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Abstract—In this paper we propose a statistical approach
for the optimization of the phased codes used in radar. By
considering each code as a realization of a random variable we
show that we can build good codes if the distribution of the
random variable is suitably chosen. We then consider sequences
generated by the skew tent map and we show that for some values
of the bifurcation parameter the invariant probability density
coincides with the desired one. To confirm this idea we compute
the maximal peak of the ambiguity function outside zero relative
to the bifurcation parameter of the skew tent map.

Index Terms—SIMO radar, ambiguity function, chaotic se-
quences, skew tent map, invariant probability density

I. INTRODUCTION

In radar systems the search for transmitted waveforms
leading to the ”best possible” ambiguity function, particularly
in terms of low side lobes, has already been addressed in the
literature [1], [2]. In some works the considered waveforms are
defined by a set of sequences; these works aim to design good
waveforms by synthesizing sequences having suitable auto-
and cross-correlation functions [3], [4], [5], [6], [7]. However,
the ambiguity function also depends on parameters concerning
the shaping pulse, the geometry of the transmission antenna
array and the targets angles of arrival. It also appears that the
waveforms generated by the existing methods have drawbacks.
Either they are limited in length, or they require important
calculations, especially when we need a large number of them
or we want to add one.
In the last years chaotic sequences have been considered as an
alternative to other sequences in the literature for the design
of waveforms in communication systems. Earlier articles in
the context of multi-user CDMA communication have already
shown the interest of using codes based on chaos over more
traditional codes [8], [9]. Some other works have also sug-
gested the use of chaotic sequences as candidates for the
design of radar waveforms [10], [11], [12] and the references
inside. In this paper we propose a statistical approach in the re-
search of good codes; by considering each code as a realization
of a random variable we show that we can build good codes
if the distribution of the random variable is suitably chosen.
We then consider chaotic sequences generated by the skew
tent map and we show that for some values of the bifurcation
parameter the invariant probability density coincides with the

desired one. To confirm this idea we analyzed the impact of
the found results on the ambiguity function; especially on the
lobes outside zero relative to the bifurcation parameter of the
skew tent map.
After briefly introducing in section II the ambiguity function
and extracting the function of interest to be optimized, we
will study in section III the statistical properties of the latter.
In section IV, we will show how sequences generated by the
skew tent map meet the statistical properties established in the
previous section and required for a good ambiguity function.
Finally the conclusion will summary the contribution of the
paper and will present future extensions.

II. SHORT REMINDER OF THE RADAR AMBIGUITY
FUNCTION

The ambiguity function (AF) of a radar system consists in
the 2D output, for a given time delay τ and a given Doppler
frequency ν, of the filter matched to the transmitted signal s(t)
and can be written as [2]:

A(τ, ν) =

∫
s(t)s∗(t+ τ)ej2πνtdt (1)

where the waveform s(t) is given by:

s(t) =

Nc∑
p=1

wpu(t− (p− 1)Tc) (2)

where Nc is the length of the sequences {wm,p}p=1,Nc
and

u(t) is a shaping function of duration Tc. (1) then becomes :

A(τ, ν) =

Nc∑
p=1

Nc∑
l=1

wpw
∗
l γ̃

u
p,l(τ, ν) (3)

where

γ̃up,l(τ, ν) =

∫
u(t−(p−1)Tc)u(t−(l−1)Tc+τ)ej2πνtdt (4)

For simplicity we will consider in the following the so-
called SIMO case where M = 1 so that βm,m′(θ, θt) = 1 and
the ambiguity function (1) reduces to A1,1(τ, ν) that we will
note A(τ, ν). After some calculations the ambiguity function
for τ = kTc then becomes:



A(kTc, ν) = Rw(ν, k)α(ν) (5)

where

α(ν) =

∫ Tc

0

|u(t)|2ej2πνtdt (6)

Note that in the case where u(t) is the rectangular function
of support [0, Tc],

α(ν) = ejπνTc
sinπνTc
πν

(7)

In practice, the Doppler frequency ν is usually much smaller
than the bandwidth of the probing waveform so that we can
safely suppose that | sinπνTc

πν | ' Tc. It then appears that
the optimization of the ambiguity function reduces to the
optimization of

|R(k, ν)| = |
Nc−k∑
p=1

ωpω
∗
p+ke

jπν(p−1)Tc | (8)

where ωp = ejπxp , xp is a sequence in the interval [−1, 1].
The expression (8) becomes

|R(k, ν)| = |
Nc−k∑
p=1

ejπzp(k)| (9)

zp(k) = xp − xp+k + ν(p− 1)Tc (10)

is also a random variable for every fixed integer k.

