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For an undirected network of nonidentical interconnected Euler-Lagrange systems whose communication is affected by varying time-delays that may not be differentiable, we consider the problem of establishing leaderless and leader-follower consensus via the simplest Proportional plus damping decentralized controller. The main contribution of this work is to prove that the agents' positions and velocities converge uniformly, globally, and asymptotically to a common non-specified position in the leaderless case, and to a given reference in the leader-follower case. The main results are established via Lyapunov's direct method; a Strict Lyapunov-Krasovskiȋ Functional is constructed, to the best of our knowledge, for the first time in the literature. It is shown that the resulting closed-loop system is Input-to-State Stable with regards to external additive inputs (perturbations). In turn, the separation principle applies to a certainty-equivalence controller, implemented with any globally convergent velocity estimator, such as the Immersion & Invariance observer.

Introduction

It is said that Euler-Lagrange (EL) systems achieve consensus if all their generalized positions converge to a common value. We identify two particular consensus problems: leader-follower, in which case an agreement trajectory is given as a common reference [START_REF] Abdessameud | Leader-follower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF] and the leaderless, in which case the agents' positions converge to a common non-specified value [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF][START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. The practical applications of consensus of EL-agents are diverse and can be found in different fields of mechanical, electrical and electromechanical systems such as, for example, in robotics [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF] or in control of aerial vehicles [START_REF] Abdessameud | Formation control of VTOL unmanned aerial vehicles with communication delays[END_REF]. Consensus problems may be and have been solved via decentralized feedback of the agents' neighbors' positions and, possibly, their velocities. Pioneer works addressing the consensus problem for EL systems include [START_REF] Rodriguez-Angeles | Mutual synchronization of robots via estimated state feedback: A cooperative approach[END_REF][START_REF] Chopra | Advances in Robot Control: From Everyday Physics to Human-Like Movements[END_REF][START_REF] Chung | Cooperative robot control and synchronization of Lagrangian systems[END_REF][START_REF] Chung | Cooperative robot control and concurrent synchronization of Lagrangian systems[END_REF][START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF]. Notably, the simplest consensus controller is the Proportional plus damping (P+d) scheme reported in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF]; moreover, it is showed in [START_REF] Ye | Distributed modelindependent consensus of Euler-Lagrange agents on directed networks[END_REF] that this controller works also with directed interconnection topologies.

Consensus control for networked-interconnected systems is, however, typically stymied by the effect of interconnection delays. This problem has been addressed, for instance, in [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF][START_REF] Liu | Controlled synchronization of heterogeneous robotic manipulators in the task space[END_REF][START_REF] Liu | Consensus for multiple heterogeneous Euler-Lagrange systems with time-delay and jointly connected topologies[END_REF][START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF][START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF][START_REF] Nuño | Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF][START_REF] Klotz | Synchronization of uncertain Euler-Lagrange systems with uncertain timevarying communication delays[END_REF]. See also [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems with variable time-delays[END_REF][START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] where the results of [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF] are extended by considering the presence of interconnection Email address: emmanuel.nuno@cucei.udg.mx (Emmanuel Nuño) delays. A common drawback of all these works, nonetheless, is that they rely on the assumption that the timevarying delays are differentiable and that their derivative is bounded. Clearly, this imposes a practical limitation because several communication media (such as Internet) do not ensure this hypothesis. Remarkably, in [START_REF] Abdessameud | Leader-follower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF][START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF] the leader-follower (in the former) and the leaderless (in the latter) synchronization problems are solved under the assumption that delays may be non-differentiable. Moreover, in both references it is assumed that the systems' parameters are unknown hence, the convergence of the consensus errors is ensured via adaptive control.

The main contribution of this paper is the design of an original strict Lyapunov-Krasovskiȋ functional to guarantee uniform global asymptotic consensus for a network of EL-systems controlled by decentralized P+d controllers in the presence of, possibly non-differentiable, time-varying delays and under an undirected-graph interconnection topology. With this proposal we are able to reveal new properties of the simplest available control laws (P+d) for consensus of EL-systems, despite the fact that these have been exhaustively studied and implemented in the literature (see [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF][START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems with variable time-delays[END_REF][START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF][START_REF] Ye | Distributed modelindependent consensus of Euler-Lagrange agents on directed networks[END_REF]).

