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This paper addresses the problem of regulating the output voltage of a DC-DC buck-boost converter feeding a constant power load, which is a problem of current practical interest. Designing a stabilising controller is theoretically challenging because its average model is a bilinear second order system that, due to the presence of the constant power load, is non-minimum phase with respect to both states. Moreover, to design a high-performance controller, the knowledge of the extracted load power, which is difficult to measure in industrial applications, is required. In this paper, an adaptive interconnection and damping assignment passivity-based control-that incorporates the immersion and invariance parameter estimator for the load power-is proposed to solve the problem. Some detailed simulations are provided to validate the transient behaviour of the proposed controller and compare it with the performance of a classical PD scheme.

Introduction

The DC-DC buck-boost power converter is increasingly utilized in power distribution systems since it can step up or down the voltage between the source and load, providing flexibility in choosing the voltage rating of the DC source. Although the control of these converters in the face of classical loads is wellunderstood, in some modern applications the loads do not behave like standard passive impedances, instead they are more accurately represented as constant power loads (CPLs), which correspond to first-third quadrant hyperbolas in the loads voltagecurrent plane. This scenario significantly differs from the classical one and poses a new challenge to control theorist, see [START_REF] Barabanov | On existence and stability of equilibria of linear time-invariant systems with constant power loads[END_REF][START_REF] Emadi | Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives[END_REF][START_REF] Khaligh | Modified pulse-adjustment technique to control DC/DC converters driving variable constant-power loads[END_REF][START_REF] Marx | Large signal stability analysis tools in dc power systems with constant power loads and variable power loads-A review[END_REF] for further discussion on the topic and [START_REF] Singh | Constant power loads and their effects in DC distributed power systems: A review[END_REF] for a recent review of the literature. It should be underscored that the typical application of this device requires large CONTACT Shihua Li. Email: lsh@seu.edu.cn variations of the operating point-therefore, the dynamic description of its behavior cannot be captured by a linearized model, requiring instead a nonlinear one.

To the best of the authors' knowledge no controller, with guaranteed stability properties for the nonlinear model, has been proposed for the voltage regulation of the buck-boost converter with a CPL-hence, its solution remains an open problem. Several techniques to address this problem, but without a nonlinear stability analysis, have been reported in the power electronics literature. In [START_REF] Rahimi | Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads[END_REF], the active-damping approach is utilized to address the negative impedance instability problem raised by the CPL. The main idea of this method is that a virtual resistance is considered in the original circuit to increase the system damping. However, the stability result is obtained by applying small-signal analysis, which is valid only in a small neighbourhood of the operating point. A new nonlinear feedback controller, which is called "Loop Cancellation", has been proposed to stabilize the buck-boost converter by "cancelling the destabilizing behaviour caused by CPL" [START_REF] Rahimi | Loop-cancellation technique: A novel nonlinear feedback to overcome the destabilizing effect of constant-power loads[END_REF]. The control problem turns into the design of a controller for the linear system by using loop cancellation method. However, the construction is based on feedback linearization [START_REF] Isidori | Nonlinear Control Systems[END_REF] that, as is well-known, is highly non-robust. A sliding mode controller is designed in [START_REF] Singh | Mitigation of negative impedance instabilities in a DC/DC buck-boost converter with composite load[END_REF] for this problem. However, for the considered nonlinear system, the stability result is obtained by adopting the linear system theory. In addition, as it is widely acknowledged, the drawbacks of this method are that the proposed control law suffers from chattering and its relay action injects a high switching gain. The deleterious effect of these factors is clearly illustrated in experiments shown in [START_REF] Singh | Mitigation of negative impedance instabilities in a DC/DC buck-boost converter with composite load[END_REF], which exhibit a very poor performance.

Aware of the need to deal with the intrinsic nonlinearities of power converters some authors of this community have applied passivity-based controllers (PBCs), which is a natural candidate in these applications. Unfortunately, in many of these reports the theoretical requirements of the PBC methodology are not rigorously respected. In [START_REF] He | Passivity-based control for DC-DC power converters with a constant power load[END_REF] a review of some of thealas, incorrect or incomplete-results on application of PBC for power converters is given. For instance, in [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF], the well-known standard PBC [START_REF] Ortega | Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF] is used for the buck-boost with a CPL. Unfortunately, the given result is theoretically incorrect due to the fact that the authors fail to validate the stability of the zero dynamics of the system with respect to the controlled output that, as explained in [START_REF] Ortega | Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF], is an essential step for the stability analysis and, as shown in this paper, it turns out to be violated.

An additional drawback of the existing results is that all of them require the knowledge of the power extracted by the CPL, which is difficult to measure in industrial applications. Designing an estimator for the power is a hard task because the original system is nonlinear and the only available measurements are inductor current and output voltage.

