
Abstract—In this paper, we design a novel observer for a
class of semilinear heat 1D equations under the delayed and
sampled point measurements. The main novelty is that the
delay is arbitrary. To handle any arbitrary delay, the observer
is constituted of a chain of sub-observers. Each sub-observer
handles a fraction of the considered delay. The resulting
estimation error system is shown to be exponentially stable under
a sufficient number of sub-observers is used. The stability analysis
is based on a specific Lyapunov-Krasovskii functional and the
stability conditions are expressed in terms of LMIs.

I. INTRODUCTION

This paper deals with the design of observers for a class
of parabolic PDEs with delayed and sampled measurements.
This problem is highly challenging since time delays affecting
output measurements appears in many applications. We
can cite the well-known networked control systems (NCSs)
which are systems controlled and supervised by remote
controllers and observers through a communication device.
The main works existing in the literature are focused on
finite-dimensional systems described by ODEs, see e.g. cite
[1] and reference list therein. The main idea consisted in
a re-design of an existing exponentially convergent state
observer for the delay-free system so that exponential
convergence is preserved in the presence of time-delay.
The modification essentially consists in introducing of
state predictors to compensate for time delay. This has
been illustrated with several classes of observers based on
drift-observability property [2] or on high-gain observers [3],
[1] , [4] . However, for nonlinear ODEs, the designed predictor
is useful in compensating the delay effect only up to some
upper limit. Then to enlarge the maximum time-delay, a chain
of predictors simultaneously operating are introduced [2].

In parallel with the above ”finite-dimensional”
research activity, the ”infinite-dimensional” backstepping
transformation for linear systems based approach has first
been developed, see e.g. [5] and references therein. This
approach consists in letting the output sensor delay be
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captured by a first-order hyperbolic PDE. Then, full-order
observers are designed that estimate both the system
(finite-dimensional) state and the sensor (infinite-dimensional)
state. The extension of this approach to (triangular) nonlinear
systems has been studied in [6], where a high-gain type
observer has been developed. The arbitrary-size delay effect
has been compensated for by developing a PDE version of
the chain observer concept.

The problem of observer design for nonlinear PDEs with
arbitrary delays measurements has yet to be solved. In this
paper, the problem is addressed for a class of parabolic PDEs
under point measurements as in [7]. In the latter paper the
results were ined to small delays. To compensate the effect
of the arbitrary-size delay, the concept of chain-observer is
extended to fit this class of systems. Accordingly, the initial
delay PDE system representation is re-expressed in the form
of fictive delayed subsystems. The observer is composed of
elementary observers connected in series. The interconnection
is such that the first elementary observer is directly driven by
the physical system output. Then, the elementary observer is
driven by a virtual output generated by the previous observer.
Each elementary observer can be viewed as a predictor which
compensates for the effects of the fractional time-delay. As
in [7], using an appropriate Lyapunov-Krasovskii functional,
sufficient conditions are established in terms of LMIs via
Halanay’s inequality [14].

Note that in the existing results [3], [6], the exponential
convergence can be proved by induction via input-to-state
stability of the sub-observers and by employing the fact that
the input is exponentially converging. This approach is not
applicable here because of Halanay’s inequality that has been
extended to the case of uniformly bounded inputs only (see
Lemma 1 of [13]). The latter may lead to a practical stability.
Here we suggest a novel proof which employs a special
construction of a Lyapunov-Krasovskii functional for the
augmented system of sub-observers. The sufficient conditions
involve a sufficient number of elementary observers: the larger
the delay the larger the number of observers. Extension to
sampled data delayed measurements is presented.

It has to be noticed that a conference version of the present
work will be presented at [16]. The main differences between
the present work and [16] are in the novel proof of Theorem 1
and in the more detailed proof of Theorem 2. We also add new
simulations to more highlight the behavior of our algorithm
and show the effect of the number of observers depending
on the delay value. The paper is organized as follows: first,
the observation problem under study is formulated in Section
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2; then, the observer design with delayed measurements and
analysis are dealt within Sections 3; In section 4, the extension
to sampled-data case is presented. In section 5 , we illustrate
our results by some simulations on a numerical example
involving both delays and sampling measurements.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, Rn denotes the n-dimensional Euclidean space
with vector norm |.|, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n, means
that P is symmetric and positive definite. In matrices,
symmetric terms are denoted ∗; λmin(P ) (resp.λmax(P ))
denotes the smallest (resp. largest) eigenvalue. The notation
(ti)i≥0 refers to a strictly increasing sequence such that
t0 = 0 and lim