The importance of having a strict Lyapunov-Krasovskiȋ functional cannot be overestimated; it allows to prove uniform global asymptotic consensus. Furthermore, we establish input-to-state stability for the closed-loop system. This is in clear contrast with previous works in which only convergence is established. Indeed, the latter is a weaker property that does not guarantee robustness with respect to bounded disturbances.

We also stress that establishing input-to-state stability is well beyond pure academic interest. As we show, in addition, a byproduct of our main statements is an extension to the case in which velocity measurements are replaced by estimates obtained from a converging velocity observer that guarantees uniform exponential convergence of the observation errors, such as the Immersion & Invariance (I&I) velocity observer [START_REF] Astolfi | Nonlinear and adaptive control design and applications[END_REF], to render the delaydependent stability condition decentralized -cf. [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems with variable time-delays[END_REF][START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], and to prove Input-to-State Stability (ISS) with respect to external additive inputs (perturbations). See also [START_REF] Abdessameud | Synchronization of networked Lagrangian systems with input constraints[END_REF] where a partial-state feedback controller under constant delays is proposed.

Although we are not aware of other articles in which the consensus problem is treated under the exact same setting and where input-to-state stability is established, a clear drawback of our main results, that contrasts with [START_REF] Abdessameud | Leader-follower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF] and [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF], is that we assume that part of the robots' parameters are known and, more importantly, that the interconnection graph is undirected.

The rest of the paper is organized as follows. In the following section we present some background material on the systems' models and lay our main hypotheses. In Sections 3 and 4 we present our main results: on leaderless, leaderfollower, and output-feedback consensus respectively. We conclude with some remarks in Section 5.

Background

Throughout the paper, the following notation is employed. R := (-∞, ∞), R >0 := (0, ∞), R ≥0 := [0, ∞) and N := {1, 2, 3, . . . }. I n ∈ R n×n denotes the n × n identity matrix, 1 n ∈ R n defines the vector of n elements equal to one and 0 n ∈ R n is the all-zeros vector. For any x ∈ R n , ∇ x := [∂ x1 , . . . , ∂ xn ] stands for the gradient operator of a scalar function and |x| for the Euclidean norm. λ m {A} and λ M {A} are the minimum and the maximum eigenvalues of the symmetric matrix

A ∈ R n×n . N := {1, 2, ..., N } for N ∈ N. A continuous function γ : R ≥0 → R ≥0 is of class K if γ(0) = 0 and it is strictly increasing. Further, it is of class K ∞ if it is of class K and unbounded. For an absolutely continuous function φ : [-h, 0] → R n , h > 0, we define φ := max -h≤θ≤0 |φ(θ)| (1) 
and we denote by C[-h, 0] the space of such functions. The norm defined in (1) is used in this paper to formulate conditions for uniform global asymptotic stability of the null solution of functional differential equations

ẋ = f (t, x t ), f (t, 0) ≡ 0, (2) 
where x t is short-hand notation for x t (θ) := x(t + θ) for all θ ∈ [-h, 0], f : R ≥0 × R n × C[-h, 0] → R n is continuous and locally Lipschitz in the second argument.

Remark 1. We observe that in the first works on stability of solutions of systems (2) by N. N. Krasovskiȋ, some of which are compiled in [START_REF] Krasovskiȋ | Stability of motion[END_REF], the L 2 norm of φ(θ) is used instead of the max(•).As in [START_REF] Gu | Stability of Time-Delay Systems[END_REF], we use [START_REF] Rodriguez-Angeles | Mutual synchronization of robots via estimated state feedback: A cooperative approach[END_REF], which results convenient to formulate the following statement.

Theorem 1. -cf. [26, Theorem 1.3] 1 Let β i : R ≥0 → R ≥0 be class K ∞ functions. If there exists a continuous differentiable functional V : R ≥0 × ×C[-h, 0] → R ≥0 such that β 1 ( x t (0) ) ≤ V(t, x t ) ≤ β 2 ( x t ), (3) 
and

V(t, x t ) ≤ -β 3 ( x t (0) ), (4) 
then the trivial solution of ( 1) is uniformly globally asymptotically stable.

Remark 2. Functionals V satisfying the above are commonly referred to as Strict Lyapunov Krasovskiȋ functionals.

