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Online Estimation of Power System Inertia Using
Dynamic Regressor Extension and Mixing

Johannes Schiffer, Petros Aristidou and Romeo Ortega

Abstract—The increasing penetration of power-electronic-
interfaced devices is expected to have a significant effect on
the overall system inertia and a crucial impact on the system
dynamics. In the future, the reduction of inertia will have
drastic consequences on protection and real-time control and
will play a crucial role in the system operation. Therefore, in a
highly deregulated and uncertain environment, it is necessary for
Transmission System Operators to be able to monitor the system
inertia in real time. We address this problem by developing and
validating an online inertia estimation algorithm. The estimator
is derived using the recently proposed dynamic regressor and
mixing procedure. The performance of the estimator is demon-
strated via several test cases using the 1013-machine ENTSO-E
dynamic model.

Index Terms—Power system inertia, power system dynamics,
power system stability, low-inertia systems, parameter estimation.

I. INTRODUCTION

A. Motivation and Existing Literature

TRADITIONALLY, power systems have been relying on

the inertia provided by synchronous generators to provide

the necessary energy buffer for smoothing out sudden power

imbalances (deficit or surplus) in the system. The inertia of

conventional generators creates a direct physical connection to

the grid, thus providing instantaneous power when necessary

and helping to curb the frequency deviations created by abrupt

power imbalances.

In modern power systems, conventional power plants are

gradually being replaced by power-electronic(PE)-interfaced

generators (mainly, integrating renewable energy sources) and

high capacity network interconnections being implemented

through high voltage direct current (HVDC) links. Conse-

quently, the replacement of synchronous generators with PE-

interfaced devices decreases the available inertia in the system

and can lead to much faster frequency dynamics in the grid

[1]–[4]. In this situation, the dynamic behavior can endanger

the system by stressing the control and protection schemes,

which were not designed to operate in such conditions [1],

[2], leading to cascaded failures and disconnections. Moreover,

the remaining legacy components could be endangered if they

cannot withstand the emerging dynamics [1], [4].

In addition, in the present-day deregulated and uncertain

environment, it becomes very difficult for Transmission Sys-
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tem Operators (TSOs) to accurately track the system inertia

and provide guarantees about the system stability [1], [3].

This inability leads to overly conservative operational planning

scenarios, which inflate the operational costs. Hence, the

capability to monitor the inertia available in the system in

real time would allow TSOs to operate with lower security

margins (and cost) by taking appropriate actions to secure the

system operation. Moreover, inertia-related constraints can put

stress on the power markets, thus increasing the cost for other

power market actors [5].

Several techniques for power system inertia estimation have

been proposed in the literature. The majority of available

inertia estimators only work offline, i.e., with data collected

after an event [6]–[11] or over a certain time window [12], and

are based on a simplified swing equation model. While such

a posteriori inertia estimation can be very useful, the infor-

mation might arrive too late for any preventive or corrective

actions to take place. In [8], phasor-measurement-unit (PMU)

measurements are used to estimate regional inertia values and

to then reconstruct the total inertia. The estimation relies on

the accurate detection of a suitable event and requires post-

processing the PMU data.

A near real-time, iterative, inertia estimation algorithm com-

bining Least-Squares, Newton-Raphson and Modal Assurance

Criterion techniques is proposed in [13]. In [14], [15] an online

estimation algorithm is presented based on the linearized

swing equation and a set of four filters implemented as

sliding data windows. Yet, in addition to the active power

flow also the rate of change, i.e., the derivative, of the

frequency at the generators needs to be known. Furthermore,

the estimation method is only applicable immediately after

a disturbance and critically depends on the exact knowledge

of the time at which the disturbance occurs. To ensure the

latter an additional disturbance time estimation algorithm is

proposed in [15]. A statistical approach using steady-state

and relatively small frequency variations is presented in [16].

The proposed online-estimation method in [17] requires the

injection of an additional probing signal, which complicates

its implementation. Finally, a simple method employed by

some TSOs is based on the monitoring of the circuit-breaker

status of synchronous generators [3] and knowledge of each

generator inertia. Although simple, this approach requires real-

time monitoring of all synchronous generators in the system

and an accurate knowledge of the generator parameters.

B. Contributions

Our main contributions in this work are three-fold:
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1) We propose an algorithm which allows to estimate in

real time the inertia constant and the aggregated me-

chanical power setpoint of a large-scale power system.

The algorithm is derived using a first-order nonlinear

aggregated power system model in combination with

the recently proposed dynamic regressor and mixing

(DREM) procedure [18], which already has been applied

very successfully to a variety of electrical engineering

applications [19]–[21].

