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Abstract

For an undirected network of nonidentical interconnected Euler-Lagrange systems whose communication is affected by
varying time-delays that may not be differentiable, we consider the problem of establishing leaderless and leader-follower
consensus via the simplest Proportional plus damping decentralized controller. The main contribution of this work is to
prove that the agents’ positions and velocities converge uniformly, globally, and asymptotically to a common non-specified
position in the leaderless case, and to a given reference in the leader-follower case. The main results are established via
Lyapunov’s direct method; a Strict Lyapunov-Krasovskĭı Functional is constructed, to the best of our knowledge, for
the first time in the literature. It is shown that the resulting closed-loop system is Input-to-State Stable with regards to
external additive inputs (perturbations). In turn, the separation principle applies to a certainty-equivalence controller,
implemented with any globally convergent velocity estimator, such as the Immersion & Invariance observer.

Keywords: Euler-Lagrange Dynamics; Multi-Agent Systems; Time-Delays; Strict Lyapunov Functions.

1. Introduction

It is said that Euler-Lagrange (EL) systems achieve con-
sensus if all their generalized positions converge to a com-
mon value. We identify two particular consensus problems:
leader-follower, in which case an agreement trajectory is
given as a common reference [19] and the leaderless, in
which case the agents’ positions converge to a common
non-specified value [6, 7]. The practical applications of
consensus of EL-agents are diverse and can be found in dif-
ferent fields of mechanical, electrical and electromechanical
systems such as, for example, in robotics [8] or in control
of aerial vehicles [28]. Consensus problems may be and
have been solved via decentralized feedback of the agents’
neighbors’ positions and, possibly, their velocities. Pioneer
works addressing the consensus problem for EL systems in-
clude [1–5]. Notably, the simplest consensus controller is
the Proportional plus damping (P+d) scheme reported in
[5]; moreover, it is showed in [18] that this controller works
also with directed interconnection topologies.

Consensus control for networked-interconnected systems
is, however, typically stymied by the effect of interconnec-
tion delays. This problem has been addressed, for instance,
in [9–15]. See also [16, 17] where the results of [5] are
extended by considering the presence of interconnection
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delays. A common drawback of all these works, nonethe-
less, is that they rely on the assumption that the time-
varying delays are differentiable and that their derivative
is bounded. Clearly, this imposes a practical limitation
because several communication media (such as Internet)
do not ensure this hypothesis. Remarkably, in [19, 20] the
leader-follower (in the former) and the leaderless (in the
latter) synchronization problems are solved under the as-
sumption that delays may be non-differentiable. Moreover,
in both references it is assumed that the systems’ parame-
ters are unknown hence, the convergence of the consensus
errors is ensured via adaptive control.

The main contribution of this paper is the design of an
original strict Lyapunov-Krasovskĭı functional to guaran-
tee uniform global asymptotic consensus for a network of
EL-systems controlled by decentralized P+d controllers in
the presence of, possibly non-differentiable, time-varying
delays and under an undirected-graph interconnection
topology. With this proposal we are able to reveal new
properties of the simplest available control laws (P+d) for
consensus of EL-systems, despite the fact that these have
been exhaustively studied and implemented in the litera-
ture (see [5, 16–18]).

The importance of having a strict Lyapunov-Krasovskĭı
functional cannot be overestimated; it allows to prove uni-
form global asymptotic consensus. Furthermore, we es-
tablish input-to-state stability for the closed-loop system.
This is in clear contrast with previous works in which only
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convergence is established. Indeed, the latter is a weaker
property that does not guarantee robustness with respect
to bounded disturbances.

We also stress that establishing input-to-state stability
is well beyond pure academic interest. As we show, in
addition, a byproduct of our main statements is an ex-
tension to the case in which velocity measurements are
replaced by estimates obtained from a converging veloc-
ity observer that guarantees uniform exponential conver-
gence of the observation errors, such as the Immersion &
Invariance (I&I) velocity observer [22], to render the delay-
dependent stability condition decentralized —cf. [16, 17],
and to prove Input-to-State Stability (ISS) with respect
to external additive inputs (perturbations). See also [29]
where a partial-state feedback controller under constant
delays is proposed.

