High Dynamic, Spectral and Polarized Natural Light Environment Acquisition
Résumé
In the field of image synthesis, the simulation of material's appearance requires a rigorous resolution of the light transport equation. This implies taking into account all the elements that may have an influence on the spectral radiance, and that are perceived by the human eye. Obviously, the reflectance properties of the materials have a major impact in the calculations, but other significant properties of light such as spectral distribution and polarization must also be taken into account, in order to expect correct results. Unfortunately real maps of the polarized or spectral environment corresponding to a real sky do not exist. Therefore, it seemed necessary to focus our work on capturing such data, in order to have a system that qualifies all the properties of light and capable of powering simulations in a renderer software. As a consequence, in this work, we develop and characterize a device designed to capture the entire light environment, by taking into account both the dynamic range of the spectral distribution and the polarization states, in a measurement time of less than two minutes. We propose a data format inspired by polarimetric imaging and fitted for a spectral rendering engine, which exploits the "Stokes-Mueller formalism."