k→∞
ti = ∞. The sampling periods are bounded

i.e. 0 < ti+1 − ti < h for some scalar 0 < h < ∞
and all i = 0, 1 , . . ., ∞. We also define the variable
τ(t) = t − ti, t ∈ [ti, ti+1). L2(0, l) is the Hilbert space
of square integrable functions z(x), x ∈ [0, l] with the

corresponding norm ‖z(x)‖L2
=

√∫ l
0
z2(x)dx. H1(0, l)

is the Sobolev space of absolutely continuous functions
z : (0, l) → R with the square integrable derivative d

dx .
H2(0, l) is the Sobolev space of absolutely continuous
functions dz

dx
: (0, l) → R and with d2w

dx2 ∈ L2(0, l). Given
a two-argument function u(x, t), its partial derivatives
are denoted ut = ∂u

∂t , uxx = ∂2u
∂x2 . Throughout the paper

the following lemma will be used to prove exponential
convergence of our observer.

Lemma 1: ( Halanay’s type Inequalities [9])
Let 0 < δ1 < 2δ and let V : [t0 − h,∞) → [0,∞) be an
absolutely continuous function which satisfies

V̇ (t) ≤ −2δV (t) + δ1 sup
−h≤s≤0

V (t+ s) (1)

Then
V (t) ≤ e−2α(t−t0) sup

−h≤s≤0
V (t+ s) (2)

where α is the unique positive solution of the equation

α = δ − δ1e
2αh

2

II. SYSTEM DESCRIPTION

We consider a semi-linear diffusion equation:

ut(x, t) = uxx(x, t) + f(u(x, t), x, t) (3)

with Dirichlet conditions u(0, 0) = u(l, 0) = 0. The system
output is, y(t) = u(x̄j , t − D) where x̄j =

xj+1+xj

2 (j =
0, . . . , N − 1) and the points xj divide the interval [0, l] such
that 0 = x0 < . . . < xN = l. It is supposed that xj+1 − xj ≤
∆. The constant D represents an arbitrarily delay and N is
the number of distributed sensors. It is also supposed that the
function f is known, of class C1, and satisfying mf ≤ fu ≤
Mf , for some scalar constants mf and Mf .

III. OBSERVER DESIGN

We will present an observer, constituted by a chain of
m sub-observers, which ensures exponential convergence for
an arbitrarily delay D. Each sub-observer estimates the state
u(x, t + k

mD − D) by using the estimation provided by
the previous one in the chain whereas the first sub-observer
uses the delayed measurement provided by sensors. The last
sub-observer in the chain provides the estimation of the
u(x, t). As we will see below, by using a suitable Lyapunov
functional , we will derive sufficient conditions involving both
delay D, and the number of sub-observers in the chain m.
As in [2] we introduce the following notations for the delayed
states :

u0(x, t) = u(x, t−D),

uk(x, t) = u(x, t+
k

m
D −D), k = 1 . . . ,m

Using these notations we easily check that :

uk+1(x, t) = uk(x, t− D

m
)

and
um(x, t) = u(x, t)

where m is the number of sub-observers in the considered
chain.
We propose the following observer structure :
for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)

− L(û1(x̄j , t−
D

m
)− y(t)),

∀x ∈ [xj , xj+1), (4)

for k = 2, . . . ,m :

ûkt (x, t) = ûkxx(x, t) + f(ûk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀x ∈ [xj , xj+1),

(5)

It is readily checked that the observation error systems
ek(x, t) = ûk(x, t) − uk(x, t) undergoes the following
equations:
for k = 1 :

e1
t (x, t) = e1

xx(x, t) + f(û1(x, t), x, t)− f(u1(x, t), x, t)

− Le1(x̄j , t−
D

m
),

∀x ∈ [xj , xj+1),

(6)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + f(ûk(x, t), x, t)− f(uk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀x ∈ [xj , xj+1),

(7)



Note that
uk(x, t− D

m
) = uk−1(x, t)

Then, for k = 1 :

e1
t (x, t) = e1

xx(x, t) + φ(x, t, e1)(û1(x, t)− u1(x, t))

− Le1(x̄j , t−
D

m
),

x ∈ [xj , xj+1),

e1(l, t) = e1(0, t) = 0,

(8)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + φ(x, t, ek)(ûk(x, t)− uk(x, t))