Although we are not aware of other articles in which the
consensus problem is treated under the exact same setting
and where input-to-state stability is established, a clear
drawback of our main results, that contrasts with [19] and
[20], is that we assume that part of the robots’ parameters
are known and, more importantly, that the interconnection
graph is undirected.

The rest of the paper is organized as follows. In the fol-
lowing section we present some background material on the
systems’ models and lay our main hypotheses. In Sections
3 and 4 we present our main results: on leaderless, leader-
follower, and output-feedback consensus respectively. We
conclude with some remarks in Section 5.

2. Background

Throughout the paper, the following notation is em-
ployed. R := (−∞,∞), R>0 := (0,∞), R≥0 := [0,∞)
and N := {1, 2, 3, . . . }. In ∈ Rn×n denotes the n× n iden-
tity matrix, 1n ∈ Rn defines the vector of n elements equal
to one and 0n ∈ Rn is the all-zeros vector. For any x ∈ Rn,
∇x := [∂x1

, . . . , ∂xn
]
>

stands for the gradient operator of
a scalar function and |x| for the Euclidean norm. λm{A}
and λM{A} are the minimum and the maximum eigenval-
ues of the symmetric matrix A ∈ Rn×n. N̄ := {1, 2, ..., N}
for N ∈ N. A continuous function γ : R≥0 7→ R≥0 is of
class K if γ(0) = 0 and it is strictly increasing. Further,
it is of class K∞ if it is of class K and unbounded. For an
absolutely continuous function φ : [−h, 0] → Rn, h > 0,
we define

‖φ‖ := max
−h≤θ≤0

|φ(θ)| (1)

and we denote by C[−h, 0] the space of such functions.
The norm defined in (1) is used in this paper to formu-

late conditions for uniform global asymptotic stability of
the null solution of functional differential equations

ẋ = f(t, xt), f(t, 0) ≡ 0, (2)

where xt is short-hand notation for xt(θ) := x(t + θ) for
all θ ∈ [−h, 0], f : R≥0×Rn×C[−h, 0]→ Rn is continuous
and locally Lipschitz in the second argument.

Remark 1. We observe that in the first works on stability
of solutions of systems (2) by N. N. Krasovskĭı, some of
which are compiled in [27], the L2 norm of φ(θ) is used
instead of the max(·).As in [26], we use (1), which results
convenient to formulate the following statement.

Theorem 1. —cf. [26, Theorem 1.3]1 Let βi : R≥0 →
R≥0 be class K∞ functions. If there exists a continuous
differentiable functional V : R≥0 ××C[−h, 0]→ R≥0 such
that

β1(‖xt(0)‖) ≤ V(t, xt) ≤ β2(‖xt‖), (3)

and
V̇(t, xt) ≤ −β3(‖xt(0)‖), (4)

then the trivial solution of (1) is uniformly globally asymp-
totically stable.

Remark 2. Functionals V satisfying the above are com-
monly referred to as Strict Lyapunov Krasovskĭı function-
als.

2.1. Euler-Lagrange Agents

We consider a network composed of N fully-actuated
and conservative EL-agents, with n-Degrees-of-Freedom
(DoF). The dynamics of the ith-agent is given by

d

dt
∇q̇i
Li(qi, q̇i)−∇qi

Li(qi, q̇i) = τi, i ∈ N̄ , (5)

where Li(qi, q̇i) is the Lagrangian function that is defined
as Li(qi, q̇i) := Ki(qi, q̇i) − Ui(qi), with Ki(qi, q̇i) :=
1
2 q̇>i Mi(qi)q̇i the kinetic energy and Ui(qi) the potential
energy. qi, q̇i ∈ Rn are the generalized position and veloc-
ity, respectively, Mi(qi) ∈ Rn×n is the generalized inertia
matrix, which is symmetric positive definite, and τi ∈ Rn
is the control input.