In this paper, we apply the well-known interconnection and damping assignment (IDA) PBC, first reported in [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[END_REF] and reviewed in [START_REF] Ortega | Interconnection and damping assignment passivitybased control: A survey[END_REF], to stabilize the buck-boost converter with a CPL. The main contributions of this note are:

1) Derivation of an IDA-PBC that ensures the desired operating point is a (locally) asymptotically stable equilibrium with a guaranteed domain of attraction. 2) Design of an estimator of load power, which is based on the immersion and invariance (I&I) technique [START_REF] Astolfi | Nonlinear and Adaptive Control with Applications[END_REF] and has guaranteed stability properties, to make the IDA-PBC adaptive.

3) Proof that the zero dynamics of the system, with respect to both states, is unstable-limiting the achievable performance of classical PD controllers to "low-gain tunings".

The remaining of the paper is organized as follows. Section 2 contains the model of the system and the analysis of its zero dynamics with respect to the two states. Moreover, a remark on the result reported in [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF] is given. Section 3 proposes the IDA-PBC assuming the power is known. To make the latter scheme adaptive in Section 4 we design a on-line power estimator, while some simulations carried out by MATLAB are provided in Section 5. This paper is wrapped-up with some concluding remarks in Section 6. To enhance readability, the derivation of the IDA-PBC that is conceptually simple but computationally involved, is given in an appendix at the end of the paper.

System Model, Problem Formation and Zero Dynamics Analysis

In this section, the average model of buck-boost converter feeding a CPL, its zero dynamics analysis and a remark on the existing result on [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF] are given.

Model of buck-boost converter with CPL

The topology of buck-boost converter feeding a CPL, is shown in Fig. 1. Under the standard assumption that it operates in continuous conduction mode, the average model is given by

L di dt = -(1 -u)v + uE, C dv dt = (1 -u)i - P v , (1) 
where i ∈ R >0 is the inductor current, v ∈ R >0 the output voltage, P ∈ R >0 the power extracted by the CPL, E ∈ R >0 is the input voltage and u ∈ [0, 1] is the duty ratio, which is the control signal. Some simple calculations show that the assignable equilibrium set is given by

E := (i, v) ∈ R 2 >0 | i -P 1 v + 1 E = 0 .
(2)

Control problem formulation

Consider the system (1) verifying the following conditions.

Assumption 1. The power load P is unknown but the parameters L, C and E are known.

Assumption 2. The state (i, v) is measurable.

Fix a desired output voltage v ⋆ ∈ R >0 and compute the associated assignable equilibrium point (i ⋆ , v ⋆ ) ∈ E. Design a static state-feedback control law with the following features.

(F1) (i ⋆ , v ⋆ ) is an asymptotically stable equilibrium of the closed-loop with a welldefined domain of attraction. (F2) It is possible to define a set Ω ⊂ R 2 >0 which is invariant and inside the domain of attraction of the equilibrium. That is, a set inside the positive orthant verifying

[(i(0), v(0)) ∈ Ω ⇒ (i(t), v(t)) ∈ Ω, ∀t ≥ 0] lim t→∞ (i(t), v(t)) = (i ⋆ , v ⋆ ).
To simplify the notation, and without loss of generality, in the sequel we consider the normalized model of the system, which is obtained using the change of coordinates

x 1 := 1 E L C i x 2 := 1 E v, (3) 
and doing the time scale change τ = t √ LC that yields the model

ẋ1 = -(1 -u)x 2 + u ẋ2 = (1 -u)x 1 - D x 2 (4) 
where

D := P E 2 L C , ( 
•) denotes d dτ (•) and all signals are expressed in the new time scale τ . The assignable equilibrium set E in the coordinates x is given by

E x := x ∈ R 2 >0 | x 1 - D x 2 -D = 0 (5)
Notice that, under Assumptions 1 and 2, the control problem is translated into the design of a state feedback for the system (4), with unknown D, such that a given x ⋆ ∈ E x is asymptotically stable.

It is important to recall that the signal of interest is the output voltage v, therefore,

for the fixed x 2⋆ ∈ R >0 , the x 1⋆ ∈ R >0 is defined via x 1⋆ = D x 2⋆ + D. (6)

Stability analysis of the systems zero dynamics

The design of a stabilising controller for ( 4) is complicated by the fact that, as shown in the proposition below, its zero dynamics with respect to both states is unstable. This means that, if the controller injects high gain, the closed-loop system will be unstableas it stems from the fact that the poles will move towards the unstable zeros. This situation hampers the design of high performance PD controllers, which require high proportional gains to speed up the transients. See Section 5 for an illustration of this fact.

Proposition 2.1. Consider the system (4) and an assignable equilibrium

x ⋆ ∈ E x .
The zero dynamics with respect to the outputs x 1x 1⋆ or x 2x 2⋆ are unstable.