Euler-Lagrange Agents

We consider a network composed of N fully-actuated and conservative EL-agents, with n-Degrees-of-Freedom (DoF). The dynamics of the ith-agent is given by

d dt ∇ qi L i (q i , qi ) -∇ qi L i (q i , qi ) = τ i , i ∈ N , (5) 
where L i (q i , qi ) is the Lagrangian function that is defined as L i (q i , qi ) := K i (q i , qi ) -U i (q i ), with K i (q i , qi ) := 1 2 q i M i (q i ) qi the kinetic energy and U i (q i ) the potential energy. q i , qi ∈ R n are the generalized position and velocity, respectively, M i (q i ) ∈ R n×n is the generalized inertia matrix, which is symmetric positive definite, and τ i ∈ R n is the control input.

The EL-equations of motion ( 5) can be written in a compact form as

M i (q i )q i + C i (q i , qi ) qi + ∇ qi U i (q i ) = τ i , (6) 
where C i (q i , qi ) ∈ R n×n is the Coriolis and centrifugal forces matrix, defined via the Christoffel symbols of the first kind. We restrict to EL-agents (6) that satisfy the following assumption:

Assumption A1: There exist m 1i ∈ R >0 and m 2i ∈ R >0 such that, for all q i ∈ R n , m 1i I n ≤ M i (q i ) ≤ m 2i I n .
This assumption is ubiquitous in robot control but it also holds for other different physical systems, see [START_REF] Ortega | Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF][START_REF] Ghorbel | On the uniform boundedness of the inertia matrix of serial robot manipulators[END_REF]. Further, model (6) has the following properties [START_REF] Kelly | Control of robot manipulators in joint space[END_REF]:

Property P1: Matrix Ṁi (q i ) -2C i (q i , qi ) is skew- symmetric. Further, Ṁi (q i ) = C i (q i , qi ) + C i (q i , qi ).
Property P2: There exists k ci ∈ R >0 such that, for all

q i ∈ R n , C i (q i , qi ) qi ≤ k ci qi 2 .

Interconnection Topology

As it is customary, we use graphs to represent the interconnection topology among the N EL-agents. In particular, we employ the graph Laplacian matrix

L := {L ij } ∈ R N ×N that is defined as L ii = j∈Ni a ij and L ij = -a ij ,
where a ij > 0 if j ∈ N i and a ij = 0 otherwise. The set N i contains all the neighbors of the ith-EL-agent. Note that, by construction, L has a zero row sum. Therefore L1 N = 0 n .

We assume that the agents exchange information according to the following assumption. Assumption A2: The EL-agents interconnection graph is undirected, static and connected.

From A2, the Laplacian L is symmetric; positive semidefinite; it has a single zero-eigenvalue, with the associated eigenvector 1 N , and all of the other eigenvalues are strictly positive; and rank(L) = N -1. Further, ker(L) = α1 N , ∀α ∈ R.

We also consider the fact that the information exchange between agents is subjected to time-varying delays; for these interconnection delays we assume the following. Assumption A3: The communications, from the j-th agent to the i-th agent, is subjected to a variable timedelay T ji (t) with a known upper-bound * T ji , that is,

0 ≤ T ji (t) ≤ * T ji < ∞. (7) 
Remark 3. One of the main contributions of this work is that the time-varying delay T ji (t) is not required to be differentiable.

In addition to A2, we make the following assumption for the leader-follower interconnection. Assumption A4: There is a nonempty set of followers that have a direct access to the desired constant position q .

Next, let us define a diagonal matrix A := diag{a i } ∈ R N ×N to model the leader-follower interconnections, such that a i > 0 if node i receives the leader desired position and a i = 0, otherwise. Define N as the set of all follower agents that receive the leader desired position. The following lemma, which is a special case of Lemma 3 in [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF] and Lemma 1.6 of [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], provides a fundamental property of the composed Laplacian matrix L := L + A . Lemma 1. Consider the matrix A := diag{a i } ≥ 0 ∈ R N ×N and suppose that N is non-empty. Assume that A2 holds, then the matrix L is symmetric, positive definite and of full rank.

Note that A4 ensures that there is at least one agent receiving information from its neighbors.