In the section below we consider the statistics of

Zk =

Nc−k∑
p=1

ejπyp (11)

where yk is a random variable

III. STATISTICAL PROPERTIES OF |Zk|
A. Statistics of |Zk| in the case of i.i.d. yp

Suppose that yp is i.i.d and the distribution of yp is
symmetrical about its mean zero. From the central limit
theorem and for Nc − k large enough the real and imaginary
parts of Zk = r exp(jπθ) are approximately Gaussian random
variable of means α = E[rcos(πθ)] = (Nc − k)E[cos(πyp)]
and β = E[rsin(πθ)] = (Nc − k)E[sin(πyp)] and variances
s1 and s2, respectively. The probability distribution of the
amplitude r = |Zk| is, for its part, given by [13]

ρ(r) = 2r
√
s1 + s2e

−(B2+(s1+s2)r
2)I0(2B(s1 + s2)r) (12)

where B = α
s1+s2

, and I0 is the modified Bessel function of
the first kind.
For example, let us assume that yp is uniformly distributed
in an interval [−a, a], 0 < a < 1. It follows that α = (Nc −
k)sinc(a) and β = 0. The distribution (12) of ρ(r) is plotted
in Fig. 1 for a = 1, 0.7, 0.8. We can see that for a fixed R
the probability that r < R is greater for the case a = 1
corresponding to the case of uniform distribution of ejπyp on
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Fig. 1. Distribution of the modulus of E[Zk]
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Fig. 2. Distribution of yp and ỹp in the case 1 < a < 2

the unit circle. In this case, it is easy to find [13] that α = 0 and
s1 = s2 = (Nc − k)/2 so that B = 0 and the distribution of
|Zk| reduces to the Rayleigh distribution ρ(r) = 2ρ exp(−r2).
This latter will be considered as a reference in the sequel (blue
line in Fig1). It is easy to show that this case is also obtained
if yp is uniformly distributed on any interval [k, l] where l−k
is an even integer.

More generally, according to [13], whatever the distribution
of yp and whatever R is, the probability p(r < R) will
be greater the more the distribution of r will be close to a
Rayleigh distribution with B = 0.

Now we suppose that yp is uniformly distributed in an
interval [−a, a] where 1 < a < 2. Because of the periodicity
of ejπyp we have ejπyp = ejπỹp where ỹp is a random variable
the distribution of which is shown in Fig.2 in red color. We
can see that this distribution is different from the uniform
distribution and according to Fig. 4 the histogram of |Zk|
computed over 10000 realizations and for a = 1.32 is no
longer a Rayleigh distribution and yields high values of the
mean and variance of |Zk|.

Let us now assume that yp has a triangular distribution on
the interval [−2b, 2b], 1 ≤ 2b ≤ 2. The distributions of yp and
ỹp are plotted together in Fig.3. We can see that ỹp is uniformly
distributed in [−1, 1] if and only if b = 1, i.e. we obtain a
uniform equivalent distribution in the interval [−1, 1] if the
distribution of yp is a triangle on the interval [−2, 2]. We can
see on Fig. 4 the influence of the definition interval [−2b, 2b] of
the triangle distribution on the histogram of |Zk|. If b = 1, the
distribution of |Zk| is of Rayleigh type with minimal mean and
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Fig. 3. Distribution of yp and ỹp in the case of triangular distribution
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Fig. 4. Histograms of |Zk| in the case of uniform and triangular distributions

variance whereas for 2b = 1.32 it is no longer of a Rayleigh
type and yields a high mean and variance. Also note that it is
easy to compute α = (Nc− k)[1− cos(π2b)]/4b2π2 which is
zero for b = 1 (and consequently B = 0).