Proof. Fixing x 1 = x 1⋆ and using the first equation in (4) we get

u = x 2 x 2 + 1 ,
which substituted in the second equation of ( 4) yields the zero dynamics

ẋ2 = D x 2⋆ x 2 (x 2 + 1) (x 2 -x 2⋆ ) =: s(x 2 ). (7) 
The slope of s(x 2 ) evaluated at

x 2 = x 2⋆ gives s ′ (x 2 )| x2=x2⋆ = D x 2 2⋆ (1 + x 2⋆ )
.

Since x 2⋆ > 0, this is a positive number proving that the equilibrium x 2⋆ of the dynamics ( 7) is unstable-as claimed by the proposition. Now, fixing x 2 = x 2⋆ and using the second equation of (4) we get

u = 1 - D x 1 x 2⋆ , (8) 
which substituted in the first equation of ( 4) yields

ẋ1 = 1 - x 1⋆ -D x 1 =: w(x 1 ). ( 9 
)
Proceeding as done for the case above we get

w ′ (x 1 )| x1=x1⋆ = x 1⋆ -D x 2 1⋆ .
The proof is completed noting from (5) that x 1⋆ = D(1 + 1 x2⋆ ) > D and the slope is, again, positive.

The proof that the zero dynamic of (4) with respect to x 1 -x 1⋆ is unstable invalidates the stability claim made in Section IV of [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF]. In this paper, a standard PBC is designed fixing x 1 = x 1⋆ . It is well-known [START_REF] Ortega | Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF] that this kind of controller implements an inversion of the systems zero dynamics, therefore the controller will be unstable if the zero dynamics is unstable, which is the case of the PBC of [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF]. The interested reader is referred to [START_REF] He | Passivity-based control for DC-DC power converters with a constant power load[END_REF] for further details on this problem and a discussion of a similarunfortunate-situation in other papers of PBC for power converters reported in the literature.

Interconnection and Damping Assignment Passivity-based Controller

In this section, the IDA-PBC approach is proposed to stabilize the buck-boost converter feeding a CPL by assuming the power D is known. This condition is later relaxed in Proposition 4.1 where an estimator of D is added to the IDA-PBC.

To make the paper self-contained we present below the main result of the IDA-PBC methodology and give its proof. For more details on IDA-PBC we refer the reader to [START_REF] Ortega | Interconnection and damping assignment passivitybased control: A survey[END_REF].

Proposition 3.1. Consider the nonlinear system ẋ = f (x) + g(x)u (10) 
with state x ∈ R n and control u ∈ R m and a desired operating point

x ⋆ ∈ {x ∈ R n | g ⊥ (x)f (x) = 0},
where g ⊥ (x) is a full rank left annihilator of g(x). Fix the target dynamics as

ẋ = F d (x)∇H d (x), (11) 
where

∇H d (x) := ∂Hd(x) ∂x ⊤
with the function H d (x) a solution of the PDE

g ⊥ (x) [f (x) -F d (x)∇H d (x)] = 0, (12) 
verifying

x ⋆ = arg min{H d (x)}, ( 13 
)
and the matrix F d (x) is such that

F ⊤ d (x) + F d (x) < 0. ( 14 
)
The system (10) in closed-loop with

u = ū(x) := [g ⊤ (x)g(x)] -1 g ⊤ (x)[F d (x)∇H d (x) -f (x)] (15) 
has an asymptotically stable equilibrium at x ⋆ with strict Lyapunov function

H d (x)
Proof. From the fact that the n×n matrix

g ⊤ (x) g ⊥ (x)
is full rank we have the following equivalence

f (x) + g(x)ū(x) = F d (x)∇H d (x) ⇔ (12), (15).
Hence, the closed-loop is given by ( 11). Now, ( 13) ensures H d (x) is positive definite (with respect to x ⋆ ). Computing the derivative of H d (x) along the trajectories of (11) and invoking ( 14) we get

Ḣd = (∇H d (x)) ⊤ F d (x)∇H d (x) < 0, ∀x = x ⋆
and, therefore, H d (x) is a strict Lyapunov function for the closed-loop system completing the proof.

The proposition below is a direct application of IDA-PBC that provides a solution to our problem. Proposition 3.2. Consider the average model of the DC-DC buck-boost converter with a CPL (4) with D known and satisfying Assumption 2. Fix x 2⋆ ∈ R >0 and compute x 1⋆ ∈ R >0 via (6). The IDA-PBC

