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On State Observers for Nonlinear Systems: A New
Design and a Unifying Framework

Bowen Yi, Romeo Ortega, and Weidong Zhang

Abstract—In this paper we propose a new state observer
design technique for nonlinear systems. It combines the well-
known Kazantzis-Kravaris-Luenberger observer and the recently
introduced parameter estimation-based observer, which become
special cases of it—extending the realm of applicability of both
methods. A second contribution of the paper is the proof that
these designs can be recast as particular cases of immersion and
invariance observers—providing in this way a unified framework
for their analysis and design. Simulation results of a physical
system that illustrates the superior performance of the proposed
observer compared to other existing observers are presented.

Index Terms—State observers, nonlinear systems, parameter
estimation.

I. INTRODUCTION AND PROBLEM FORMULATION

In this paper we are interested in the design of state
observers for nonlinear control systems whose dynamics is
described by’

&= f(x,u)
y = h(x),

where © € R" is the system state, u € R™ is the control signal,
and y € RP is the measurable output signal. The problem is
to design a dynamical system

(D

X = Fy,xu)
& = H(y,x,u) (2
with x € R™x, such that
lim [#(t) — 2(t)] =0, 3)

t—o0

where | - | is the Euclidean norm. Following standard practice
in observer theory we assume that w is such that the state
trajectories of (1) are bounded.

Since the publication of the seminal paper [14], which dealt
with linear time-invariant (LTT) systems, this problem has been
extensively studied in the control literature. We refer the reader
to [2], [5] for a review of the literature. In this paper we
are particularly interested in three recently developed observer
design techniques.
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I All mappings in the paper are assumed smooth.

o The Kazantzis-Kravaris-Luenberger observer (KKLO)
first presented in [12] as an extension to nonlinear sys-
tems of Luenberger’s observer and further developed in
[1].

o Parameter estimation-based observer (PEBO) proposed in
[15], which translates the state observation problem into
an on-line parameter estimation problem.

o Immersion and invariance observer (I&I0), first reported
in [11] and thoroughly elaborated in [2], which proposes a
more general observer framework based on the generation
of attractive and invariant manifolds.

The main contributions of our paper are threefold.

(Cl) Propose a new observer design technique, called
[KKL+PEB]O, that combines—in a seamless way—the
KKLO and PEBO designs, yielding a new design appli-
cable to a broader class of systems.

Prove that KKLO, PEBO and [KKL+PEB]O can be recast
as particular cases of generalized 1&IO—providing in this
way a unified framework for their analysis and design.
Present simulation results of the well-known DC-DC Cuk
converter that illustrate the superior performance of the
proposed observer compared to other existing observer
designs.

(C2)

(C3)

The remainder of the paper is organized as follows. Section
IT gives some preliminaries on KKLO and PEBO. In Section
IIT we present the new [KKL+PEB]O. The unifying framework
based on immersion and invariance is given in Section IV. In
Section V we present two academic examples that illustrate
the interest of the new [KKL+PEB]O and some simulation
results of a physical system that compares the new observer
with other observer designs. The paper is wrapped—up with
concluding remarks and future research directions in Section
VL

II. PRELIMINARIES

In this section we briefly present simple versions of the
KKLO and the PEBO that are motivating to generate the new
[KKL+PEB]O in the next section.

A. Kazantzis-Kravaris-Luenberger Observer

The KKLO design is based on the following proposition,
which is a simplified version of the more general result
reported in [1], [12].

Proposition 1. Consider the system (1) satisfying the follow-
ing assumption.
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A1l There exist n¢ negative real numbers A;, ¢ = 1,2,...,ng,
with ng > n, and mappings
¢:R" — R"™
o 1 R™ x RP - R"
B :RP x R™ — R"¢
with ng > n — p, satisfying the following.
(i) The KKLO partial differential equation (PDE)
Vo' (2)f(z,u) = A¢(z) + B(h(z),u), 4

where V := (2)T and A := diag{\;}.
(ii) @' is a left inverse of ¢, that is,

P (p(x), h(z)) = . (5)
The KKLO
¢ = A¢+ B(y,u)
i = "¢ y), (6)

ensures (3).

Proof. The proof of this proposition follows immediately
defining the error signal

e:=¢—¢(x)
and noting that é = Ae. ]

B. Parameter Estimation-based Observer

The PEBO design proposed in [15], although related with
the KKLO, aims at formulating the state reconstruction prob-
lem as a parameter estimation problem. Towards this end, we
are looking for an injection B(h(x),u) and a (left invertible)
mapping ¢(z) that transforms the system (1) into’

é(x) = B(h(), ). (7

In this way, selecting (part of) the observer dynamics as
§ =By, u), ®)

we establish, via simple integration, the key relationship
ox(t)) = £() + 6, ©)

where 0 is a constant vector defined as 6 := ¢(x(0)) — £(0).
It is clear that, if 6 is known, we have that

T = ¢HE+0,y).