Leaderless Consensus

We speak of leaderless consensus if there exists

q c ∈ R n such that lim t→∞ | qi (t)| = 0, lim t→∞ q i (t) = q c (8) 
for all i ∈ [0, N ]. In [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] it has been shown that the P+d controller

τ i = ∇ qi U i (q i )-d i qi -p i j∈Ni a ij q i -q j (t-T ji (t)) , (9) 
where p i , d i ∈ R >0 are the proportional and the damping gains, respectively, guarantees leaderless consensus provided that the control gains satisfy

2d i > p i j∈Ni a ij α i + * T 2 ji α j , (10) 
for some

α := [α 1 , . . . , α N ] ∈ R N such that α i > 0.
Nonetheless, the main statement in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] has two significant limitations. Firstly, that the mere convergence properties [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF] do not guarantee robustness with respect to bounded disturbances, a property that, in contrast, is guaranteed by uniform asymptotic stability [START_REF] Krasovskiȋ | Stability of motion[END_REF]. Secondly, and more importantly, it is assumed in the latter reference that the time-delays are differentiable. As it appears, both limitations may be lifted, by using Lyapunov's direct method. Indeed, our main contribution is to provide a strict Lyapunov-Krasovskiȋ functional to establish the following statement. Proposition 1. For each i ∈ N , consider the system (6) in closed loop with [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] and let (10) hold. Then, under Assumptions A1-A3, there exists q c ∈ R n such that the equilibrium of the closed-loop system ( q, q) = (0, 1 N ⊗q c ), where q := [q 1 • • • q N ] , is uniformly globally asymptotically stable. Furthermore, the closed-loop system is Input-to-State stable with respect to additive inputs u :=

[u 1 • • • u N ] .
Proof. We start by deriving the closed-loop equations; after ( 6) and ( 9) we have

qi = -M -1 i (q i ) [C i (q i , qi ) qi + d i qi + p i e i ] -p i M -1 i (q i ) j∈Ni a ij t t-Tji(t) qj (σ)dσ, ( 11 
)
where we defined the relative position errors

e i := j∈Ni a ij (q i -q j ), i ≤ N (12) 
and we used the identity t t-Tji(t) qj (σ)dσ = q j -q j (t -T ji (t))

Next, we proceed to construct a Lyapunov-Krassovskiȋ functional. First, as in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], we introduce the energy-like function V i : R 2n → R ≥0 , defined as

V i (q i , qi ) = 1 2p i q i M i (q i ) qi + 1 4 j∈Ni a ij |q i -q j | 2
Also, using [START_REF] Nuño | Consensus of Euler-Lagrange systems using only position measurements[END_REF] we find that the derivative of V i along the trajectories of ( 11) yields Vi = -

d i p i | qi | 2 - j∈Ni a ij q i t t-Tji(t) qj (σ)dσ - 1 2 j∈Ni a ij ( qi + qj ) (q i -q j ).
Furthermore, using successively Young's and Cauchy-Schwartz inequalities we obtain that, for any α i > 0,

q i t t-Tji(t) qj (σ)dσ ≤ α i 2 | qi | 2 + 1 2α i t t-Tji(t) qj (σ)dσ 2 ≤ α i 2 | qi | 2 + * T ji 2α i t t- * Tji | qj (σ)| 2 dσ, hence, Vi ≤ j∈Ni a ij α i 2 | qi | 2 + * T ji 2α i t t- * Tji | qj (σ)| 2 dσ - d i p i | qi | 2 - 1 2 j∈Ni a ij ( qi + qj ) (q i -q j ).
Next, for each i ≤ N let the given constants on the right hand side of (10) generate d i satisfying this condition. Then, there exists δ i > 0 such that

2d i > p i j∈Ni a ij α i + * T 2 ji α j + * T ij δ i 2 . ( 14 
)
Consider next the functional

W i : C[-h, 0] n → R ≥0 de- fined as W i ( qt ) := * T ji 2α i + δ i j∈Ni a ij 0 - * Tji t t+σ | qj (θ)| 2 dθdσ, (15) 
where qt (θ) := q(t + θ). We note that W i ( qt ) ≥ 0 and there exists c i > 0 such that W i ( qt ) ≤ c i qt 2 -see (1). The total derivative of Ẇi yields Ẇi = * T ji

2α i + δ i j∈Ni a ij * T ji | qj (t)| 2 - t t- * Tji | qj (σ)| 2 dσ .
Next, defining E i (q i , qi , qt ) := V i (q i , qi ) + W i ( qt ) -cf.