− Lek(x̄j , t−
D

m
) + Lek−1(x̄j , t),

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0,

(9)

where

φ(x, t, ek) =

∫ 1

0

fu(ûk + θek, x, t)dθ

Remark 1: The well-posedness for the system (3) and the
error system (8)-(9) can be proven with the same arguments
than those used in [7], see also [10]. For instance, consider

w(t) = e1(., t) (10)

of the error system (8). The equation (8) can be rewritten as
a differential equation in the Hilbert space H = L2(0, l) with
the norm ‖ · ‖L2

ẇ(t) = Aw(t) + F (t, w(t)), t ≥ 0 (11)

where the operator A is defined by:

A =
∂2

∂x2
(12)

and has the dense domain:

D2(A) = {w ∈ H2(0, l) : w(0) = w(l) = 0}. (13)

The nonlinear term F : R×H2(0, l)→ L2(0, l) is defined on
functions w(., t) as:

F (t, w(., t)) = φ(x, t, w(x, t))w(x, t)− Lw(x̄j , t−
D

m
)

= φ(x, t, w(x, t))w(x, t)− Lw(x, t− D

m
)

+L

∫ x

x̄j

wξ(ξ, t−
D

m
)dξdx (14)

Let us also define the following Hilbert space

D1(A) = {w ∈ H1(0, l) : w(0) = w(l) = 0}, (15)

Using relevant material on fractional operators degrees [11]
and Henry’s theorem [12] , we get: if w(t0) ∈ D1(A), then

w(t)− w(t0) =

∫ t

t0

[Aw(s) + F (s, w(s))]ds (16)

holds for all t ≥ t0.

Theorem 1: Given D and m, consider the system (3) and
the observer (4)-(5). Given positive constants ∆, δ, L > Mf −
π2

l2 , R and δ1 such that 2δ > δ1, let there exist positive scalars
p1, p2, p3, r and g such that :

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (17)

and

Φmf
< 0 ; ΦMf

< 0 (18)

where

Φφ =

 Φ11 − λ Φ12 Φ13

Φ12 Φ22 Φ23

Φ13 Φ23 Φ33

 (19)

with

Φ11 = 2δp1 + g − re−2δD
m + 2p2(φ+

∆

2π
LR)

Φ12 = −p2 + p1 + p3φ

Φ13 = re−2δD
m − p2L

Φ22 =
∆LRp3

π
− 2p3 + r

(
D

m

)2

Φ23 = −Lp3

Φ33 = −(r + g)e−2δD
m

λ =
2π2

l2
(p2 − δp3). (20)

Then all the observation errors
∫ 1

0

(
ekx(x, t)

)2

dx and∫ 1

0

(
ekx(x, t)

)2

dx (k = 1, ..,m) globally exponentially decay
to zero as t→ +∞ . The above LMIs are always feasible for
large enough m.
Proof :
Consider (8) and the corresponding Lyapunov-Krasovskii
functional (as in [7]):

V 1(t) = p1

∫ l

0

(
e1(x, t)

)2

dx+ p3

∫ l

0

(
e1
x(x, t)

)2

dx

+ g

∫ l

0

[∫ t

t− D
m

e2δ(s−t)
(
e1(x, s)

)2

ds

]
dx

+
D

m
r

∫ l

0

[∫ 0

− D
m

∫ t

t+θ

e2δ(s−t)
(
e1
s(x, s)

)2

dsdθ

]
dx

(21)



Differentiating the above functional we find:

V̇ 1(t) + 2δV 1(t) = 2p1

∫ l

0

e1(x, t)e1
t (x, t)dx

+ 2p3

∫ l

0

e1
x(x, t)e1

xt(x, t)dx

− D

m
r

∫ l

0

∫ t

t− D
m

e2δ(s−t)e1
s(x, s)

2dsdx

+

∫ l

0

[(D
m

)2

r(e1
t (x, t)

2 + g(e1(x, t))2

− ge−2δD
m
(
e1(x, t− D

m
)
)2]

dx

+ 2δp1

∫ l

0

(e1(x, t))2dx

+ 2δp3

∫ l

0

(e1
x(x, t))2dx (22)

We use further Jensen’s inequality:

− D

m
r

∫ l

0

∫ t

t− D
m

e2δ(s−t)e1
s(x, s)

2dsdx ≤

−r
∫ l

0

e−2δD
m

(∫ t

t− D
m

e2δ(s−t)e1
s(x, s)ds

)2

dx (23)

and employ th descriptor method [14], where the right-hand
side of the following equation is added to V̇ 1:

0 = 2

∫ l

0

[
p2e

1(x, t) + p3e
1
t (x, t)

]
[−e1

t (x, t) + e1
xx(x, t)