u =ū(x, D, k 1 ) := 1 x 2 1 + (x 2 + 1) 2 x 2 (x 2 + 1) + x 1 (x 1 - D x 2 ) - x 2 (x 2 + 1) x 1 + 2x 1 x 2 x 2 + 1 k 1 x 1 2(k 2 + x 2 1 ) + x 2 2 - D(1 + x 2 ) 2x 2 1 + x 2 2 + √ 2Dx 1 arctan x1 x 2 1 + x 2 2 2 (2x 2 1 + x 2 2 ) 3 2 + 1 2x 2 (2x 2 1 + x 2 2 ) 3 2 2x 2 1 (x 2 + 1) 2 -2x 2 2x 2 1 + x 2 2 2Dx 1 (1 + x 2 ) + x 2 (2x 2 1 + x 2 2 )(-1 + 2k 1 x 2 (k 2 + x 2 1 ) + k 1 x 3 2 ) + √ 2Dx 2 2 arctan x 1 x 2 1 + x 2 2 2 , ( 16 
)
where k 1 is a tuning gain satisfying

k 1 > max{k ′ 1 , k ′′ 1 }, (17) 
where the constants k ′ 1 , k ′′ 1 are defined in Appendix A in (A8) and (A11), respectively, and the constant k 2 is defined as

1 k 2 := 1 k 1     D(1 + x 2⋆ ) 2x 1⋆ (2x 2 1⋆ + x 2 2⋆ ) - √ 2Dx 1⋆ arctan x1⋆ x 2 1⋆ + x 2 2⋆ 2 2x 1⋆ (2x 2 1⋆ + x 2 2⋆ ) 3 2     - x 2 2⋆ 2 -x 2 1⋆ , (18) 
ensures the following.

P1: x ⋆ is an asymptotically stable equilibrium of the closed-loop with Lyapunov function

H d (x) = - 1 2 x 2 + √ 2D arctan √ 2x 1 x 2 - D arctan   x1 x 2 1 + x 2 2 2   2 x 2 1 + x 2 2 2 + k 1 2 (x 2 1 + x 2 2 2 + k 2 ) 2 . ( 19 
)
P2: There exists a positive constant c such that the sublevel set of the function H d (x)

Ω x := {x ∈ R 2 >0 | H d (x) ≤ c}, (20) 
is an estimate of the domain of attraction ensuring the state trajectories remain in R 2 >0 . That is, for all x(0) ⊂ Ω x , we have x(t) ⊂ Ω x , ∀t ≥ 0, and lim t→∞ x(t) = x ⋆ .

The control ( 16) is, obviously, extremely complicated for a practical implementation. This can be carried out doing an approximation, e.g., via polynomials or rational functions, of this function for which standard symbolic software is readily available.

Adaptive IDA-PBC Using an Immersion and Invariance Power Estimator

In this section, the case of unknown power D is considered and an estimator of this parameter, based on the I&I technique [START_REF] Astolfi | Nonlinear and Adaptive Control with Applications[END_REF], is presented.

Proposition 4.1. Consider the average model of the DC-DC buck-boost converter with CPL (4) satisfying Assumptions 1 and 2 in closed-loop with an adaptive version of the control (16) given as

u = ū(x, D, k 1 ) (21) 
where D(t) is an on-line estimate of D generated with the I&I estimator

D = - 1 2 γx 2 2 + D I (22) ḊI =γx 1 x 2 (1 -u) + 1 2 γ 2 x 2 2 -γD I ( 23 
)
where γ > 0 is a free gain. There exists k min 1 such that for all k 1 > k min 1 the overall system has an asymptotically stable equilibrium at (x, D) = (x ⋆ , D) . Moreover, for all initial conditions of the closed-loop system and all D I (0), we have

D(t) = e -γt D(0), ( 24 
)
where D := D -D is the parameter estimation error.

Proof. Differentiating D along the trajectories of (4) and using ( 22) one gets

Ḋ = -γx 2 ẋ2 + ḊI = -γx 1 x 2 (1 -u) + γD + ḊI .
Substituting (23) in the last equation yields

Ḋ = γD + 1 2 γ 2 x 2 2 -γD I = -γ D,
from which (24) follows immediately.

To prove asymptotic stability of (x, D) = (x ⋆ , D) we write the adaptive controller (21) as ū(x, D, k 1 ) = ū(x, D, k 1 ) + δ(x, D, k 1 ), where we define the mapping δ(x, D, k 1 ) := ū(x, D + D, k 1 ) -ū(x, D, k 1 ), and we underscore the fact that δ(x, 0, k 1 ) = 0.

Invoking the proof of Proposition 3.2 the closed-loop system is now a cascaded system of the form

ẋ = F d (x)∇H d (x) + g(x)δ(x, D, k 1 ) Ḋ = -γ D, where g(x) := x 2 + 1 -x 1 , (25) 
is the systems input matrix. Now, D(t) tends to zero exponentially fast for all initial conditions, and for sufficiently large k 1 , i.e., such that ( 17) is satisfied, the system above with D = 0 is asymptotically stable. Invoking well-known results of asymptotic stability of cascaded systems, e.g., Proposition 4.1 of [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF], completes the proof of (local) asymptotic stability.