B. Statistics of Zk in the case yp = xp+k − xp
For a fixed integer k let yp = xp+k − xp. If the xp are

i.i.d random variables uniformly distributed in the interval
[−a, a], 0 < a < 1 the distribution of yp is the triangular
function on the interval [−2a, 2a]. If 2a < 1 the distribution
of yp is triangular within the interval [−1, 1] and thus differs
enough from the uniform distribution to give bad mean and
variance of |Zk| as explained in the previous section. If
2a > 1 we retrieve the statistics of |Zk| described in the
previous section, i.e. optimum is 2a = 2. More generally, the
distribution of the xp may not be a uniform one, the key is
to have yp with a triangular distribution on the interval [−b, b]
with b ≥ 2. We will see in section IV a way of generating
such xp.

C. Statistics of Zk in the case yp = up + ν(p− 1)Tc

We here consider the statistics of

yp = up + ν(p− 1)Tc (13)

where up are i.i.d. random variables. The presence of the
deterministic term ν(p − 1)Tc in the expression of yp makes
difficult to analyze the statistics of |Zk|. However, it is easy
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to see that as the up are i.i.d. E[ejπup ] is a constant denoted
by A and

E[Zk(ν)] = A

Nc−k∑
p=1

ejπ(p−1)νTc (14)

In case νTc = 2q where q is an integer, E[Zk(ν)] =
A(Nc − k). If A = 0 the real part of Zk(ν) is also zero
and consequently α = 0 and B = 0 which are the conditions
so that |Zk| has a Rayleigh type distribution (see [13]).
In case νTc 6= 2q:

E[Zk(ν)] = A
ejπ(Nc−k)νTc/2

ejπνTc/2

sin[π(Nc − k)νTc/2]
sin[πνTc/2]

(15)

Since | sin[π(Nc − k)νTc/2]| ≤ (Nc − k)| sin[πνTc/2]|, we
obtain

Real(E[Zk(ν)]) ≤ |A|(Nc− k) (16)

Also in this case if A = 0, the real part of E[Zk(ν)] is zero,
thus α = 0 and B = 0 which are the conditions so that |Zk|
has a Rayleigh type distribution. To illustrate this idea we
plotted in the Fig.5 the histograms of |Zk| for yp uniformly
distributed in | − 1.2, 1.2]; we can see that the distribution of
|Zk| differs from the desired Rayleigh one only when ν = 0.
This could be explained by saying that the presence of the
deterministic term in (13) allows uniform scattering of the
points on the unit circle when the distribution of up is not
uniformly distribution in [−1, 1].

D. Summary

We can summarize the following points
• If we aim to minimize |Zk| = |

∑k
p=1 e

jπyp | by assuming
yp, p = 1, 2, ...k are k realizations of a uniform random
variable in [−a, a], the optimum is obtained for a = 1,
i.e. yp uniformly distributed in the interval [−1, 1].

• Due to the periodicity of ejπyp this optimum can also
be achieved by other distributions of yp, this has been
examplified with a triangular distribution on the interval
[−2, 2].



• If yp = xp+k − xp, the above condition can be obtained
if xp is uniformly distributed in the interval [−1, 1].

• Looking for sequences that minimizes |Zk| =
|∑k

p=1 e
jπ(xp+k−xp+ν(p−1)Tc)yp | reduces to cancelling

the term for ν = 0.

IV. SEQUENCES GENERATED BY THE SKEW TENT MAP

In this section we consider chaotic sequences xp generated
by xp+1 = Tµ(xp) and an initial condition x0 where Tµ(x) is
the piece-wise linear skew tent map defined in [−1, 1] by

Tµ(x) =

{
2

µ−1x−
1+µ
µ−1 if µ < x ≤ 1

2
µ+1x−

µ−1
µ+1 otherwise

(17)