Hence, the remaining task is to generate an estimate for 0,
denoted 6, to obtain the observed state

&= E+0,y).

To achieve this end, we rely on the existence of the regression
model

(10)

F]:[ B(@H(E +0.,y)
3] = (VAT (M€ + 0.9) F(H(E + 0.9),u)|

2To avoid cluttering the notation, whenever clear from context, we use
the same symbols to denote mappings playing similar roles in the various
observers. The subindex (-)p or (-)r, is later used to identify the PEBO or
KKLO-related mappings in the [KKL+PEB]O.

(1)

where we underscore that y,u and & are, of course, measur-
able.
The main result in [15] may be summarized as follows.

Proposition 2. Consider the system (1) satisfying Assumption
A1 of Proposition 1 with A = 0 and the dynamic extension
(8) verifying the following assumption.

A2 There exist mappings
M :R™ x R"™ x RP x R™ — R™
N :R™ x R™ x RP x R™ — R"¢

such that the dynamical system

(= M(( &y u)
é = N(C? 67 y7 u)7

defines a stable, consistent parameter estimator for the
regression model (11), that is ¢ is bounded and

12)

Jlim [0(t) - 0] = 0. (13)

The PEBO (8), (10), (12) verifies (3).

C. Remarks

R1 Notice that the KKLO (6), together with the dynamics
of the system (1), admits an attractive and invariant manifold

Si={(z,§) e R" xR"™ [ £ = ¢(x)},

and the state is (asymptotically) reconstructed, via ¢", with
the knowledge of &. On the other hand, the PEBO generates
an invariant foliation

Sp = {(2,6) € R* x R" | £ = ¢(x) + 6, 6 € R"<}.

To reconstruct the state—again via ¢'—it is necessary to
identify the leaf of the foliation where the system evolves.
These observations are essential to establish the connection
of these observers with the I&IO, which also relies on the
generation of an attractive and invariant manifold, defined by
an invertible mapping.

R2 Besides the additional difficulty of needing to estimate 6,
the main drawback of PEBO is that it relies on the open-loop
integration (8), which might be a problematic operation in
practice. In spite of that, PEBO has proven instrumental in
the solution of numerous physical systems problems [6], [7],
[8], [17]—some of them being unsolvable with other observer
design techniques—with the open integration problem solved
via the addition of “safety nets” similar to the ones used in
PID designs or adaptive control.

R3 We underscore the fact that the PDE that needs to be
solved for PEBO is exactly the one of KKLO with A = 0,
that is

Vo' (2)f(x,u) = B(h(z), ).

We refer the reader to [18] where the generation of virtual
outputs via signal injection technique of [9] is proposed to
simplify the solution of this PDE.
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III. NEw [KKL+PEB] OBSERVERS

In this section we present our first main contribution,
namely, a new observer design technique that combines PEBO
and KKLO. The key idea of the new observer is to split the
states to be estimated in two groups, the first one estimated
with a KKLO and the second one with a PEBO.

A. Main result

The following proposition, whose proof follows verbatim
from Propositions 1 and 2 formalises the discussion above.
For ease of presentation, and without loss of generality, we
assume that the aforementioned groups are arranged one on
top of the other.

Proposition 3. Consider the system (1) satisfying Assumption
A1 of Proposition 1 with

A _ { A qu(ng,q)
O(ne—aq)xa  O(ne—q)x(ne—a) (14)
Ap o =diag{\1,..., N},

where 0 < g < ng, Oy, is a k x j matrix of zeros, \; <

0, i=1,...,q. Partition the mapping B(y, u) as follows
Br(y,u) _
B(y,u) = ’ , B € RY, Bp € R"79,
) [ Bp(y,u) t r

The [KKL+PEB]O

£ =Arér + Br(y, u)
ép = Bp(y,u)
(= Mp((.ép.y,u)
0 = Np(C.ép,y,u)

s=o (6] + (3] ):

where 0, is a g-dimensional vector of zeros, ensures (3)
provided the mappings

Mp : R™ x R"79 x RP x R™ — R™¢,
Np :R™ x R"7% x RP x R™ — R™7 9,

15)

define a consistent estimator, that is, (13) holds.

B. Remarks

R4 It is clear that Proposition 3 contains, as particular
cases, Propositions 1 and 2. Indeed, the former is recovered
setting ¢ = n¢ while the latter follows with ¢ = 0.