The EL-equations of motion (5) can be written in a com-
pact form as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +∇qi
Ui(qi) = τi, (6)

where Ci(qi, q̇i) ∈ Rn×n is the Coriolis and centrifugal
forces matrix, defined via the Christoffel symbols of the
first kind. We restrict to EL-agents (6) that satisfy the
following assumption:
Assumption A1: There exist m1i ∈ R>0 and m2i ∈ R>0

such that, for all qi ∈ Rn, m1iIn ≤Mi(qi) ≤ m2iIn. �
This assumption is ubiquitous in robot control but it

also holds for other different physical systems, see [23, 24].
Further, model (6) has the following properties [21]:
Property P1: Matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew-
symmetric. Further, Ṁi(qi) = Ci(qi, q̇i) + C>i (qi, q̇i).
/
Property P2: There exists kci ∈ R>0 such that, for all
qi ∈ Rn, ‖Ci(qi, q̇i)q̇i‖ ≤ kci‖q̇i‖2. /

1In its original form, in [27], this theorem is formulated for asymp-
totic stability.
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2.2. Interconnection Topology

As it is customary, we use graphs to represent the inter-
connection topology among the N EL-agents. In particu-
lar, we employ the graph Laplacian matrix L := {Lij} ∈
RN×N that is defined as Lii =

∑
j∈Ni

aij and Lij = −aij ,

where aij > 0 if j ∈ Ni and aij = 0 otherwise. The set
Ni contains all the neighbors of the ith-EL-agent. Note
that, by construction, L has a zero row sum. Therefore
L1N = 0n.

We assume that the agents exchange information ac-
cording to the following assumption.

Assumption A2: The EL-agents interconnection graph
is undirected, static and connected. �

From A2, the Laplacian L is symmetric; positive semi-
definite; it has a single zero-eigenvalue, with the associated
eigenvector 1N , and all of the other eigenvalues are strictly
positive; and rank(L) = N − 1. Further, ker(L) = α1N ,
∀α ∈ R.

We also consider the fact that the information exchange
between agents is subjected to time-varying delays; for
these interconnection delays we assume the following.

Assumption A3: The communications, from the j-th
agent to the i-th agent, is subjected to a variable time-
delay Tji(t) with a known upper-bound ∗Tji, that is,

0 ≤ Tji(t) ≤ ∗Tji <∞. (7)

�

Remark 3. One of the main contributions of this work
is that the time-varying delay Tji(t) is not required to be
differentiable.

In addition to A2, we make the following assumption
for the leader-follower interconnection.

Assumption A4: There is a nonempty set of followers
that have a direct access to the desired constant position
q`. �

Next, let us define a diagonal matrix A` := diag{ai`} ∈
RN×N to model the leader-follower interconnections, such
that ai` > 0 if node i receives the leader desired position
and ai` = 0, otherwise. Define N` as the set of all follower
agents that receive the leader desired position. The fol-
lowing lemma, which is a special case of Lemma 3 in [25]
and Lemma 1.6 of [7], provides a fundamental property of
the composed Laplacian matrix L` := L + A`.

Lemma 1. Consider the matrix A` := diag{ai`} ≥ 0 ∈
RN×N and suppose that N` is non-empty. Assume that A2
holds, then the matrix L` is symmetric, positive definite
and of full rank. �

Note that A4 ensures that there is at least one agent
receiving information from its neighbors.

