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In this paper we propose a statistical approach for the optimization of the phased codes used in radar. By considering each code as a realization of a random variable we show that we can build good codes if the distribution of the random variable is suitably chosen. We then consider sequences generated by the skew tent map and we show that for some values of the bifurcation parameter the invariant probability density coincides with the desired one. To confirm this idea we compute the maximal peak of the ambiguity function outside zero relative to the bifurcation parameter of the skew tent map.

I. INTRODUCTION

In radar systems the search for transmitted waveforms leading to the "best possible" ambiguity function, particularly in terms of low side lobes, has already been addressed in the literature [START_REF] Benedetto | Phase-Coded Waveforms and Their Design[END_REF], [START_REF] Li | MIMO radar signal processing[END_REF]. In some works the considered waveforms are defined by a set of sequences; these works aim to design good waveforms by synthesizing sequences having suitable autoand cross-correlation functions [START_REF] Sun | Analysis and comparison of MIMO radar waveforms[END_REF], [START_REF] Stoica | On designing sequences with impulse-like periodic correlation[END_REF], [START_REF] He | Designing unimodular sequence sets with good correlations -including an application to MIMO radar[END_REF], [START_REF] Arlery | Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[END_REF], [START_REF] Tan | Phase code optimization for coherent MIMO radar via a gradient descent[END_REF]. However, the ambiguity function also depends on parameters concerning the shaping pulse, the geometry of the transmission antenna array and the targets angles of arrival. It also appears that the waveforms generated by the existing methods have drawbacks. Either they are limited in length, or they require important calculations, especially when we need a large number of them or we want to add one. In the last years chaotic sequences have been considered as an alternative to other sequences in the literature for the design of waveforms in communication systems. Earlier articles in the context of multi-user CDMA communication have already shown the interest of using codes based on chaos over more traditional codes [START_REF] Khanfouci | PLM sequences for the performance optimization of linear multiuser detectors[END_REF], [START_REF] Meherzi | A family of spatiotemporal chaotic sequences outperforming Gold ones in asynchronous DS-CDMA systems[END_REF]. Some other works have also suggested the use of chaotic sequences as candidates for the design of radar waveforms [START_REF] Jemaa | Chaotic sequences with good correlation properties for MIMO Radar application[END_REF], [START_REF] Willsey | Quasi-orthogonal wideband radar waveforms based on chaotic systems[END_REF], [START_REF] Jin | Complementary-based chaotic phase-coded waveforms design for MIMO radar[END_REF] and the references inside. In this paper we propose a statistical approach in the research of good codes; by considering each code as a realization of a random variable we show that we can build good codes if the distribution of the random variable is suitably chosen. We then consider chaotic sequences generated by the skew tent map and we show that for some values of the bifurcation parameter the invariant probability density coincides with the desired one. To confirm this idea we analyzed the impact of the found results on the ambiguity function; especially on the lobes outside zero relative to the bifurcation parameter of the skew tent map. After briefly introducing in section II the ambiguity function and extracting the function of interest to be optimized, we will study in section III the statistical properties of the latter. In section IV, we will show how sequences generated by the skew tent map meet the statistical properties established in the previous section and required for a good ambiguity function. Finally the conclusion will summary the contribution of the paper and will present future extensions.

II. SHORT REMINDER OF THE RADAR AMBIGUITY

FUNCTION

The ambiguity function (AF) of a radar system consists in the 2D output, for a given time delay τ and a given Doppler frequency ν, of the filter matched to the transmitted signal s(t) and can be written as [START_REF] Li | MIMO radar signal processing[END_REF]:

A(τ, ν) = s(t)s * (t + τ )e j2πνt dt (1) 
where the waveform s(t) is given by:

s(t) = Nc p=1 w p u(t -(p -1)T c ) (2) 
where N c is the length of the sequences {w m,p } p=1,Nc and u(t) is a shaping function of duration T c . (1) then becomes :

A(τ, ν) = Nc p=1 Nc l=1 w p w * l γ u p,l (τ, ν) (3) 
where

γ u p,l (τ, ν) = u(t-(p-1)T c )u(t-(l-1)T c +τ )e j2πνt dt (4) 
For simplicity we will consider in the following the socalled SIMO case where M = 1 so that β m,m (θ, θ t ) = 1 and the ambiguity function (1) reduces to A 1,1 (τ, ν) that we will note A(τ, ν). After some calculations the ambiguity function for τ = kT c then becomes:

A(kT c , ν) = R w (ν, k)α(ν) (5) 
where

α(ν) = Tc 0 |u(t)| 2 e j2πνt dt (6) 
Note that in the case where u(t) is the rectangular function of support [0, T c ],

α(ν) = e jπνTc sin πνT c πν (7) 
In practice, the Doppler frequency ν is usually much smaller than the bandwidth of the probing waveform so that we can safely suppose that | sin πνTc πν | T c . It then appears that the optimization of the ambiguity function reduces to the optimization of

|R(k, ν)| = | Nc-k p=1 ω p ω * p+k e jπν(p-1)Tc | (8) 
where ω p = e jπxp , x p is a sequence in the interval [-1, 1].