+ Ψ(x, t, e1)e1(x, t)− Le1(x, t− D

m
)]dx

+ 2

N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
× L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx. (24)

Here p2 and p3 are free parameters.
From (22)-(24), by using Young and Wirtinger inequalities

we arrive at:

V̇ 1(t) + 2δV 1(t) ≤
∫ l

0

ηTΦφηdx

+
∆

π
LR−1(p3 + p2)

∫ l

0

(
e1
x(x, t− D

m
)
)2

dx

(25)

where η = col{e1(x, t), e1
t (x, t), e

1(x, t − D
m )}. Since Φφ is

affine in φ, then under (18):∫ l

0

ηTΦφηdx ≤ 0. (26)

From this we also deduce

V̇ 1(t) + 2δV 1(t)− δ1V 1(t− D

m
) ≤

∫ l

0

ηTΦφηdx

+ (
∆

π
LR−1(p3 + p2)− δ1)

∫ l

0

(
e1
x(x, t− D

m
)
)2

dx

(27)

Then we conclude under conditions of Theorem 1, that

V̇ 1(t) + 2δV 1(t)− δ1V 1(t− D

m
) ≤ 0 (28)

Consider further the observation error equations (9) with
k = 2, ...,m. The only difference between the above system
and the one of the case k = 1 is in the disturbing term∫ x̄j

0
ek−1
x (x, t)dx. So, under under the strict LMIs (18), the

Lyapunov-Krasovskii functional

V k(t) = p1

∫ l
0

(
ek(x, t)

)2

dx+ p3

∫ l
0

(
ekx(x, t)

)2

dx

+g
∫ l

0

[∫ t
t−D

m
e2δ(s−t)

(
ek(x, s)

)2

ds

]
dx

+D
mr
∫ l

0

[∫ 0

−D
m

∫ t
t+θ

e2δ(s−t)
(
eks(x, s)

)2

dsdθ

]
dx,

k = 2, ...,m

satisfies the following inequality

V̇ k(t) + (2δ − εγ2)V k(t)− δ1V k(t− D

m
)− γ2V k−1(t) ≤ 0

(29)
along (9), where γ2 is large enough and ε > 0 is small enough
subject to

2δ − εγ2 > δ1. (30)

Similar to [17], consider next the following
Lyapunov-Krasovskii functional for the augmented system
(8)-(9):

V (t) =
m∑
k=1

εk−1V k(t). (31)

Then multiplying (29) by εk−1 and summing with (28) we
arrive at

V̇ (t) + (2δ − εγ2)V (t)− δ1sup−h≤s≤0V (t+ s)

≤ V̇ (t) + (2δ − εγ2)V (t)− δ1V (t− D
m ) ≤ 0.

that due to (30) and Halanay’s inequality implies the
exponential convergence of V .

Remark 2: The LMIs in Theorem 1 depend on the fraction
D/m. If they are feasible for Hmax = D/m, then choosing
m ≥ D/Hmax we have always a feasible LMI. Then for
each delay D, we can find a sufficiently large m such that
the LMIs of the Theorem 1 are verified.

IV. SAMPLED MEASUREMENTS CASE

In this section, we present the extension of the above
observer to sampled- measurements case. In this case the
output is available only at sampling instants ti

0 = t0 < t1 < ... < ti < ..., lim
k→∞

ti =∞.

We assume that the sampling intervals may be variable, but
upper-bounded by a known bound h:

ti+1 − ti ≤ h ∀i = 0, 1, ...



The proposed observer has the following form :
for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)

− L(û1(x̄j , ti −
D

m
)− y(ti)),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1), (32)

for k = 2, . . . ,m :

ûkt (x, t) = ûkxx(x, t) + f(ûk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1), (33)

Theorem 2: Given D, h and m, consider the system (3)
and the observer (32)-(33). Given positive constants scalars
∆, δ, L > Mf − π2

l2 , R and δ1 such that 2δ > δ1, let there
exist positive scalars p1, p2, p3, r, W and g such that :

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (34)

and

Φmf
< 0 ΦMf

< 0 (35)

where

Φφ =


Φ11 − λ Φ12 Φ13 p2L

Φ12 Φ22 +Wh2e2δh Φ23 p3L
Φ13 Φ23 Φ33 0

p2L p3L 0 −W π2

4

 (36)

with Φ11,Φ12,Φ13,Φ22,Φ23 and Φ33 given by (20).