RS The result of Proposition 3 can be extended in several
directions. For instance, it is possible to replace the PDE (4)
by

Vo' (@) f(x,u) = Ap(x) + B(h(x), ),
where A is such that there exists a unitary matrix P ensuring

A = PTAP with A given in (14).3 Clearly, the degree of
freedom provided by the inclusion of the matrix A enlarges

3With a slight modification it is also possible to consider the case of A
with purely imaginary eigenvalues.

the set of solutions of the PDE. In this case, the dynamics of
(&L,&p) in the observer (15) is replaced by

139 _ 97
{fp} B A[fP

- g3

] + PB(y,u)

}7y)~

R6 In the case of input-affine systems, i.e., f(x,u) = F(z)+
g(x)u, it is possible to decompose the PDE (4) into two, that
is,

Vo' (z)F(x) = Ag(x)+ Br(h(z))

Vo' (x)g(x) = By(h(x))
and define the observer dynamics via

B(y,u) :== Bp(y) + By(y)u.

Explicit formulas for the solutions of these equations may be
found in [18].

IV. 1&I OBSERVERS: AN UNIFYING FRAMEWORK

In this section we show that a mild extension of the I&IO
studied in [11], [2] allows us to capture, as a particular case the
new [KKL+PEB]O proposed in this paper—and, consequently,
it also contains the KKLO and the PEBO.

A. Extension of I&I observers

The main result of the I&IO in [11] is extended in the
following proposition by relaxing a dimension requirement

imposed to some mappings in the original formulation of
[1&I0—see R8 in Subsection IV-C.

Proposition 4. Consider the system (1). Assume the existence
of mappings
B:RP x R"™ — R"™*

¢:R" — R"

" : R™ x RP — R"
with ¢"(¢(x),y) = x and n, > n., such that the following
assumptions hold.

A4 rank V, 87 (y,x) = n..
AS The system with state
dp =V, 87 (VAT (@)f(z,u) = VAT (2)f (i, )

VT @) f () + VO @) )
MR g (6(a) + dan b))
Z = T M, h(x

di =By, x) — olx), {an

has an asymptotically stable equilibrium dq = 0.
The 1&IO

X = -V B8TN(V,BTVAT () — Vo (2))f(&,u) (18)
+(I - [VxﬂTWVxﬂT)Q(%X,U)
& o= "By, X)) (19)
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with [-] the pseudoinverse and @ : RP x R™x x R — R"x*"x
an arbitrary mapping, verifies (3).

Proof. The dynamics of off-the-manifold coordinate d 4 is
dpm = VBT VR (2)f(z,u) + VB X — Vo () f(z,u).

Replacing the dynamics of x in (18), we get (16). According
to Assumption AS, we have

lim daq(t) = 0.

t—o0

Replacing this limit in (17) and recalling that ¢*(p(x),y) = =
ensures lim; o |Z(t) — z(¢)| = 0. ]

B. KKL+PEB observers: An 1&I interpretation

In this section we will show that if the system admits a
[KKL+PEB]O it also admits an 1&IO. To unify the notation

we define
L & £
v [ér] e ) o ],

C €P
introduce the partitions
¢r(x)
o(x) == |:¢P($)]
M = { 0, }
MP(C;&P»yvu))
N := [Oq N(CaﬁP,yvu)]

and define the mapping
Y(x,x,u) :=VyB" (VA" (2)f(x,u) — VA (2)f (&, u))
— Vo' (2)f(w,u) + Vo (&)f(2,u),
(20)
that, according to (16), defines the dynamics of the off-the-
manifold coordinate d .

Proposition 5. Assume the system (1) admits a [KKL+PEB]O
(15) with

rank ([In5 + VgNT ’ V¢NT]) = ng,

and {(z,£,¢)|0—6 = 0} is invariant. Then, the system admits
an 1&IO (18)-(19) with the mappings selected as (21), (22)
and (23).

B=E&+ N(( &p, h(2)) 21
T =
—Apor(z) + AL
One g
vcﬁ—l— (MP(Cv ¢P(‘%)7 h(l’)7 U) - MP(C’ ¢P(x)7 h((ﬁ), U))
(22)
0=o. 23)

If the measurable output signals are partial states, the
[KKL+PEB]O (15) exactly coincides with the I&IO (18)-(19),
and

I&IO0 PDE (20), 22) = [KKL+PEB]O PDE (4).

Proof. For the sake of clarity, we assume Np is independent
of u to avoid further complicating the notation. Before the
proof, we present the following two useful facts.