The expression [START_REF] Khanfouci | PLM sequences for the performance optimization of linear multiuser detectors[END_REF] becomes

|R(k, ν)| = | Nc-k p=1 e jπzp(k) | (9) z p (k) = x p -x p+k + ν(p -1)T c (10) 
is also a random variable for every fixed integer k.

In the section below we consider the statistics of

Z k = Nc-k p=1 e jπyp (11) 
where y k is a random variable

III. STATISTICAL PROPERTIES OF |Z k | A. Statistics of |Z k | in the case of i.i.d. y p
Suppose that y p is i.i.d and the distribution of y p is symmetrical about its mean zero. From the central limit theorem and for N ck large enough the real and imaginary parts of

Z k = r exp(jπθ) are approximately Gaussian random variable of means α = E[rcos(πθ)] = (N c -k)E[cos(πy p )] and β = E[rsin(πθ)] = (N c -k)E[
sin(πy p )] and variances s 1 and s 2 , respectively. The probability distribution of the amplitude r = |Z k | is, for its part, given by [START_REF] Beckmann | Statistical Distribution of the Amplitude and the Phase of a Multiply Scattered Field[END_REF] 

ρ(r) = 2r √ s 1 + s 2 e -(B 2 +(s1+s2)r 2 ) I 0 (2B(s 1 + s 2 )r) (12) 
where B = α s1+s2 , and I 0 is the modified Bessel function of the first kind. For example, let us assume that y p is uniformly distributed in an interval [-a, a], 0 < a < 1. It follows that α = (N ck)sinc(a) and β = 0. The distribution [START_REF] Jin | Complementary-based chaotic phase-coded waveforms design for MIMO radar[END_REF] of ρ(r) is plotted in Fig. 1 for a = 1, 0.7, 0.8. We can see that for a fixed R the probability that r < R is greater for the case a = 1 corresponding to the case of uniform distribution of e jπyp on the unit circle. In this case, it is easy to find [START_REF] Beckmann | Statistical Distribution of the Amplitude and the Phase of a Multiply Scattered Field[END_REF] that α = 0 and

s 1 = s 2 = (N c -k)/2 so that B = 0 and the distribution of |Z k | reduces to the Rayleigh distribution ρ(r) = 2ρ exp(-r 2 )
. This latter will be considered as a reference in the sequel (blue line in Fig1). It is easy to show that this case is also obtained if y p is uniformly distributed on any interval [k, l] where lk is an even integer. More generally, according to [START_REF] Beckmann | Statistical Distribution of the Amplitude and the Phase of a Multiply Scattered Field[END_REF], whatever the distribution of y p and whatever R is, the probability p(r < R) will be greater the more the distribution of r will be close to a Rayleigh distribution with B = 0. Now we suppose that y p is uniformly distributed in an interval [-a, a] where 1 < a < 2. Because of the periodicity of e jπyp we have e jπyp = e jπ ỹp where ỹp is a random variable the distribution of which is shown in Fig. 2 in red color. We can see that this distribution is different from the uniform distribution and according to Fig. 4 to see that as the u p are i.i.d. E[e jπup ] is a constant denoted by A and

E[Z k (ν)] = A Nc-k p=1 e jπ(p-1)νTc (14) 
In case νT c = 2q where q is an integer,

E[Z k (ν)] = A(N c -k). If A = 0 the real part of Z k (ν)
is also zero and consequently α = 0 and B = 0 which are the conditions so that |Z k | has a Rayleigh type distribution (see [START_REF] Beckmann | Statistical Distribution of the Amplitude and the Phase of a Multiply Scattered Field[END_REF]).

In case νT c = 2q: This could be explained by saying that the presence of the deterministic term in ( 13) allows uniform scattering of the points on the unit circle when the distribution of u p is not uniformly distribution in [-1, 1].

E[Z k (ν)] = A e jπ(Nc-k)νTc /2 e jπνTc/2 sin[π(N c -k)νT c /2] sin[πνT c /2] (15) 

D. Summary

We can summarize the following points 

IV. SEQUENCES GENERATED BY THE SKEW TENT MAP

In this section we consider chaotic sequences x p generated by x p+1 = T µ (x p ) and an initial condition x 0 where T µ (x) is the piece-wise linear skew tent map defined in [-1, 1] by

T µ (x) = 2 µ-1 x -1+µ µ-1 if µ < x ≤ 1 2 µ+1 x -µ-1 µ+1 otherwise (17) 
The invariant probability density of the variable x p is the uniform distribution in the interval [-1, 1] [14] i.e. x p could be considered as a realization of a uniform random variable uniformly distributed in [-1, 1]. The idea is to use such sequences in the MIMO radar system described above with y p = T k µ (x p )x p . The map y = T k µ (x)-x is plotted in Fig. 6. The minimum and -1 -0.5 0 0.5
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bk(2 k-1 ) bk (1) Fig. 6. Curves of y = T k µ (x) -x the maximum are respectively