Simulation Results

In this section the performance of the proposed adaptive IDA-PBC is illustrated via some computer simulations. Moreover, its transient behavior is compared with the one of a PD controller designed adopting the classical linearization technique. In all simulations, we have chosen the system parameters given in [START_REF] Kwasinski | Stabilization of constant power loads in DC-DC converters using passivity-based control[END_REF], namely, P = 61.25W, C = 500µF, L = 470µH, E = 10V, and fixed the desired equilibrium as x ⋆ = (0.7423, 4). For simplicity, we simulate the scaled system (4), for which we have D = 0.59384. Depending on the context, the plots are shown either for x or for (i, v)-that we recall are simply related by the scaling factors given in (3).

PD controller

To underscore the limitations of the PD controller and the difficulties related with its tuning we present now the local stability analysis of such a controller. From (4), we obtain the error dynamics

ė1 = -(1 -e u -u ⋆ )(e 2 + x 2⋆ ) + e u + u ⋆ ė2 = (1 -e u -u ⋆ )(e 1 + x 1⋆ ) - D e 2 + x 2⋆
where we define the errors

e 1 := x 1 -x 1⋆ , e 2 := x 2 -x 2⋆ , e u := u -u ⋆ ,
and u ⋆ := x2⋆ 1+x2⋆ . A standard PD controller for the error dynamics is given by

e u = k p e 1 + k d e 2 , ( 26 
)
where k p , k d are tuning gains. Notice that, for the computation of x 1⋆ , the implementation of this controller requires the knowledge of D. The Jacobian matrix of the closed-loop system ė = F (e), evaluated at the equilibrium point, is given by

J := ∇ e1 F 1 (e) ∇ e2 F 1 (e) ∇ e1 F 2 (e) ∇ e2 F 2 (e) e=0 = k p (1 + x 2⋆ ) k d + k d x 2⋆ -1 1+x2⋆ 1 1+x2⋆ -Dkp(1+x2⋆) x2⋆ -D(-1+kdx2⋆(1+x2⋆)) x 2 2⋆
, where ∇ ei F j (e) := ∂Fj(e) ∂ei . The matrix J is Hurwitz if and only if its trace is negative and its determinant is positive, which are given by tr

(J) = k p (1 + x 2⋆ ) -k d D( 1 x 2⋆ + 1) + D x 2 2⋆ det(J) = k p D x 2 2⋆ -k d + 1 (x 2⋆ + 1) 2 .
Defining the positive constants

m 1 := x 2⋆ D , b 1 := 1 x 2⋆ + x 2 2⋆ m 2 := D x 2 2⋆ , b 2 := 1 (1 + x 2⋆ ) 2 ,
we can write the trace and determinant stability conditions as the two-sided inequality

m 2 k p + b 2 > k d > m 1 k p + b 1 , (27) 
which is a conic section in the plane k dk p , that reveals the conflicting role of the two gains. Notice that the extracted power D enters in the first slope m 1 in the pared with Fig. 2, it is observed that the IDA-PBC provides a much bigger domain of attraction and, moreover, gives an estimate for it. Other values for the gains k p and k d are tried yielding similar inadmissible behavior. In Fig. 8 we show the step changes in the power D and the estimate D for different values of the adaptation gain, with the initial condition D(0) = D(0). As predicted by the theory, for a larger γ, the speed of convergence of the estimator is faster. Notice, however, that in the selection of γ, there is a tradeoff between convergence speed and noise sensitivity. 

Conclusions

In this paper, we have addressed the challenging problem of regulation of the output voltage of a buck-boost converter feeding a CPL with unknown power. First, assuming the power is known, an IDA-PBC has been proposed. Subsequently, an on-line I&I estimator with global convergence property has been presented to render the scheme adaptive, preserving the asymptotic stability property. We have also illustrated the performance limitations of the classical PD controller stemming from the fact that, due to the presence of the CPL, the system is non-minimum phase. Some realistic simulations have been provided to confirm the effectiveness of the proposed method.

Although the great complexity of the exact expression of the controller stymies its practical application, well-established and effective methods of function approximation can be used to obtain a workable solution. Current research is under way in this direction with the final aim of reporting a practical implementation. Another line of research that we are currently pursuing is the addition of a current observer to remove the need for its measurement, which is an issue of practical interest.