F1 If the output signals are partial states, i.e.,
col(x1,x2) and y = xo without loss of generality, we
have

h’(i) = h(¢L(§+N(C7§P7y)7
F2 When {p = ¢p(x), we have

Tr =

y)) = h(col(x1,%2)) =

d

—Np (¢, dp(),y)

dt = Ong—qa

thus yielding the following identity.

VerNpVop(2) f(z,u) + VeNp Mp(C, ¢p(2), 9, u)

+V,Np VL (2)f(x,u) = 0.

(24)

According to (21), Assumption A4 is obviously satisfied.

The reminding of the proof is divided into two parts: 1) the

selected mappings yield the dynamics (18)-(19), having the

same structure as (15) in [KKL+PEB]O; 2) these mappings
are solutions of 1&IO PDE.

1) The dynamics of x in (18) has the term
vV BT1(V,BTVRT —V¢T)f(Z,u), in which
VyBTVRT(2)f(@,u) = VT (&) f (&, u) )
TR Ao VI B
We analyze the above equation in two parts, i.e., —ngz f and

(VyNLVRhT — VL) f. For the first part, the existence of a
[KKL+PEB] observer yields the PDE

Vor (@) f(x,u).

Substituting = by & = ¢"(£L,), we have

VoL (@) f(&,u)
The second partition of (25) verifies the relation below.
(V,NEVAT (&) -

Vo h(@))f ()
E  (Veu NE (¢ op(2), h(@)) + DVSE(E) f (&, u)
— VeNE (¢, 6p(#), (&) Mp(C, dp(2), h(#), u)

Bp(h(2),u
VBT (G, eps i

Arér(x) + Br(y,u) =

= Arér + Br(y,u). (26)

27)

)
)su)]”
Combining (25)-(27), we get the mapping «(-) in I&IO is

Arér + Br(y,u)
Bp(h(%),u) ;
Mp(¢,&p, h(Z),u)

showing that if the 1&IO PDE has a solution, then the 1&IO
asymptotically coincides the [KKL+PEB]O. Furthermore, if
the measurable output signals are partial states, due to fact
F1, the I&IO exactly coincides with the [KKL+PEB]O.

X = Oé(y,X7’Ll/) =

h(z).
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2) We check the solution existence of I&IO PDE. The first
partition of I&IO PDE is verified as follows.

Arér(z) + Br(y,u) = Vo (z) f(z,u).
—Apér(z) — Br(y,u) + Arér + Br(y, v)
~VoL (@) f(,u) + VoL (&) f(&,u)
& A&~ Argr(e) = Vo (@) f(@,u) - wa(x)f(x(,;é))
For the second partition of the I&IO PDE, the identity (24)
yields (29). Combining (28)-(29), it shows that the selecting
mappings are solutions of I1&IO PDE.

The invariant manifold of [KKL+PEB]O is

M= {(z,x) e R" x R™| £+ N((,€p,y) = ¢(2)} -

The dynamics of off-the-manifold coordinate is da
T (z, x, u), whose convergence is guaranteed by the consistent
identification Assumption A2 and the fact that the matrix Ay,
is Hurwitz. This completes the proof. |

We are in position to present the main result of this paper—
the unified observer framework captured by I1&IO.

=

Corollary 1. For the nonlinear system (1), a [KKL+PEB]O
implies the existence of 1&I observers. Moreover, the follow-
ing “set” relationship holds:

PEBO

30
KKLO 0

} C [KKL+PEB]O C I&IO.
C. Remarks

R7 As discussed above, an I&IO generates the invariant
manifold

M = {(z,x) € R" x R™| B(h(z),x) = ¢(x)},

which is made attractive ensuring—via Assumption A5—that
the zero equilibrium of the dynamics of the off-the-manifold
coordinate (16), which may be written as

d./\/l = T(‘T,Xau) = To(l',d_/\/[,u)

has an asymptotically stable equilibrium at the origin.

I&IO removing the requirement nge = mn. and using the
pseudoinverse.

R9 KKLOs and PEBOs are specific cases of [KKL+PEB]Os,
making them covered by I&IO framework. More specifically
the following statements hold.

o the KKLO (6) coincides with the 1&IO (18)-(19) with
mappings selecting

Ny =Nz =4(¢
Bly,x) =& =x
Y (x,x,u) = —Ag(x) + Ax

with any mapping Q(y, x, ). The KKLO PDE sacrifices
the freedom for Y by fixing T = —A¢(x) + Ay.

o If the measurable output signals are partial states, the
PEBO coincides with the 1&IO with mappings *

x = col(¢, ()
B=&+N(CEy)
_ T 0
Y=NB (¢, 68, h(@) 1) — M(C, $(x), h(x),u)

and Q = 0, where Z = ¢*(B(y, x),v)-

R10 Notice that the condition that “the measurable output
signals are partial states” in Proposition 5 is done without
loss of generality because it is always possible to do a change
of coordinates to verify it.

