ more efﬁcumt}y sampled. Fig. 32b reports The computational cost of the two-dimensional CFD with two
the global R* values for the prediction of the validation data as . described in Section 4.4 30 CPU-h
the number of samples used for the training of a local PCA+Kriging mput_pararqeters, escribed In ection 4.4, was over -nours
per simulation. By developing a ROM, as shown throughout this

model increased. As expected, these values increased to unity as
more training samples were used.
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Table 1

Comparison between the computational performances of differ-
ent Kriging models: a direct Kriging model, a PCA+Kriging model
with 10 PCs, and a local PCA+Kriging model with 10 PCs and 100

clusters.
Kriging 10 PCs 100 clusters
TRAINING TIME 9.7 hrs 4s 9s
CLUSTERING TIME -s -S 53 min
SPEED-UP 1 8,712 1n
#HYPER-PARAMETERS 945,360 30 3,000
#COEFFICIENTS 0 5,672,160 5,672,160

paper, the outcome of such simulations could be predicted instan-
taneously. Besides, the costs associated to the training process of
a ROM based on PCA and Kriging were also smaller when com-
pared to the computational burden needed for direct Kriging (no
PCA compression is performed and one Kriging model is trained
per original number of variables).

Table 1 summarizes the training costs associated to different
models, namely: a direct Kriging model, a PCA+Kriging model with
10 PCs, and a local PCA+Kriging model with 10 PCs and 100 clus-
ters. As clearly shown in Table 1, the training costs and the num-
ber of hyper-parameters associated to a Direct Kriging model were
very high when compared to the two ROMs based on PCA or lo-
cal PCA. On the other hand, after training a (local) PCA+Kriging
model, there was the need for additional coefficients to be stored
in memory, due to the centering and scaling procedure, and the
PCA compression. For a PCA+Kriging model with 10 PCs, 2 vectors
of mean values and scaling factors had to be stored as well as 10
PCA modes, for a total of 12 vectors of size 472,680, as the data-set
was composed of 36 physical variables evaluated at 13,130 spatial
locations (half of the original mesh was analyzed exploiting the
problem’s symmetry). The same number of coefficients needed to
be stored for the local PCA+Kriging model with 10 PCs and 100
clusters.

5. Conclusions

In the present work, a methodology for the development of ac-
curate and robust ROM generation using a combination of PCA and
Kriging was presented. The methodology was demonstrated for a
1D laminar flame with an increasing number of input parameters
(equivalence ratio, composition of the fuel, inlet temperature), and
for a 2D flame with two input parameters (inlet velocity and inlet
fuel composition). In all three cases and for the 2D flame as well,
both training and test data were available. The training data was

employed to generate the ROM. The test data was used to assess
the ROM’s predictive capabilities.

The results showed that the combination of PCA with Kriging is
a valid solution for the development of physics-based SMs. Mainly,
we want to stress the following points:

o The developed surrogate models can be used for parameter ex-

ploration with low prediction errors: < 10%.

The local PCA formulation provides an improvement over PCA,

as it better deals with the non-linearities and the high dimen-

sionality of the original system.

o CPCA guarantees that the imposed physical constraints are not
violated when the data are reconstructed. In this work, the im-
posed constraint is the positivity of the chemcial specie mass
fractions. This is not guaranteed by PCA, while local PCA alle-
viates this issue by simply improving the accuracy of the data
reconstruction.

e Once a ROM is correctly trained, predictions are possible at
a reduced computational cost, making parameter exploration
much easier, even for very CPU-intensive systems.

The present work represents the first application of the
PCA+Kriging methodology to combustion problems. As such, it is
intended to be a proof of concept that will pave the way for the
application of this methodology to more complex systems. Indeed,
as 3D simulations of practical combustion systems usually require
significant computational resources, having a low-order model that
can reliably and instantaneously predict the outcome of these sim-
ulations is precious. Moreover, the promptness of the ROM’s pre-
dictions is paramount for the development of digital twins for real
systems, which can be employed for system control and visual-
ization. A correctly trained ROM also grants the possibility of per-
forming sensitivity analysis of the investigated system w.r.t. its in-
put parameters, and can be employed to solve optimization prob-
lems in the context of system design, where the evaluation of the
objective function is the computational burden. The training cost
of PCA+Kriging ROMs is also lower compared to SMs with no com-
pression. This is very useful when updating a developed ROM in
the event of new available data. Despite the relative simplicity of
the selected test cases, the present work allowed to investigate the
advantages and limitations of the method, as well as its poten-
tial for applications to more complex combustion systems. A sub-
stantial reduction in the system dimensionality was accomplished
via PCA (e.g. from 10,780 to 5 scalars in the one-parameter case),
while the use of Kriging allowed to capture the non-linear rela-
tion between the reduced set of coefficients and the input pa-
rameters, enabling the prediction of non-observed system states.
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Future work will extend the proposed methodology to more com-
plex cases, including three-dimensional turbulent reacting flows.
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