[29, 30], we obtain Ėi ≤ -

d i p i | qi | 2 + j∈Ni a ij α i 2 | qi | 2 + * T 2 ji 2α i + δ i * T ji | qj | 2 -δ i j∈Ni a ij t t- * Tji | qj (σ)| 2 dσ - 1 2 j∈Ni a ij ( qi + qj ) (q i -q j )
and, defining E(q, q, qt ) :=

i∈

N E i (q i , qi , qt ), we obtain Ė ≤ - i∈ N j∈Ni a ij d i p i L ii - α i 2 | qi | 2 - * T 2 ji 2α i + δ i * T ji | qj | 2 - i∈ N δ i j∈Ni a ij t t- * Tji | qj (σ)| 2 dσ
where L ii is the diagonal element of the Laplacian, defined as L ii := j∈Ni a ij , and we used the fact that the Laplacian matrix is symmetric, so

i∈ N j∈Ni a ij ( qi + qj ) (q i -q j ) = 0.
Now, as in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], to compact the notation, we introduce

Q := | q1 | 2 • • • | qN | 2 and Ψ =      α 1 2 -d 1 p 1 L 11 . . . * T N 1 2α 1 + δ1 * TN1a1N . . . . . . . . . * T 1N 2α N + δN * T1N aN1 . . . α N 2 -d N p N L N N      , so Ė ≤ 1 N ΨQ - i∈ N δ i j∈Ni a ij t t- * Tji | qj (σ)| 2 dσ.
In view of [START_REF] Liu | Controlled synchronization of heterogeneous robotic manipulators in the task space[END_REF], for each i ≤ N , the numbers

λ i := d i p i L ii - α i 2 - j∈Ni a ij * T ij 2α j + δ i * T ij are positive and, consequently, -Ψ is diagonal dominant. Therefore, Ė ≤ - i∈ N   λ i | qi | 2 + δ i j∈Ni a ij t t- * Tji | qj (σ)| 2 dσ   (16)
that is, Ė is negative semi-definite. In order to render it negative definite we introduce the cross term U (e, q) := h(e) P -1 M(q) q (17)

where We are now ready to present our Lyapunov-Krasovskiȋ functional candidate. Let V : R ≥0 × C[- * T, 0] → R ≥0 , with * T := min{ * T ij }, be defined as

P :=diag[p i ] ⊗ I n ∈ R N n×N n ; M(q) :=blockdiag M i (q i )
V(t, x t ) = E(q(t), q(t), qt ) + U (e(t), q(t)) (18) 
where x t := [e(t) q(t) q t ] and > 0. We show that V verifies the conditions of Theorem 1. To that end, we stress that U (e, q) can be also written as

U (e, q) = i∈ N 1 p i h i (e) M i (q i ) qi , with h i (e) = 1 1+|e| e i . Therefore, E(q, q, qt ) + U (e, q) = i∈ N W i + 1 4 i∈ N j∈Ni a ij |q i -q j | 2 + i∈ N 1 2p i [ qi + h i ] M i [ qi + h i ] -2 h i M i h i and the term h i M i h i = 1 (1+|e|) 2 e i M i e i admits the bound 1 p i h i M i h i ≤ m 2i p i j∈Ni a ij (q i -q j ) 2 ≤ m L j∈Ni a ij |q i -q j | 2 ,
where m := max

i∈ N m2i pi and L := max i∈ N {L ii }. Therefore, since c i qt 2 ≥ W i ≥ 0 for all i ≤ N , by setting < 1 2 m L , we find that V satisfies (3) with β 1 (s), β 2 (s) ∝ s 2 .
We compute next the total derivative of E + U . To that end, we write U = ḣ P -1 M q + h P -1 Ṁ q + Mq and we observe that

ḣ P -1 M q ≤ 2 mλ M {L}| q| 2 .
Then, using P1 and (11), the last terms of U can be written as

h P -1 Ṁ q + Mq = i∈ N 1 p i h i C i qi -d i qi -p i e i - i∈ N h i j∈Ni a ij t t-Tji(t) qj (σ)dσ.
On the other hand, in view of P2 and the boundedness of h, we have

h i C i (q i , qi ) qi ≤ k ci | qi | 2 .
In addition, invoking Young's inequality for any µ > 0, we obtain