The invariant probability density of the variable xp is the
uniform distribution in the interval [−1, 1] [14] i.e. xp could
be considered as a realization of a uniform random variable
uniformly distributed in [−1, 1]. The idea is to use such
sequences in the MIMO radar system described above with
yp = T kµ (xp)− xp.
The map y = T kµ (x)−x is plotted in Fig.6. The minimum and
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Fig. 6. Curves of y = Tkµ (x)− x

the maximum are respectively (ak(m), 1− ak(m)), 1 ≤ m ≤
2k−1 and (bk(m),−1−bk(m)), 1 ≤ m ≤ 2k−1+1; ak(m) and
bk(m) are defined by the following recursive relations [15]:

a1(1) = µ, b1(1) = −1, b1(2) = 1

ak+1(2m− 1) =
µ+ 1

2
[ak(m)− bk(m)] + bk(m)

ak+1(2m) =
µ+ 1

2
[ak(m)− bk(m+ 1)] + bk(m+ 1)

bk+1(2m− 1) = bk(m)

bk+1(2m) = ak(m)

bk+1(2m+ 1) = bk(m+ 1)

Let
A(k,m) = ak(m)−bk(m)

2−ak(m)+bk(m)

C(k,m) = ak(m)−bk(m+1)
2−ak(m)+bk(m+1)

(18)

and M = 1−ak(1) and m = −1−bk(2k−1+1); we show that
if x follows the uniform distribution in the interval [−1, 1] then

the probability density fµ,k(y) of T kµ (x) − x is zero outside
[m,M ] and for every y ∈ [m,M ] fµ,k(y) is

fµ,k(y) =

∑m0

m=1[A(k,m)− C(k,m)]

2
(19)

where m0 is such that y ∈ [1−ak(m0+1), 1−ak(m0)]. Fig.
7 and 5 exhibit the probability density of y = T kµ (x) − x in
blue line for µ = 0.1 and µ = 0.7 and for different values
of k. In red line we plotted the probability density of the
equivalent ŷ of y; from the previous discussion ŷ should be
uniform in the interval [−1, 1]. We can see that after a few
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iterations the probability density of y = T kµ (x) − x tends to
the triangular distribution in the interval [−2, 2] and thus ŷ
follows the uniform distribution in the interval [−1, 1] for all
values of µ, subsequently we have to look for parameter µ
that allows good probability densities for the first iterations.

To measure the resemblance of fµ,k(y) with the uniform
distribution on the interval [−1, 1] we considered the criteria

C(µ, k) =

∫ 1

−1

(fµ(x)−
1

2
)2dx (20)

We plotted in Fig.9 the criteria C(k, µ) versus the iteration
number k and for different values µ. It is clear that the case



µ = 0.1 allows the best value of C(k, µ).
To see the impact of this result on the performance of the
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Fig. 9. C(µ, k) for different values of µ and k

radar system we plotted in Figures 10 to 12 the function
(9) for µ = 0.1 and µ = 0.7 and for the first values of k,
i.e. k = 1, 2, 3. As expected via the above analysis, the case
µ = 0.1 allows low peaks in (9) yielding a better ambiguity
function.

In Fig.13 and 14 we plotted the ambiguity function (10)
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when the codes xk are generated by the skewtent map (18)
for µ = 0.1 and µ = 0.7. We can see the difference between
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the two functions, especially for ν ∼= 0, ν ∼= 2 and ν ∼= −2;
indeed around these values the peaks are higher for µ = 0.7
which confirms the found results.
In Fig.15 we plotted the maximal peak of the ambiguity func-

Fig. 13. |R(k, ν)| for µ = 0.1

Fig. 14. |R(k, ν)| for µ = 0.7

tion and the Lyapunov exponent (the well known parameter
which characterizes the unstability of a dynamical system)
versus the bifurcation parameter µ. We can see that the more
chaotic the sequences, the better the ambiguity function.
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V. CONCLUSION

In this paper we adopted a statistical approach to look for
sequences allowing optimization of the ambiguity function of
a radar system. We have shown that good sequences can be
generated by a random variable with a suitable distribution
and that it is possible to obtain such sequences by generating
them using a chaotic skew tent map. Because of the promising
results we have obtained, we will examine the MIMO case in
future work and adopt the same statistical approach to optimize
the ambiguity function by considering the inter-correlation
functions of the sequences.
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