V. EXAMPLES

A. Proving the interest of the new observer

In this section, an academic example for which neither
KKLO nor PEBO are applicable, but it is solvable via our
new [KKL+PEB]O design.

Proposition 6. Consider the system

B = —25 4 %
R8 In the I&IO proposed in [11], [2] we fix n, =n. < n. Ty = —w2 + 73% + sinay 31)
In this case, (18) reduces to 3= (22 + 1)+ zyu
X =—[VB(VyBT VAT (&) = Vo (2)f (2, u), y=on
and A4 is equivalent to requiring that V, 3 is a non-singular The following facts hold.
square matrix. For PEBO and [KKL+PEB]O, the dimensions = F3 The system does not admit a KKLO nor a PEBO.
of their corresponding invariant manifolds are less than the
dimensions of dynamic extensions. Hence, we generalise 4Here we also assume N is independent of u for the sake of clarity.
Bp(h(z), u) - Bp(h(2),u)
— V.8 (h(z), ’ + V8" (h(2), N
BT |y o e ) T8 BN g O e
Voép(@)f(@,u) Vo p(@)f (@, u) } (29)

= V.87 (h(z),x) {Mp(c,asp 2) h(zm)} + VoBT (h(E), x) {MP(C@P(@) (&), u)

= Vop(a)f(z,u) = Bp(h(z),u).
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F4 The system admits a [KKL+PEB]O, namely,

& =& + 9y +siny (32)
L=uy+(y*+1)7" (33)
O =y(Y — ¢0) (34)
T =& (35)
i3 =& +1n6. (36)

where v > 0 is an adaptation gain and Y, 1) are obtained
via LTI filtering as

ap « 3
Y = +
P+« [y] P+ [y ]
_ @ &2
= e~2|, ¥(0) >0 37
b= [ e (37)
with p := % and o > 0, is a [KKL+PEB]O that ensures

tlggo |Z;(t) —zi(t)] =0, i = 2,3.

Proof. [Proof of F3] KKLO requires ¢(x) to be injective. To
guarantee this property at least one of its three components
should depend on z3. Suppose, without loss of generality, that
¢2(x) depends on x3. Define the three-dimensional vector p
as

pla) i= Voo ().
From the PDE (4) we have
—z3 + €%
—x9 + x% + sin x1
ru+ (1 +23)7t

(38)

pT(;z;) = 7)\2(252(1')4’32(1'1, u) (39)

Since ¢2(z) dependends of x3, we have ps(z) # 0. The
left hand side term of (39) dependent on u is ps(z)zyu,
while the one in the right hand side is Ba(z1,u), from
which we conclude that p3(z) only depends on x4, that is
p3(x) = ps(x1). From Poincare’s lemma we have that (38)
holds if and only if the Jacobian Vp(x) is a symmetric matrix.
Applying this condition to the (1,3) element of the Jacobian
we conclude that p;(x) should satisfy

p1(x) = p3(x1)ws + Lz, 22),

with L(z1,x2) to be determined and (-)’ the derivative with
respect to its argument. From the (2,3) element we also
conclude that py(x) is independent of x3, that is po(z) :=
p2(21, x2).

The terms in the left-hand side of (39) dependent on x3 are
—ph(z1)w323 + ph(z1)w3€® + L(w1,22)e™, while the one
on the right-hand side is —Agp3(x1)zs. Thus we conclude
that L(z1,z2) = 0 and

—Aop3(w1)T3 = —p(a1) w3z + ph(a1)aze”™.

Hence
—Xops(z1) = pya1)(—af + €™),

whose only solution is p3 = 0, which contradicts with the fact
that p3 # 0, due to Ay # 0 in the KKLO. Therefore, it shows
that the system (31) does not admit a KKLO.

For the injectivity of ¢(z) in PEBO, assume that ¢o(z)
depends on x5 and pa(x) # 0. It follows from the argument

above that, for the PEBO with Ay = 0 we have p4(z1) = 0,
yielding p3(x1) = ¢ and py(z) = 0 with a constant c. From
the (1,2) and (2,1) elements of the Jacobian matrix Vp(z) we
conclude that V., po = 0 and py(x1,x2) := pa(x2). Then in
terms of (39), we have

—pa(x9)To + pz(zg)xf + pa(xe) sinxy = Ba(x1,u).

Since the first term in the left hand side does not depend on
x1, we conclude that p(z2) = 0 leading to a contradiction.
Thus the given system does not admit a PEBO.