(a k (m), 1 -a k (m)), 1 ≤ m ≤ 2 k-1 and (b k (m), -1-b k (m)), 1 ≤ m ≤ 2 k-1 +1; a k (m)
and b k (m) are defined by the following recursive relations [START_REF] Ben Jemaa | Kendall's tau based correlation analysis of Chaotic Sequences generated by piecewise linear maps[END_REF]:

a 1 (1) = µ, b 1 (1) = -1, b 1 (2) = 1 a k+1 (2m -1) = µ + 1 2 [a k (m) -b k (m)] + b k (m) a k+1 (2m) = µ + 1 2 [a k (m) -b k (m + 1)] + b k (m + 1) b k+1 (2m -1) = b k (m) b k+1 (2m) = a k (m) b k+1 (2m + 1) = b k (m + 1) Let A(k, m) = a k (m)-b k (m) 2-a k (m)+b k (m) C(k, m) = a k (m)-b k (m+1) 2-a k (m)+b k (m+1) (18) 
and

M = 1-a k (1) and m = -1-b k (2 k-1 +1); we show that if x follows the uniform distribution in the interval [-1, 1] then the probability density f µ,k (y) of T k µ (x) -x is zero outside [m, M ] and for every y ∈ [m, M ] f µ,k (y) is f µ,k (y) = m0 m=1 [A(k, m) -C(k, m)] 2 (19) 
where iterations the probability density of y = T k µ (x)x tends to the triangular distribution in the interval [-2, 2] and thus ŷ follows the uniform distribution in the interval [-1, 1] for all values of µ, subsequently we have to look for parameter µ that allows good probability densities for the first iterations.

m 0 is such that y ∈ [1 -a k (m 0 + 1), 1 -a k (m 0 )].
To measure the resemblance of f µ,k (y) with the uniform distribution on the interval [-1, 1] we considered the criteria

C(µ, k) = 1 -1 (f µ (x) - 1 2 ) 2 dx (20) 
We plotted in Fig. 9 the criteria C(k, µ) versus the iteration number k and for different values µ. It is clear that the case µ = 0.1 allows the best value of C(k, µ).

To see the impact of this result on the performance of the the two functions, especially for ν ∼ = 0, ν ∼ = 2 and ν ∼ = -2; indeed around these values the peaks are higher for µ = 0.7 which confirms the found results.

In Fig. 15 we plotted the maximal peak of the ambiguity func- tion and the Lyapunov exponent (the well known parameter which characterizes the unstability of a dynamical system) versus the bifurcation parameter µ. We can see that the more chaotic the sequences, the better the ambiguity function. 

V. CONCLUSION

In this paper we adopted a statistical approach to look for sequences allowing optimization of the ambiguity function of a radar system. We have shown that good sequences can be generated by a random variable with a suitable distribution and that it is possible to obtain such sequences by generating them using a chaotic skew tent map. Because of the promising results we have obtained, we will examine the MIMO case in future work and adopt the same statistical approach to optimize the ambiguity function by considering the inter-correlation functions of the sequences.
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  the histogram of |Z k | computed over 10000 realizations and for a = 1.32 is no longer a Rayleigh distribution and yields high values of the mean and variance of |Z k |. Let us now assume that y p has a triangular distribution on the interval [-2b, 2b], 1 ≤ 2b ≤ 2. The distributions of y p and ỹp are plotted together in Fig.3. We can see that ỹp is uniformly distributed in [-1, 1] if and only if b = 1, i.e. we obtain a uniform equivalent distribution in the interval [-1, 1] if the distribution of y p is a triangle on the interval [-2, 2]. We can see on Fig. 4 the influence of the definition interval [-2b, 2b] of the triangle distribution on the histogram of |Z k |. If b = 1, the distribution of |Z k | is of Rayleigh type with minimal mean and
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 345 Fig. 3. Distribution of yp and ỹp in the case of triangular distribution

Since

  | sin[π(N ck)νT c /2]| ≤ (N ck)| sin[πνT c /2]|, we obtain Real(E[Z k (ν)]) ≤ |A|(N ck) (16) Also in this case if A = 0, the real part of E[Z k (ν)] is zero, thus α = 0 and B = 0 which are the conditions so that |Z k | has a Rayleigh type distribution. To illustrate this idea we plotted in the Fig.5 the histograms of |Z k | for y p uniformly distributed in | -1.2, 1.2]; we can see that the distribution of |Z k | differs from the desired Rayleigh one only when ν = 0.

•

  If we aim to minimize |Z k | = | k p=1 e jπyp | by assuming y p , p = 1, 2, ...k are k realizations of a uniform random variable in [-a, a], the optimum is obtained for a = 1, i.e. y p uniformly distributed in the interval [-1, 1]. • Due to the periodicity of e jπyp this optimum can also be achieved by other distributions of y p , this has been examplified with a triangular distribution on the interval [-2, 2]. • If y p = x p+kx p , the above condition can be obtained if x p is uniformly distributed in the interval [-1, 1]. • Looking for sequences that minimizes |Z k | = | k p=1 e jπ(x p+k -xp+ν(p-1)Tc)yp | reduces to cancelling the term for ν = 0.
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 15 Fig. 15. Maximal peak of the ambiguity function and Lyapunov exponent versus the bifurcation parameter µ