Then all the observation errors
∫ 1

0

(
ek(x, t)

)2

dx and∫ 1

0

(
ekx(x, t)

)2

dx (k = 1, ...,m) globally exponentially decay
to zero as t→ +∞.
Proof : The observation error is described by the following
equations :
for k = 1 :

e1
t (x, t) = e1

xx(x, t) + φ(x, t, e1)(û1(x, t)− u1(x, t))

− Le1(x̄j , ti −
D

m
),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1)

e1(l, t) = e1(0, t) = 0, (37)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + φ(x, t, ek)(ûk(x, t)− uk(x, t))

− Lek(x̄j , t−
D

m
) + Lek−1(x̄j , t),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (38)

As we can easily see, the unique difference with the observer
without sampling measurements is for the first sub-observer
(k = 1). In order to study the convergence of the case k = 1,

we use the following modified Lyapunov-Krasvoskii inspired
from [8], [15]:

V 1
W (t) = V 1(t) +W 1(t),

W 1(t) = Wh2e2δh
∫ l

0

∫ t
ti− D

m
e2δ(s−t)

(
e1
s(x, s)

)2

dsdx

−π
2

4
W
∫ l

0

∫ t− D
m

ti− D
m

e2δ(s−t)
[
e1(x, s)− e1(x, ti − D

m
)

]2

dsdx.

(39)
By generalized Wirtinger’s inequality [15], we deduce W 1 is
nonnegative and does not grow in the jumps [15]. Moreover,

Ẇ 1(t) + 2δW 1(t) ≤ h2e2δh
∫ l

0

(
e1
t (x, s)

)2

dx

−π
2

4

∫ l
0

[
e1(x, t− D

m
)− e1(x, ti − D

m
)

]2

dx.

Adding the latter inequality to (28) we conclude that under
conditions of Theorem 2 ∀t ∈ [ti, ti+1) the following
inequality holds:

V̇ 1
W (t) + 2δV 1

W (t)− δ1V 1
W

(
ti −

D

m

)
≤ 0 (40)

For k ≥ 2 the observation error is described by the
following equation :

ekt (x, t) = ekxx(x, t) + φ(x, t, ek)ek(x, t)

− Lek
(
x̄j , t−

D

m

)
+ L

∫ x̄j

0

ek−1
x (x, t)dx,

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (41)

As we can see the systems (41) and (9) are identical. Then,
the exponential convergence of the observer (32)-(33) can be
proved by using arguments of Theorem 1 with V 1 changed
by V 1

W .

V. NUMERICAL ILLUSTRATION

Let us consider the following example :

ut = uxx(x, t) + 1.02π2u(x, t) (42)

with u(x, 0) = sin(x) and let yj(tk) = u(x̄j , tk − D), j =
1, ..., N − 1, where D is an arbitrarily delay and û(x, 0) = 0.
It has to be noticed that the above system is unstable.
We choose L = 1, ∆ = 1

50 , δ = 0.21 and δ1 = 0.1, l =
1, R = 1.
By solving LMIs of Theorem 2, we deduce the following table
which illustrates the maximum value of the ratio D/m for
different values of h.

h 0.1 0.25 0.5 0.57
D
m 0.37 0.28 0.11 0.056

The simulations (Fig1-4) show clearly that the real values of
the number (m) of required sub-observers in the chain is less
conservative than the one provided by LMIs.
For instance, in (Fig 1), we can see that for D = 0.5s
and h = 0.5s only m = 1 observer is required to ensure
exponential convergence whereas the LMIs indicate that
m = 5. This result confirms the fact that the LMIs are only
sufficient conditions.



Figure 1. The state u(x, t) and its observations for m = 1 to m = 3 at
x = 0.1 and x = 0.6 for a delay D = 0.5s and sampling period h = 0.5s.

Figure 2. The state u(x, t) and its observations for m = 1 to m = 3 at
x = 0.1 and x = 0.6 for a delay D = 1s and sampling period h = 1s.

Figure 3. The state u(x, t) and its observations for m = 1 to m = 3 at
x = 0.1 and x = 0.6 for a delay D = 2s and sampling period h = 1s.

Figure 4. The state u(x, t) and its observations for m = 1 to m = 3 at
x = 0.1 and x = 0.6 for a delay D = 2s and sampling period h = 2s.



VI. CONCLUSION

In this paper, a novel observer is proposed for a class of
parabolic systems with delayed and sampled measurements.
The main advantage provided by this algorithm is that it
can handle arbitrary delay with a sufficiently small maximum
allowable sampling period. It has to be noticed that this
method can be extended to several important classes of
infinite-dimensional systems. Our main challenge in the future
is the extension to adaptive observers case.
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