3. Leaderless Consensus

We speak of leaderless consensus if there exists qc ∈ Rn
such that

lim
t→∞

|q̇i(t)| = 0, lim
t→∞

qi(t) = qc (8)

for all i ∈ [0, N ]. In [17] it has been shown that the P+d
controller

τi = ∇qi
Ui(qi)−diq̇i−pi

∑
j∈Ni

aij
(
qi−qj(t−Tji(t))

)
, (9)

where pi, di ∈ R>0 are the proportional and the damping
gains, respectively, guarantees leaderless consensus pro-
vided that the control gains satisfy

2di > pi
∑
j∈Ni

aij

(
αi +

∗T 2
ji

αj

)
, (10)

for some α := [α1, . . . , αN ]> ∈ RN such that αi > 0.
Nonetheless, the main statement in [17] has two sig-

nificant limitations. Firstly, that the mere convergence
properties (8) do not guarantee robustness with respect
to bounded disturbances, a property that, in contrast, is
guaranteed by uniform asymptotic stability [27]. Secondly,
and more importantly, it is assumed in the latter refer-
ence that the time-delays are differentiable. As it appears,
both limitations may be lifted, by using Lyapunov’s di-
rect method. Indeed, our main contribution is to provide
a strict Lyapunov-Krasovskĭı functional to establish the
following statement.

Proposition 1. For each i ∈ N̄ , consider the system (6)
in closed loop with (9) and let (10) hold. Then, under
Assumptions A1–A3, there exists qc ∈ Rn such that the
equilibrium of the closed-loop system (q̇,q) = (0,1N⊗qc),
where q := [q>1 · · ·q>N ]>, is uniformly globally asymp-
totically stable. Furthermore, the closed-loop system is
Input-to-State stable with respect to additive inputs u :=
[u>1 · · ·u>N ]>.

Proof. We start by deriving the closed-loop equations; af-
ter (6) and (9) we have

q̈i =−M−1
i (qi) [Ci(qi, q̇i)q̇i + diq̇i + piei]

− piM−1
i (qi)

∑
j∈Ni

aij

∫ t

t−Tji(t)

q̇j(σ)dσ,
(11)

where we defined the relative position errors

ei :=
∑
j∈Ni

aij(qi − qj), i ≤ N (12)

and we used the identity∫ t

t−Tji(t)

q̇j(σ)dσ = qj − qj(t− Tji(t)) (13)
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Next, we proceed to construct a Lyapunov-Krassovskĭı
functional. First, as in [17], we introduce the energy-like
function Vi : R2n → R≥0, defined as

Vi(qi, q̇i) =
1

2pi
q̇>i Mi(qi)q̇i +

1

4

∑
j∈Ni

aij |qi − qj |2

Also, using (13) we find that the derivative of Vi along the
trajectories of (11) yields

V̇i =− di
pi
|q̇i|2 −

∑
j∈Ni

aijq̇
>
i

∫ t

t−Tji(t)

q̇j(σ)dσ

− 1

2

∑
j∈Ni

aij(q̇i + q̇j)
>(qi − qj).

Furthermore, using successively Young’s and Cauchy-
Schwartz inequalities we obtain that, for any αi > 0,

q̇>i

∫ t

t−Tji(t)

q̇j(σ)dσ ≤αi
2
|q̇i|2 +

1

2αi

∣∣∣∣∣
∫ t

t−Tji(t)

q̇j(σ)dσ

∣∣∣∣∣
2

≤αi
2
|q̇i|2 +

∗Tji
2αi

∫ t

t−∗Tji

|q̇j(σ)|2dσ,

hence,

V̇i ≤
∑
j∈Ni

aij

[
αi
2
|q̇i|2 +

∗Tji
2αi

∫ t

t−∗Tji

|q̇j(σ)|2dσ

]

− di
pi
|q̇i|2 −

1

2

∑
j∈Ni

aij(q̇i + q̇j)
>(qi − qj).

Next, for each i ≤ N let the given constants on the right
hand side of (10) generate di satisfying this condition.
Then, there exists δi > 0 such that

2di > pi
∑
j∈Ni

aij

(
αi +

∗T 2
ji

αj
+
∗Tijδi

2

)
. (14)

Consider next the functional Wi : C[−h, 0]n → R≥0 de-
fined as

Wi(q̇t) :=

(∗Tji
2αi

+ δi

) ∑
j∈Ni

aij

∫ 0

−∗Tji

∫ t

t+σ

|q̇j(θ)|2dθdσ,

(15)
where q̇t(θ) := q̇(t + θ). We note that Wi(q̇t) ≥ 0 and
there exists ci > 0 such that Wi(q̇t) ≤ ci‖q̇t‖2 —see (1).
The total derivative of Ẇi yields

Ẇi =

[∗Tji
2αi

+ δi

]∑
j∈Ni

aij

[
∗Tji|q̇j(t)|2 −

∫ t

t−∗Tji

|q̇j(σ)|2dσ

]
.