[Proof of F4] The [KKL+PEB]O PDE (4) with (14) has a
solution as ¢ = 1, A\ = —1, ¢(z) = col(x, x3) and

2 .
K + sinxy
Bl = |77, H]

Thus the observer dynamics is given by (32) and (33). From
which we conclude that

Jim [€1(2) = 2o(1)] = 0, w3(t) = &(1) + 6,

with the constant 6 to be estimated. Noticing the following
relationship ©; = —az‘i’ + e*3, we can formulate a linear
regression model for the estimation of 6§ of the form

Y:w@+€t

where © := exp(f), Y and 1 are defined in (37) and ¢
is a (generic) exponentially decaying term that, without loss
of generality, we neglect in the sequel.’ Finally, the choice
of initial condition for 1 ensures that ¢ (¢) is not square
integrable, thus

6= )

with © := ©—O ensures lim;_, oo @(t) = O and consequently
(3) is guaranteed. |

B. A class of nonlinear systems for [KKL+PEB]O

We identify now a class of systems whose states can be
reconstructed with the proposed [KKL+PEB]O.

Proposition 7. Consider systems of the form

x1 = f1(x1,X2,x3,u) + S(x,u)

X9 = Aoxs + fg(Xl, u)

X3 = Asxs + f3(x1, X2, u) (40)
Xy = £4(x1,X%2, X3, u)
Y =X,
where x := col(xX1, X2, X3,X4), with x; € R™ i =1,...,4,

and u € R™, verifying the following assumptions.
(i) There exists 1 < k < njy such that the corresponding
element of the vector S satisfies

Sk(x,u) = b (x1, %2, X3, u)X4 41)

for some mapping b : R™ x R™ x R" x R™ — R™.
(ii) The matrices A, and A3 are Hurwitz.

5See Remark 3 in [3] where the effect of these term is rigorously analyzed.
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(iii) The control input guarantees that the trajectories of (40)
are bounded and the following persistency of excitation
condition is verified

t+T
/ b(s)b' (s)ds > 61,,, (42)
t
for all ¢ > 0 and some 6,7 > 0.
The system admits a [KKL+PEB]O of the form
X2 = Agky + f5(y, u) 43)
)A(3 = A3)A(3 =+ f3 (y, )A(Q, u) (44)
g = f4(y7§(27§(37u) (45)
Xy =640, (46)
with parameter estimator
6 =TV —470) 47)
where
A~ ap ~ A~
Y = — , KXo, X3, U
P Y] PP [f1e(y, %2, %3, u)]
«
- bT 7A 7A ) 9
p+a[ (y, X2, X3, u)¢]
N «
= b ) X ) X: )
0 p+a[ (y, %2, %3, u)]

with fi ;, the k-th element of the vector f;.

Proof. We first prove boundedness of X2 and X3. Due to the
assumption (iii), we have that fo(y,u) € L. Hence, from
(43) and the fact that Ao is Hurwitz, we have that x; € L.
Proceeding in the same way with (44) we conclude that X35 €
Loso.

Now, we prove that the observation errors Z;(t) := &;(t) —
z;(t) (1 =1,...,3) converge to zero exponentially fast. It is
obvious that

Xy = AgXy,
and lim;_,, X3 = 0 (exp.). Similarly,
5:(3 - Adid + fS(ya )227 U) - f3(y7x27 U)

Consider the function V(X3) := 1
solution of PA3 + AJ P = —{,1
satisfies

X1 PX3, with P > 0 the
< 0. Its time derivative

Vo= —%s|* + 2%3 Plf3(y, %2, u) — £3(y, X2, u)]

—01[%3]? + Lo|Xs|%2],

A

(48)

where we have used the fact that the boundedness of all the
arguments of f3(-,-, ) ensures

If3(y, X2, u) — f3(y, X2, u)| < £3]X2]

for some ¢3 > 0. From (48), the comparison lemma and the
fact that X3 € L and X2(t) — 0 (exp.), we conclude that
x3(t) — 0 (exp.).

It only remains to prove that x4 := X4 — X4 also converges
to zero. Consider (45) and define §~ := & — x4, which satisfies

§ = fu(y, X2, %3, u) — f4(y, X2, %3, u).

&) = / [£4(y(s), R (5), Rs(s), u(s)

—£1(y(5),x2(s), x3(5), u(s))]ds + £(0)

AR e

for some ¢, > 0, where we have used the same argument
invoked above to get the second bound. Because of the
exponential convergence to zero of its arguments, the integral
above converges to a constant as ¢ — 0o, consequently, we
can write

IN

x4(t) = §(t) + 0 + €, (49)

for some constant vector f—equation (49) corresponds to the
key relationship (9) of PEBO with ¢(z) = x4.