-h i qi ≤ µ 2 |h i | 2 + 1 2µ | qi | 2 ,
and

h i j∈Ni a ij t t-Tji(t) qj (σ)dσ ≤ µ 2 |h i | 2 + 1 2µ j∈Ni a ij t t-Tji(t) qj (σ)dσ 2 , ≤ µ 2 |h i | 2 + L ii 2µ j∈Ni a ij * T ji t t- * Tji | qj (σ)| 2 dσ,
where the last inequality follows from the fact that ( ab) 2 ≤ a 2 b 2 and the Cauchy-Schwartz inequality. Moreover,

|h i | 2 ≤ 1 1 + |e| |e i | 2 (19) so U satisfies U ≤ i∈ N 2 mλ M {L} + k ci p i + d i 2µp i | qi | 2 + i∈ N µd i 2p i + µ 2 -1 1 1 + |e| |e i | 2 + i∈ N   L ii 2µ j∈Ni a ij * T ji t t- * Tji | qj (σ)| 2 dσ   .
and, in turn, it holds that for any µ satisfying µ < 2 d+1 , ensures that V satisfies (4). The first statement follows invoking Theorem 1.

V ≤ - i∈ N λ i - 2 mλ M {L} + k ci p i + d i 2µp i | qi (t)| 2 - i∈ N 1 - µd i 2p i - µ 2 1 1 + |e| |e i (t)| 2 - i∈ N   j∈Ni a ij δ i - L ii * T ji
{ * T ji } we obtain V ≤ -µ 1 | q(t)| 2 - µ 2 1 + |e(t)| |e(t)| 2 -µ 3 i∈ N j∈Ni
Next, let u i be an additive input to the system (6), which defines a passive map u i + τ i . Therefore, after the previous computations we obtain

V ≤ -µ 1 | q(t)| 2 - µ 2 1 + |e(t)| |e(t)| 2 + i∈ N 1 p i qi (t) + h i (e i (t)) u i (t).
So, using the triangle inequality and ( 19) we obtain

V ≤ - µ 1 2 | q(t)| 2 - 1 2 µ 2 1 + |e(t)| |e(t)| 2 + 1 2p 2 1 µ 1 + µ 2 |u(t)| 2 (21) 
where p := min{p i }. Therefore, the system is Input-to-State stable with respect to u.

Leader-Follower Consensus

We speak of leader-follower consensus if, given an agreement position q ∈ R n which is accessible to at least one follower (but not necessarily to all of them)

lim t→∞ | qi (t)| = 0, lim t→∞ q i (t) = q (22) 
for all i ∈ [0, N ].

Proposition 2. Consider the system (6) in closed-loop with

τ i = ∇ qi U i (q i ) -d i qi -p i a i (q i -q ) -p i j∈Ni a ij q i -q j (t -T ji (t)) (23) 
for each i ≤ N and let [START_REF] Liu | Controlled synchronization of heterogeneous robotic manipulators in the task space[END_REF] hold and under Assumptions A1-A3. Then, the equilibrium ( q, q) = (0, 1 N ⊗ q ) is UGAS provided that the damping gain satisfies [START_REF] Liu | Controlled synchronization of heterogeneous robotic manipulators in the task space[END_REF]. Furthermore, the the closed-loop system [START_REF] Liu | Consensus for multiple heterogeneous Euler-Lagrange systems with time-delay and jointly connected topologies[END_REF] is ISS with respect to additive inputs u i ∈ R n .

Proof. The proof follows along the same lines as that of Proposition 1. Let N i := N i ∪ {j = }. We (re)define the relative position errors [START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF] as

e i := a i (q i -q ) + j∈Ni a ij (q i -q j ) = j∈N i a ij (q i -q j ). (24) 
Then, the closed-loop equations ( 6), ( 23) are given by [START_REF] Liu | Consensus for multiple heterogeneous Euler-Lagrange systems with time-delay and jointly connected topologies[END_REF] with N i replaced by N i . Next, we introduce

H(q, q, qt ) = 1 4 i∈ N 2 p i q i M i qi + a i |q i -q | 2 + i∈ N   1 4 j∈N i a ij |q i -q j | 2 + W i ( qt )   ,
where W i ( qt ) is redefined upon (15) by replacing N i with N i . Akin to Ė, im view of ( 14), the total derivative of H along the closed-loop trajectories satisfies

Ḣ ≤ - i∈ N   λ i | qi | 2 + δ i j∈N i a ij t t- * Tji | qj (σ)| 2 dσ   .
Thus, we introduce the Lyapunov-Krasovskiȋ functional V(t, x t ) = H(q(t), q(t), qt ) + U (e(t), q(t)),

where U (e, q) is defined in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF]. Note that H(q, q, qt ) + U (e, q) = i∈ N

1 2p i [ qi + h i ] M i [ qi + h i ] + a i 4 |q i -q | 2 + i∈ N j∈N i a ij * T ji 2α i + δ i 0 - * Tji t t+σ | qj (θ)| 2 dθdσ + 1 4 i∈ N   j∈N i a ij |q i -q j | 2 - 2 2 p i h i M i h i   . Since 1 p i h i M i (q i )h i ≤ m L j∈N i a ij |q i -q j | 2 ,
where L := max i∈ N {L ii + a i }, setting < 1 m L ensures that H(q, q, qt ) + U (e, q) is positive definite and radially unbounded with regards to e and q.