Next, defining Ei(qi, q̇i, q̇t) := Vi(qi, q̇i) +Wi(q̇t) —cf.

[29, 30], we obtain

Ėi ≤−
di
pi
|q̇i|2 +

∑
j∈Ni

aij

[
αi
2
|q̇i|2 +

(
∗T 2
ji

2αi
+ δi

∗Tji

)
|q̇j |2

]

− δi
∑
j∈Ni

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ

− 1

2

∑
j∈Ni

aij(q̇i + q̇j)
>(qi − qj)

and, defining E(q, q̇, q̇t) :=
∑
i∈N̄

Ei(qi, q̇i, q̇t), we obtain

Ė ≤−
∑
i∈N̄

∑
j∈Ni

aij

[(
di
piLii

− αi
2

)
|q̇i|2

−

(
∗T 2
ji

2αi
+ δi

∗Tji

)
|q̇j |2

]

−
∑
i∈N̄

δi
∑
j∈Ni

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ

where Lii is the diagonal element of the Laplacian, defined
as Lii :=

∑
j∈Ni

aij , and we used the fact that the Laplacian

matrix is symmetric, so∑
i∈N̄

∑
j∈Ni

aij(q̇i + q̇j)
>(qi − qj) = 0.

Now, as in [17], to compact the notation, we introduce

Q :=
[
|q̇1|2 · · · |q̇N |2

]>
and

Ψ =


α1
2

− d1
p1L11

. . .
( ∗TN1

2α1
+ δ1

)
∗TN1a1N

...
. . .

...( ∗T1N
2αN

+ δN
)

∗T1NaN1 . . . αN
2

− dN
pNLNN

 ,
so

Ė ≤ 1>NΨQ−
∑
i∈N̄

δi
∑
j∈Ni

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ.

In view of (10), for each i ≤ N , the numbers

λi :=
di
piLii

− αi
2
−
∑
j∈Ni

aij

(∗Tij
2αj

+ δi

)
∗Tij

are positive and, consequently, −Ψ is diagonal dominant.
Therefore,

Ė ≤ −
∑
i∈N̄

λi|q̇i|2 + δi
∑
j∈Ni

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ

 (16)

that is, Ė is negative semi-definite. In order to render it
negative definite we introduce the cross term

U(e, q̇) := h(e)>P−1M(q)q̇ (17)
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where P :=diag[pi] ⊗ In ∈ RNn×Nn;
M(q) :=blockdiag

[
Mi(qi)

]
and

h(e) :=
1

1 + |e|
e, e := [e>1 · · · e>N ]>.

Remark 4. For further development, we observe that h
satisfies the following: i) |h(e)| ≤ 1, ii) |h(e)| ≤ |e|, and
iii) |ḣ(e)| ≤ 2|ė|. Furthermore, from the fact that ė =
(L⊗ In)q̇, it holds that |ḣ| ≤ 2λM{L}|q̇|.