Appendix A. Proof of Proposition 3.2 (P1) We will show that the control ( 16) can be derived using the IDA-PBC method of Proposition 3.1 with the selection

F d (x) := -x2 x1 -2x2 x2+1 2x2 x2+1 -2x1 (x2+1) 2 , (A1)
that, for x ∈ R2 >0 , satisfies the condition ( 14). 2 The system (4) can be rewritten in the form (10) with g(x) given in (25) and the vector field

f (x) := -x 2 x 1 -D x2 .
Noting that the left annihilator of g(x) is g ⊥ (x) := [x 1 x 2 + 1], the PDE (12) takes the form

x 1 x 2 + 1 -x 2 x 1 -D x2 - -x2 x1 -2x2 x2+1 2x2 x2+1 -2x1 (x2+1) 2 ∇H d (x) = 0, which is equivalent to -x 2 ∇ x1 H d (x) + 2x 1 ∇ x2 H d (x) = D -x 1 + D x 2 . ( A2 
)
The solution of the PDE (A2) is easily obtained using a symbolic language, e.g., Maple or Mathematica, and is of the form

H d (x) = - 1 2 x 2 + √ 2D arctan √ 2x 1 x 2 - D arctan   x1 x 2 1 + x 2 2 2   2 x 2 1 + x 2 2 2 + Φ(x 2 1 + x 2 2 2 ).
where Φ(•) is an arbitrary function. Selecting this free function as

Φ(z) := k 1 2 (z + k 2 ) 2 ,
with k 1 and k 2 arbitrary constants, yields (19).

To complete the design it only remains to prove the existence of k 1 and k 2 that verify (13). Towards this end, we first compute the gradient of H d (x) as

∇H d =         -D(1+x2) 2x 2 1 +x 2 2 + k 1 x 1 (2(k 2 + x 2 1 ) + x 2 2 ) + √ 2Dx1 arctan   x 1 x 2 1 + x 2 2 2   (2x 2 1 +x 2 2 ) 3 2 √ 2x 2 1 +x 2 2 2Dx1(1+x2)+x2(2x 2 1 +x 2 2 ) -1+2k1(k2+x 2 1 )x2+k1x 3 2 + √ 2Dx 2 2 arctan   x 1 x 2 1 + x 2 2 2   2x2(2x 2 1 +x 2 2 ) 3 2         (A3)
Evaluating (A3) at the equilibrium and selecting k 2 as given in (18) yields

∇H d | x=x⋆ = 0 D + Dx 2⋆ -x 1⋆ x 2⋆ . (A4)
Invoking ( 6) one gets

∇H d | x=x⋆ = 0.
The Hessian of H d (x) is given by

∇ 2 H d = ∇ 2 x1 H d ∇ 2 x1x2 H d ∇ 2 x2x1 H d ∇ 2 x2 H d , ( A5 
)
where

∇ 2 x1 H d = 1 (2x 2 1 + x 2 2 ) 3 (2x 2 1 + x 2 2 ) 2Dx 1 (3 + 2x 2 ) + k 1 (2x 2 1 + x 2 2 ) 2 (2k 2 + 6x 2 1 + x 2 2 ) + √ 2D(-4x 2 1 + x 2 2 ) 2x 2 1 + x 2 2 arctan   x 1 x 2 1 + x 2 2 2   ∇ 2 x2x1 H d =∇ 2 x1x2 H d = 1 x 2 (2x 2 1 + x 2 2 ) 3 2k 1 x 1 x 2 2 (2x 2 1 + x 2 2 ) 3 + D 2x 2 1 x 2 2 -4x 4 1 (1 + x 2 ) + x 4 2 (2 + x 2 ) -3 √ 2Dx 1 x 2 2 2x 2 1 + x 2 2 arctan x 1 x 2 1 + x 2 2 2 ∇ 2 x2 H d = 1 2x 2 2 (2x 2 1 + x 2 2 ) 3 (2x 2 1 + x 2 2 ) k 1 2(k 2 + x 2 1 ) + 3x 2 2 (2x 2 1 + x 3 2 ) 2 -4Dx 1 x 2 1 + x 2 2 (2 + x 2 ) + 2 √ 2D(x 2 1 -x 2 2 )x 2 2 2x 2 1 + x 2 2 arctan   x 1 x 2 1 + x 2 2 2   .
Replacing k 2 in (A5) and evaluating it at the equilibrium point x = x ⋆ , we obtain

∇ 2 H d x=x⋆ = ∇ 2 x1 H d | x=x⋆ ∇ 2 x1x2 H d | x=x⋆ ∇ 2 x2x1 H d | x=x⋆ ∇ 2 x2 H d | x=x⋆ , (A6) 
where