To complete the proof we show now that, under the per-
sistent excitation condition (42), the proposed estimator is
consistent, that is, lim;_, .o é(t) = 6 that, together with (46)
and (49) establishes the claim that x4(t) — 0. Towards this
end, notice that replacing (41) in the k-th equation of x; we
get

X1k = fie(X1, X2, X3,u) +b' (X1, X2, %3, u) (€ +0),

where we have use (49) to get the second equation. On the
other hand, ¥, = X1, hence applying the filter zﬁ we get
the (ideal) regression form Y = ¢ 76 with Y := 22 [y;] —
p_,_%[fl,k(yvx%xi%au)} - H%[b—r(y,x%xg,u){ ) ’l/) =
p_%a [b(y, X9, X3, u)], that is, of course, unmeasurable because
of the dependence of f;; and b on the unknown states.
However, due to the fact that the estimation errors Xo(t)
and X3(t) converge exponentially fast to zero, we have that
V(t) = Y(t) + & and ¢(t) = ¢ + €. Therefore, neglecting
the terms €;, we get Y = 1[}—'—9. Replacing the equation above
in (47) we get the parameter estimation error equation
6 =Ty70,

where 6 := 6 — 6. The proof of (exponential) convergence of
é(t) to zero is completed invoking standard adaptive control
arguments. |

For the sake of clarity we have presented Proposition 7
in a very simple form, being possible to extend it in several
directions.

e Clearly, the number of subsystems of the form x; =
Ax;+£(y,x1, -+ ,Xn—1,u) can be larger than the two
taken here.

« Invoking the recent results of identification and adaptive
control of nonlinearly parameterised systems—see
[13] and references therein—it is possible to replace
Assumption (i) by:

(1’) There exists 1 < k < ny such that the corresponding
element of the vector S satisfies

Sk(x,u) = bT(X1,X27X37U)‘I)(X4)a

for some monotonic mapping ¢ : R™ — R™,
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Fig. 1. DC-DC Cuk converter circuit

o Regarding Assumption (i) it is also possible to consider
the existence, not just of one element of S, but several
of them verifying the factorizability condition. This will
give rise to a matrix regressor b for which the persistent
excitation condition (42) would be easier to satisfy.

o For simplicity the unknown parameter 6 is identified in
Proposition 7 with the classical gradient estimator (47).
However, it is possible to replace this estimator with
the high-performance dynamic regressor extension and
mixing proposed in [3], see also [16]. As shown in these
papers parameter convergence is ensured without the,
often restrictive, persistent excitation condition (42).

C. DC-DC Cuk converter

In this section, we consider the widely studied DC-DC Cuk
converter, depicted in Fig. 1, for which a PEBO and an 1&IO
were reported in [15] and [2], respectively. We also design a
KKLO, a [KKL+PEB]O and two high gain observers (HGOs)
a la [10]. The purpose of this example is to compare, via
simulations, the performance of all these observers from the
point of view of gain tuning flexibility and robustness with
respect to measurement noise, which is unavoidable in this
application.

The averaged model of the system is given as

1 E
- _——(1— =
T1 Ll( u)yr + i
. 1 G
z — Yo — —X
2 C’4y2 Cy 2 (50)
1 (1 o + 1
— (1 —uwz + =u
n s 1 s Y2
! 1
Y2 = Ls uy1 Ls T2,
where = := col(i1,v4), y = col(ve,is), and
L1,C5,Ls,Cy, E,G are positive constants. v € (0,1)

is a duty cycle. We are interested in estimating x with y
measurable. Following the observer designs proposed in
this note and the ones reported in the literature, we obtain
the observers given in Table I, in which F(p) = ¢, and
W(p) = ;3% Notice that for the KKLO, A is a time-varying
stable matrix, since 1 —u ¢ Lo.

Simulations were conduct with measurement noises, which
are generated by Matlab/Simulink’s uniform random number
block with sampling time of 0.0001s, and the magnitude
limitations are [-0.02,0.02] for y; and [—2 x 10~*,2 x 10~%]

Ve
S
Q

for y,. The parameters of the converter are L; = 10 mH,
C9=22.0 pF, C4=22.9 uF, G=0.0447 S and F=12 v. In order
to give a fair comparison study, the system runs with the ideal
state-feedback with the stabilizing control law given in [2]

|Vd| G|Vd|’U2+E($2 —x1)

YW+ E T T (ClValos + E(za — 21))?

where V; is the set point for the output voltage vy, which was
is selected as in [15]. The observer parameters were taken as
a = 0.5, v =0.001, T" = diag(0.001, 100), v1 = 50, 72 =
1, 1 = 0.05, ro = 0.005, a1 = azg =2, a2 = a4 =1, to
make the observers have approximate convergence speeds. All
the initial values of the dynamic extensions in observers are
selected as 0. The simulation results are given in Fig. 2.