We are now ready to present our Lyapunov-Krasovskĭı
functional candidate. Let V : R≥0 × C[−∗T, 0] → R≥0,
with ∗T := min{∗Tij}, be defined as

V(t, xt) = E(q(t), q̇(t), q̇t) + εU(e(t), q̇(t)) (18)

where xt := [e(t)> q̇(t)> q̇>t ]> and ε > 0. We show that
V verifies the conditions of Theorem 1. To that end, we
stress that U(e, q̇) can be also written as

U(e, q̇) =
∑
i∈N̄

1

pi
hi(e)>Mi(qi)q̇i,

with hi(e) = 1
1+|e|ei. Therefore,

E(q, q̇,q̇t) + εU(e, q̇) =
∑
i∈N̄

Wi +
1

4

∑
i∈N̄

∑
j∈Ni

aij |qi − qj |2

+
∑
i∈N̄

1

2pi

[
[q̇i + εhi]

>Mi[q̇i + εhi]− ε2h>i Mihi

]
and the term h>i Mihi = 1

(1+|e|)2 e>i Miei admits the bound

1

pi
h>i Mihi ≤

m2i

pi

∣∣∣∣∣∣
∑
j∈Ni

aij(qi − qj)

∣∣∣∣∣∣
2

≤m̄L̄
∑
j∈Ni

aij |qi − qj |2,

where m̄ := max
i∈N̄

{
m2i

pi

}
and L̄ := max

i∈N̄
{Lii}. Therefore,

since ci‖q̇t‖2 ≥Wi ≥ 0 for all i ≤ N̄ , by setting

ε <

√
1

2m̄L̄
,

we find that V satisfies (3) with β1(s), β2(s) ∝ s2.

We compute next the total derivative of E+εU . To that
end, we write

U̇ = ḣ>P−1Mq̇ + h>P−1
[
Ṁq̇ + Mq̈

]
and we observe that

ḣ>P−1Mq̇ ≤ 2m̄λM{L}|q̇|2.

Then, using P1 and (11), the last terms of U̇ can be writ-
ten as

h>P−1
[
Ṁq̇ + Mq̈

]
=∑

i∈N̄

1

pi
h>i
[
C>i q̇i − diq̇i − piei

]
−
∑
i∈N̄

h>i
∑
j∈Ni

aij

∫ t

t−Tji(t)

q̇j(σ)dσ.

On the other hand, in view of P2 and the boundedness of
h, we have h>i C>i (qi, q̇i)q̇i ≤ kci|q̇i|2. In addition, invok-
ing Young’s inequality for any µ > 0, we obtain

−h>i q̇i ≤
µ

2
|hi|2 +

1

2µ
|q̇i|2,

and

h>i
∑
j∈Ni

aij

∫ t

t−Tji(t)

q̇j(σ)dσ

≤ µ

2
|hi|2 +

1

2µ

∣∣∣∣∣∣
∑
j∈Ni

aij

∫ t

t−Tji(t)

q̇j(σ)dσ

∣∣∣∣∣∣
2

,

≤ µ

2
|hi|2 +

Lii
2µ

∑
j∈Ni

aij
∗Tji

∫ t

t−∗Tji

|q̇j(σ)|2dσ,

where the last inequality follows from the fact that
(
∑
ab)2 ≤

∑
a2
∑
b2 and the Cauchy-Schwartz inequal-

ity. Moreover,

|hi|2 ≤
1

1 + |e|
|ei|2 (19)

so U̇ satisfies

U̇ ≤
∑
i∈N̄

(
2m̄λM{L}+

kci
pi

+
di

2µpi

)
|q̇i|2

+
∑
i∈N̄

(
µdi
2pi

+
µ

2
− 1

)
1

1 + |e|
|ei|2

+
∑
i∈N̄

Lii
2µ

∑
j∈Ni

aij
∗Tji

∫ t

t−∗Tji

|q̇j(σ)|2dσ

 .
and, in turn, it holds that

V̇ ≤ −
∑
i∈N̄

(
λi − ε

(
2m̄λM{L}+

kci
pi

+
di

2µpi

))
|q̇i(t)|2

− ε
∑
i∈N̄

(
1− µdi

2pi
− µ

2

)
1

1 + |e|
|ei(t)|2

−
∑
i∈N̄

∑
j∈Ni

aij

(
δi −

Lii
∗Tji

2µ
ε

)∫ t

t−∗Tji

|q̇j(σ)|2dσ
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and, defining λ := min
i∈N̄
{λi}, δ := min