∇ 2 x1 H d | x=x⋆ = 1 x 1⋆ (2x 2 1⋆ + x 2 2⋆ ) 5 2 2x 2 1⋆ + x 2 2⋆ 4k 1 x 3 1⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D x 2 2⋆ (1+ x 2⋆ ) + x 2 1⋆ (8 + 6x 2⋆ ) -6 √ 2Dx 3 1⋆ arctan x 1⋆ x 2 1⋆ + x 2 2⋆ 2 ∇ 2 x2x1 H d | x=x⋆ =∇ 2 x1x2 H d | x=x⋆ = 1 x 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 3 2k 1 x 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 3 + D -4x 4 1⋆ 2x 2 1⋆ x 2 2⋆ -4x 4 1⋆ x 2⋆ + x 4 2⋆ (2 + x 2⋆ ) -3 √ 2Dx 1⋆ x 2 2⋆ 2x 2 1⋆ + x 2 2⋆ × arctan x 1⋆ x 2 1⋆ + x 2 2⋆ 2 ∇ 2 x2 H d | x=x⋆ = 1 2x 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 5 2 2x 2 1⋆ + x 2 2⋆ 2k 1 x 1⋆ x 4 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D x 4 2⋆ -4x 4 1⋆ + x 5 2⋆ ) -2x 2 1⋆ x 2 2⋆ (3 + x 2⋆ ) -3 √ 2Dx 1⋆ x 4 2⋆ arctan x 1⋆ x 2 1⋆ + x 2 2⋆ 2 . Some lengthy, but straightforward, calculations prove that ∇ 2 x1 H d | x=x⋆ > 0 holds if and only if k 1 > k ′ 1 , (A7) 
where k ′ 1 is defined as

k ′ 1 := 6 √ 2Dx1⋆ arctan x 1⋆ √ x 2 1⋆ + 1 2 x 2 2⋆ √ 2x 2 1⋆ +x 2 2⋆ -D x 2 2⋆ (1 + x 2⋆ ) + x 2 1⋆ (8 + 6x 2⋆ ) 4x 3 1⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 . (A8)
Moreover, the determinant of (A6) is given by det Our final task is to select k 1 , which stands in the first left hand term above, to ensure (A10) holds. First, we notice that h(x ⋆ ) may be factored as

∇ 2 H d x=x⋆ = 1 2x 2 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 4 4k 1 x 3 1⋆ (2x 2 1 + x 2 2 ) 2 + D x 2 2⋆ (1 + x 2⋆ )+ x 2 1⋆ (8 + 6x 2⋆ ) - 6 √ 2Dx 3 1⋆ arctan x1⋆ x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 2⋆ 2k 1 x 1⋆ x 4 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 - 3 √ 2Dx 1⋆ x 4 2⋆ arctan x1⋆ x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 2⋆ + D x 4 2⋆ (1 + x 2⋆ ) -4x 4 1⋆ - 2x 2 1⋆ x 2 2⋆ (3 + x 2⋆ ) - 1 x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 4 2k 1 x 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D x 2 2⋆ (2 + x 2⋆ ) -x 2 1⋆ (2 + 2x 2⋆ ) - 3 √ 2Dx 1 x 2 2 arctan x1 x 2 1⋆ + x 2 2⋆ 2 2x 2 1 + x 2 2 2 = 1 2x 2 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 4 4k 1 x 3 1⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D x 2 2⋆ (1 + x 2⋆ )+ x 2 1⋆ (8 + 6x 2⋆ ) - 6 √ 2Dx 3 1⋆ arctan x1⋆ x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 2⋆ 2k 1 x 1⋆ x 4 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D -4x 4 1⋆ + x 4 2⋆ (1 + x 2⋆ ) -2x 2 1⋆ x 2 2⋆ (3 + x 2⋆ ) - 3 √ 2Dx 1⋆ x 4 2⋆ arctan x1⋆ x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 2⋆ -2x 2 1⋆ 2k 1 x 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 2 + D x 2 2⋆ (2 + x 2⋆ ) -x 2 1⋆ (2 + 2x 2⋆ ) - 3 √ 2Dx 1 x 2 2 arctan x1 x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 2⋆ 2 = 1 2x 2 1⋆ x 2 2⋆ (2x 2 1⋆ + x 2 2⋆ ) 4 k 1 D(2x 2 1⋆ + x 2 2⋆ ) 2 h(x ⋆ ) + 2D 2 x 2 2⋆ (1 + x 2⋆ )+ x 2 1⋆ (8 + 6x 2⋆ ) x 4 2⋆ (1 + x 2⋆ ) -4x 4 1⋆ -x 2 1⋆ x 2 2⋆ (3 + x 2⋆ ) -2x 2 1⋆ x 2 2⋆ (2 + x 2⋆ ) -2x 2 1⋆ (2 + 2x 2⋆ ) 2 -3 √ 2x 1⋆ x 4 2⋆ x 2 2⋆ (1 + x 2⋆ ) + x 2 1⋆ (8+ 6x 
h(x ⋆ ) = 4x 3 1⋆ + 2x 3 1⋆ x 4 2⋆ + x 1⋆ x 2 2⋆ + x 1⋆ x 7 2⋆ + 4x 5 1⋆ [x 3 2⋆ -(2x 2 1⋆ + x 2 2⋆ )],
with the term in brackets being positive in most practical applications. Consequently, since all other terms are positive, we have that h(x ⋆ ) > 0 and the inequality (A10) is equivalent to k 1 > k ′′ 1 , with the latter defined as 

k ′′ 1 := - 1 D(2x
> max{k ′ 1 , k ′′ 1 } ensures ∇ 2 H| x=x⋆ > 0.
The proof of P1 is completed showing that the IDA-PBC ( 16) results replacing the data in ( 15).