The following remarks are in order.

¢ KKLO and I&IO have two-order dynamics, clearly, the
lowest order ones. KLLO has the simplest observer
structure. The parameters in PEBO were the easiest to
tune with guaranteed convergence speed; KKLO and
[KKL+PEB]O need to resolve PDEs to tune. Besides,
for HGO the achievable convergence speed is severely
limited.

o The I&I framework allows to treat in a unified manner
the problems of state and parameter estimation, see [2]
for the state observation with unknown parameters.

o The KKLO has the best performance in the presence
of measurement noise, probably due to the fact that its
dynamic extension is a linear system that attenuates the
effect of the noise. On the other hand, the dynamics in
PEBO, [KKL+PEB]O and I&IO are nonlinear, and seem
to have a deleterious impact on the noise.

o The first HGO yields a time-varying error dynamics,
which is stable because of the physical constraint 1 —u >
0. It has oscillations in the transient stage. The second
HGO has LTI dynamics, where high gain injections are
used to estimate the output derivatives, i.e., 1 and yo. The
operating modes of the converter switch at the moments
t = 02k s (k = 1,...,5), yielding relatively large
derivatives of the outputs around these moments.

o As expected, the worst performance was systematically
observed for the HGOs because of the high-gain injection
needed to ensure its stability. It is worth pointing out that
this (well-known) deleterious effect of high-gain injection
was also observed for mechanical systems in [4].

VI. CONCLUDING REMARKS

A new observer design technique, called [KKL+PEB]O,
which consists of the combination of KKLO and PEBO was
introduced—providing more degrees of freedom for the solu-
tion of the key PDE. Via the suitable selection of the tuning
matrix A of the form (14), in the PDE (4), [KKL+PEB]O
reduces to PEBO or KKLO. An example that is not solvable
with KKLO nor PEBO, but it is via [KKL+PEB]O show that
the new observer design extends the applicability of PEBO and
KKLO. Also we identified a class of nonlinear systems, for
which [KKL+PEB]O provides a simple constructive solution.

An additional contribution is the proof that, a slight gen-
eralisation of the 1&IO, allows us to obtain [KKL+PEB]O,
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TABLE I
State observers for Cik converters
Type Observer structure Mappings
o -1 -1
KKLO ©6), & =col(Ly *&s + L7 Coyn, &) | A =diag(=Cy G, —Ly (1 -u))

B =col(Cy'y2, (1 + LT Co)(—1 + w)y1 + E — uyo)

B =col(L7(E — (1 —w)y1), Cy *(y2 + Guyr))

PEBO [15] (8), §=TM" (Y — M§d) M = diag(Cy ' F[1 —u), —~L3 ")
& =0+ &+ col(0,C; ' GLsyz) _ [ W] — Cy ' Fle1 (1 — ) + uys] } ol eR
Wiyo] + F[Lg ' (ugr + &) + C ' (GLaya)]] * ™~ =
[KKL+PEB]O (15), 6 =~M(Y — M) A =diag(0,—C; 'G), B=col(Ly '(E — (1 —wy1),C; 'y2), P=1
& = col(&1 + 0, &) Y = Wly1] — C5 ' F[(1 — w)é2 4 uya], M = C; ' F[1 —u], a,v € Ry
= —y (1 —w + C. +muys + LTHE - (1—u
1&10 [2] & ill( )€1+ Coyayr) + muyz + Ly (B — ( )y1)7 P {%711/1} vy R
&2 =Cy "(y2 — G(&2 — Lay2y2)) — v2(uy1 + &2 — Layay2) 37282
HGO "C;l(ll— u)é2 + 02_1(7{3&) +oary Ny — &)
(time-varying dy- c_ | Ly A—wyr+ Ly E+oory “(y1 — &) L |62 01l o >0
namics) 5 _L§1§4 — L51Uy1 +0437’1_1(y2 _53) ) L §4 , T1 € ( ’ ]7 Qg >
L Gy —C'Gat oty —&) |
[ £2+a17"1_11(y1 —51)2 T e
HGO c | -L7'A —wy1 + LT E + asr 2(y1 — &) . Sata—uyz
. . = = —u 1 i
(linear dynamics) 13 €4+ a3TI1(y2 _ 63) , T —L3éa — uy , T2 € (0: ]7 a; >0
L szly2 — 021G§4 + a4r;2(y2 —&3) J
as well as PEBO and KKLO, as particular cases of I&IO. REFERENCES
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