i∈N̄
{δi}, k̄c := max

i∈N̄
{kcipi },

d̄ := max
i∈N̄
{dipi }, and ∗T := max

i∈N̄,
j∈Ni

{∗Tji} we obtain

V̇ ≤ − µ1|q̇(t)|2 − εµ2

1 + |e(t)|
|e(t)|2

− µ3

∑
i∈N̄

∑
j∈Ni

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ,

where µ1 := λ − ε
(

2m̄λM{L}+ k̄c + d̄
2µ

)
, µ2 := 1 −

µ
2

(
d̄+ 1

)
, and µ3 := δ − L̄∗T

2µ ε. Thus, setting

ε < min

{
λ

2m̄λM{L}+ k̄c + d̄
2µ

,
2µδ

L̄∗T
,

√
1

2m̄L̄

}
, (20)

for any µ satisfying µ < 2
d̄+1

, ensures that V̇ satisfies (4).
The first statement follows invoking Theorem 1.

Next, let ui be an additive input to the system (6),
which defines a passive map ui + τ i. Therefore, after the
previous computations we obtain

V̇ ≤ − µ1|q̇(t)|2 − εµ2

1 + |e(t)|
|e(t)|2

+
∑
i∈N̄

1

pi

[
q̇i(t) + εhi(ei(t))

]>
ui(t).

So, using the triangle inequality and (19) we obtain

V̇ ≤ −µ1

2
|q̇(t)|2 − 1

2

εµ2

1 + |e(t)|
|e(t)|2 +

1

2p2

[ 1

µ1
+

ε

µ2

]
|u(t)|2

(21)

where p := min{pi}. Therefore, the system is Input-to-
State stable with respect to u.

4. Leader-Follower Consensus

We speak of leader-follower consensus if, given an agree-
ment position q` ∈ Rn which is accessible to at least one
follower (but not necessarily to all of them)

lim
t→∞

|q̇i(t)| = 0, lim
t→∞

qi(t) = q` (22)

for all i ∈ [0, N ].

Proposition 2. Consider the system (6) in closed-loop
with

τi = ∇qiUi(qi)− diq̇i − piai`(qi − q`)

− pi
∑
j∈Ni

aij
(
qi − qj(t− Tji(t))

) (23)

for each i ≤ N and let (10) hold and under Assumptions
A1–A3. Then, the equilibrium (q̇,q) = (0,1N ⊗ q`) is
UGAS provided that the damping gain satisfies (10). Fur-
thermore, the the closed-loop system (11) is ISS with re-
spect to additive inputs ui ∈ Rn.

Proof. The proof follows along the same lines as that of
Proposition 1. Let Ni` := Ni ∪ {j = `}. We (re)define the
relative position errors (12) as

ei := ai`(qi − q`) +
∑
j∈Ni

aij(qi − qj)

=
∑
j∈Ni`

aij(qi − qj).
(24)

Then, the closed-loop equations (6), (23) are given by
(11) with Ni replaced by Ni`. Next, we introduce

H(q, q̇, q̇t) =
1

4

∑
i∈N̄

[
2

pi
q̇>i Miq̇i + ai`|qi − q`|2

]

+
∑
i∈N̄

1

4

∑
j∈Ni`

aij |qi − qj |2 +Wi(q̇t)

 ,
where Wi(q̇t) is redefined upon (15) by replacing Ni with
Ni`. Akin to Ė, im view of (14), the total derivative of H
along the closed-loop trajectories satisfies

Ḣ ≤ −
∑
i∈N̄

λi|q̇i|2 + δi
∑
j∈Ni`

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ

 .
Thus, we introduce the Lyapunov-Krasovskĭı functional

V(t, xt) = H(q(t), q̇(t), q̇t) + εU(e(t), q̇(t)),

where U(e, q̇) is defined in (17). Note that

H(q, q̇, q̇t) + εU(e, q̇) =∑
i∈N̄

[
1

2pi
[q̇i + εhi]

>Mi[q̇i + εhi] +
ai`
4
|qi − q`|2

]