(P2) The proof of this claim follows immediately noting that we have shown above that the function H d (x) has a positive definite Hessian evaluated at x ⋆ , therefore it is convex. Consequently, for sufficiently small c, the sublevel set Ω x defined in (20) is bounded and strictly contained in R 2 >0 . The proof is completed recalling that sublevel sets of strict Lyapunov functions are inside the domain of attraction of the equilibrium.
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 1 Figure 1. Circuit representation of the DC-DC buck-boost converter with a CPL
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 3 Figure 3. Zoom of the phase plot of the system with the IDA-PBC around the saddle point.
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 45 Figure 4. Phase portrait of the system with the PD controller and trajectories (red) for two initial conditions x(0) ≈ x ⋆ . Finally, Figs. 5 and 6 show the transient responses of the output voltage v and the duty ratio u under the IDA-PBC and the PD controller with initial conditions x(0) = (0.4, 3.9) and gains k 1 = 0.01 for the former and k p = -0.4, k d = -1.5 for the
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 6 Figure 6. Duty ratio for the IDA-PBC and the PD controller.
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 78 Figure 7. Response curves for the adaptive IDA-PBC with γ = 1 to changes in the power D: (a) output voltage-with (b) and (c) zooms for it-and (d) the inductor current.

  Combining this constraint with (A7) allows us to conclude that k 1

	2 1⋆ + x 2 2⋆ ) 2 h(x ⋆ ) 1⋆ x 2 x 2⋆ ) -x 2 2⋆ (3 + x 2⋆ ) -2x 2 × 2D 2 x 2 2⋆ (1 + x 2⋆ ) + x 2 1⋆ (8 + 6x 2⋆ ) -4x 4 1⋆ + x 4 2⋆ (1+ 1⋆ x 2 2⋆ (2 + x 2⋆ ) -2x 2 1⋆ (2 + 2x 2⋆ ) √ 2x 1⋆ x 4 2⋆ x 2 2⋆ (1+ 2 -3 x 2⋆ ) + x 2 1⋆ (8 + 6x 2⋆ ) x1⋆ arctan x 2 1⋆ + x 2 2⋆ 2 2x 2 1⋆ + x 2 -6 √ 2Dx 3 1⋆ + x 4 2⋆ (1 + x 2⋆ ) 1⋆ -4x 4 2⋆ -2x 2 1⋆ x 2 2⋆ (3 + x 2⋆ ) x1⋆ arctan x 2 x 2 2⋆ 1⋆ + 2 2x 2 2⋆ 1⋆ + x 2 . (A11)

Although x 1⋆ is defined via (6), to simplify the notation, we have omitted this clarification in the definition of k

.

It is well-known[START_REF] Ortega | Interconnection and damping assignment passivitybased control: A survey[END_REF]) that a key step for the successful application of the method is a suitable selection of this matrix, which is usually guided by the study of the solvability of the PDE (12). See[START_REF] He | Passivity-based control for DC-DC power converters with a constant power load[END_REF] for some guidelines for its selection in this example.

denominator, while it appears in the nominator in m 2 -rendering harder the gain tuning task regarding this uncertain (and time-varying) parameter.

IDA-PBC vs PD: Phase plots and transient response

Since the system in closed-loop with the PD (26) and the (non-adaptive) IDA-PBC (4) lives in the plane it is possible to get the global picture of the behavior of these controllers drawing their phase plot. In Fig. 2 we show the phase plot of the IDA-PBC together with some trajectories for different initial conditions (in red), and three sublevel sets Ω x -defined in (20)-that ensure the trajectories remain in R 2 >0 . The plot is shown for k 1 = 0.01, which satisfies (17) since, for this case, k ′ 1 = -0.1205 and k ′′ 1 = -0.0583. It is clearly seen that the state trajectories for initial conditions starting in Ω x remain there and converge to the desired equilibrium point. Moreover, it is obvious from the phase portrait that the actual domain of attraction of this equilibrium-that ensures this key invariance property-is much larger than the one predicted by the theory. However, as shown in the plot, it cannot cover the whole positive orthant. Indeed, it is possible to show that the closed-loop vector field has another equilibrium in R 2 >0 that corresponds to a saddle point. To better illustrate this fact we show in Fig. 3 a zoom of the phase plot around this unstable equilibrium.

In Fig. 4 we show the phase plot for the PD controller (26), whose parameters are chosen as k p = -0.4, k d = -1.5 to satisfy the condition (27), which for the current situation takes the form 0.037k p + 0.04 > k d > 6.7358k p + 0.0588.

The figure shows two trajectories-that have to be chosen very close to the equilibrium-to ensure that the trajectories remain in R 2 >0 and converge to x ⋆ . Com-