Proceeding as in the Leaderless consensus case, we can show that V(t, x t ) = H(q(t), q(t), qt ) + U (e(t), q(t))

satisfies V ≤ -φ 1 | q(t)| 2 - β 2 1 + |e(t)| |e(t)| 2 -φ 3 i∈ N j∈N i a ij t t- * Tji | qj (σ)| 2 dσ,
where φ 1 := λ -2 mλ M {L } + kc + d 2µ ; and φ

3 := δ - L * T 2µ . Thus, setting < min λ 2 mλ M {L } + kc + d 2µ , 2µδ L * T , 1 2 m L , (25) 
for any µ satisfying µ < 2 d+1 , ensures that V is negative definite so, after Theorem 1, the result follows. The statement on Input-to-State stability follows mutatis mutandis as for Proposition 1.

Remark 5. Suppose that velocity measurements are not available, but that a velocity estimate qi is available from a velocity observer. In this case, the certainty-equivalent controllers ( 9) and ( 23) become τ i = ∇ qi U i (q i ) -d i qi -p i j∈Ni a ij q i -q j (t -T ji (t)) and τ i = ∇ qi U i (q i ) -d i qi -p i a i (q i -q )

-p i j∈Ni a ij q i -q j (t -T ji (t)) ,

respectively. Correspondingly, the closed-loop system (11) becomes qi = -M -1 i (q i ) [C i (q i , qi ) qi + d i qi + p i e i ]

-p i M -1 i (q i ) j∈Ni a ij t t-Tji(t) qj (σ)dσ

+ d i M -1 i (q i ) qi ,
where qi := qiqi is the velocity estimation error; similarly for the closed-loop system with the controller [START_REF] Gu | Stability of Time-Delay Systems[END_REF] in which case N i is replaced with N i . In either case, (21) holds with u(t) = q(t) so, under the hypothesis that the latter converges asymptotically to zero, so do q(t) and ė(t).

If furthermore, the origin for estimation errors dynamics is uniformly globally asymptotically stable, so is the null solution for the overall closed-loop dynamics.

Conclusions

We propose a novel Strict Lyapunov-Krasovskiȋ Functional for the leaderless and leader-follower consensus in networks of EL-agents controlled by simple decentralized P+d schemes for which the communications impose variable time-delays that may not be differentiable. We prove that the agents positions and velocities globally, uniformly and asymptotically converge to a consensus position and to zero, respectively. Moreover, by directly replacing the velocity measurements by the velocity estimates obtained from a velocity observer that accepts a SLF, as the I&I velocity observer, the same UGAS property holds. Finally, we also establish the fact that the resulting closed-loop systems are ISS with regards to external inputs (perturbations).

One future research avenue concerns the inclusion of non-holonomic restrictions in the agents dynamics.

Remark 4 .

 4 e, e := [e 1 • • • e N ] . For further development, we observe that h satisfies the following: i) |h(e)| ≤ 1, ii) |h(e)| ≤ |e|, and iii) | ḣ(e)| ≤ 2| ė|. Furthermore, from the fact that ė = (L ⊗ I n ) q, it holds that | ḣ| ≤ 2λ M {L}| q|.

  Tji | qj (σ)| 2 dσ   and, defining λ := min i∈ N {λ i }, δ := min i∈ N {δ i }, kc := max i∈ N { kci pi }, d := max i∈ N { di pi }, and * T := max i∈ N , j∈Ni

|

  qj (σ)| 2 dσ, where µ 1 := λ -2 mλ M {L} + kc + d 2µ , µ 2 := 1µ 2 d + 1 , and µ 3 := δ -
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In its original form, in[START_REF] Krasovskiȋ | Stability of motion[END_REF], this theorem is formulated for asymptotic stability.
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