+
∑
i∈N̄

∑
j∈Ni`

aij

(∗Tji
2αi

+ δi

)∫ 0

−∗Tji

∫ t

t+σ

|q̇j(θ)|2dθdσ

+
1

4

∑
i∈N̄

 ∑
j∈Ni`

aij |qi − qj |2 −
2ε2

pi
h>i Mihi

 .
Since

1

pi
h>i Mi(qi)hi ≤ m̄L̄`

∑
j∈Ni`

aij |qi − qj |2,

where L̄` := max
i∈N̄
{Lii + ai`}, setting ε <

√
1

m̄L̄`
ensures

that H(q, q̇, q̇t) + εU(e, q̇) is positive definite and radially
unbounded with regards to e and q̇.

Proceeding as in the Leaderless consensus case, we can
show that

V(t, xt) = H(q(t), q̇(t), q̇t) + εU(e(t), q̇(t))

satisfies

V̇ ≤ − φ1|q̇(t)|2 − εβ2

1 + |e(t)|
|e(t)|2

− φ3

∑
i∈N̄

∑
j∈Ni`

aij

∫ t

t−∗Tji

|q̇j(σ)|2dσ,
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where φ1 := λ− ε
(

2m̄λM{L`}+ k̄c + d̄
2µ

)
; and φ3 := δ −

L̄`
∗T

2µ ε. Thus, setting

ε < min

{
λ

2m̄λM{L`}+ k̄c + d̄
2µ

,
2µδ

L̄`∗T
,

√
1

2m̄L̄`

}
,

(25)
for any µ satisfying µ < 2

d̄+1
, ensures that V̇ is negative

definite so, after Theorem 1, the result follows. The state-
ment on Input-to-State stability follows mutatis mutandis
as for Proposition 1.

Remark 5. Suppose that velocity measurements are not
available, but that a velocity estimate ˆ̇qi is available from
a velocity observer. In this case, the certainty-equivalent
controllers (9) and (23) become

τi = ∇qiUi(qi)− diˆ̇qi − pi
∑
j∈Ni

aij
(
qi − qj(t− Tji(t))

)
and

τi = ∇qi
Ui(qi)− diˆ̇qi − piai`(qi − q`)

− pi
∑
j∈Ni

aij
(
qi − qj(t− Tji(t))

)
, (26)

respectively. Correspondingly, the closed-loop system (11)
becomes

q̈i =−M−1
i (qi) [Ci(qi, q̇i)q̇i + diq̇i + piei]

− piM−1
i (qi)

∑
j∈Ni

aij

∫ t

t−Tji(t)

q̇j(σ)dσ

+ diM
−1
i (qi)˜̇qi,

where ˜̇qi := q̇i − ˆ̇qi is the velocity estimation error; sim-
ilarly for the closed-loop system with the controller (26)
in which case Ni is replaced with Ni`. In either case, (21)
holds with u(t) = ˜̇q(t) so, under the hypothesis that the lat-
ter converges asymptotically to zero, so do q̇(t) and ė(t).
If furthermore, the origin for estimation errors dynamics
is uniformly globally asymptotically stable, so is the null
solution for the overall closed-loop dynamics.

5. Conclusions

We propose a novel Strict Lyapunov-Krasovskĭı Func-
tional for the leaderless and leader-follower consensus in
networks of EL-agents controlled by simple decentralized
P+d schemes for which the communications impose vari-
able time-delays that may not be differentiable. We prove
that the agents positions and velocities globally, uniformly
and asymptotically converge to a consensus position and
to zero, respectively. Moreover, by directly replacing the
velocity measurements by the velocity estimates obtained
from a velocity observer that accepts a SLF, as the I&I ve-
locity observer, the same UGAS property holds. Finally,
we also establish the fact that the resulting closed-loop

systems are ISS with regards to external inputs (pertur-
bations).

One future research avenue concerns the inclusion of
non-holonomic restrictions in the agents dynamics.
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