2) The performance of the estimator is demonstrated on a

1013-machine ENTSO-E test system with 21382 buses

and 133997 states, which is implemented in the dy-

namic simulation software RAMSES [22]. As with any

dynamic parameter estimation method [23]–[25], also

with DREM a sufficiently large system excitation is

required for an accurate estimation [18]. The considered

scenarios for this purpose investigated in the paper

consist of 25 generator outages and a rescheduling

event. Neither the location nor the size of the perturba-

tions need to be known and in all scenarios the same

estimator gains are used. Furthermore, our proposed

algorithm only requires frequency and electrical power

measurements from primary-frequency-controlled (PFC)

generators, which typically represent a subset of all

machines in the system. As pointed out in [14], such

data can be provided using synchronized measurement

technology (SMT) [26].

3) We show that the PFC power injection signal can be

well-approximated by a simple, aggregated model of the

turbine-governor dynamics of the PFC units. Naturally,

this leads to reduction of the required measurements and

we illustrate that this approximation only results in a

minor reduction of the achievable estimator accuracy.

The remainder of the paper is structured as follows. The

aggregated power system model and the problem statement are

introduced in Section II. The DREM-based inertia estimator

is derived in Section III. The employed aggregated power

system model is validated in Section IV using simulation

results from a detailed dynamic 1013-machine ENTSO-E

system obtained with the software RAMSES. The estimator

is tested via a nominal outage scenario and the performance

is investigated further in Section V with 24 additional cases.

Final conclusions and a brief outlook on future work are given

in Section VI.

II. AGGREGATED POWER SYSTEM MODEL AND PROBLEM

FORMULATION

A. Center of Inertia Frequency Dynamics

For the purpose of deriving an online inertia estimator,

we seek to represent the frequency dynamics of a primary-

controlled power system using an equivalent reduced-order

model. We assume that NPFC > 0 is the number of PFC

generators in the system and Nunc ≥ 0 is the number of

rotational generators (and large motors) without PFC. Thus,

N = NPFC +Nunc is the total number of rotational generators

(and large motors) in the system. It is well-known [3], [27],

[28] that the principal frequency dynamics of a power system

can be described by the evolution of the center of inertia (COI)

speed, which is defined as

ωCOI =

∑N
i=1 Hiωi
∑N

i=1 Hi

. (1)

Here, ωi : R≥0 → R>0 is the angular frequency of the rotor

of the i-th unit and Hi ∈ R>0 the i-th unit’s inertia constant1.

Let SBi
∈ R>0 denote the power rating of the i-th unit and

Pmi
∈ R its scheduled (constant) mechanical power. Then

SB =
N
∑

i=1

SBi

represents the total power rating of the considered system.

Furthermore, the total inertia constant of the power system is

given by

Htot =

∑N
i=1 HiSBi

∑N
i=1 SBi

Likewise, the total mechanical power is given by

Pm,tot = Pm,PFC + Pm,unc =

NPFC
∑

i=1

Pmi
+

Nunc
∑

i=1

Pmi
. (2)

Let Pe,PFC : R≥0 → R≥0 denote the aggregated electrical

power by the PFC generators and Pe,unc : R≥0 → R≥0 that by

the non-PFC units. Then, the total generated electrical power

is denoted by Pe,tot : R≥0 → R≥0 and satisfies

Pe,tot = Pe,PFC + Pe,unc = Pload + Ploss − Pren, (3)

where Pload : R≥0 → R≥0 is the total load demand in the

system, Ploss : R≥0 → R≥0 are the total losses and Pren :
R≥0 → R≥0 is the total renewable generation power.

With these considerations, the principal frequency dynamics

of the system can be described by the aggregated swing

equation [27]

ω̇COI =
ω2
0

2HtotSB

∆P

ωCOI

=
ω2
0

2HtotSB

(

Pm,tot + PPFC,tot − Pe,tot

ωCOI

)

,

(4)

where ω0 ∈ R>0 is the nominal network frequency and

PPFC,tot : R≥0 → R≥0 is the total mechanical power injection

due to PFC action2.

B. Problem Formulation

Determining directly the variables ωCOI, Pm,tot and Pe,tot

in (4) is very hard in practice. Hence, any real-time inertia

estimator based on (4) would not be implementable. However,

modern power systems are equipped with advanced SMTs

or wide-area measurement systems (WAMS) [26] that can

provide a TSO access to the measurements of the PFC units.

Using these measurements, we can approximate equation (4)

describing the COI frequency dynamics by expressing the

1The sets R≥0 and R>0 denote the non-negative and positive real numbers,
respectively. Hence, the notation ωi : R≥0 → R>0 means that ωi(t) is a
function, which takes positive values for all times t ∈ R≥0.

2For the purpose of inertia estimation, we are interested in fast time scales.
Therefore secondary control actions are neglected in the torque balance (4).
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power balance ∆P on the right hand-side with information

from the PFC generators, i.e.,

∆P = Pm,PFC + PPFC,tot − Pe,PFC,

where from (3)

Pe,PFC = −Pe,unc + Pload + Ploss − Pren. (5)

In addition, the COI frequency is approximated by the average

frequency of the PFC units, i.e.,

ωav =

∑NPFC

i=1 ωi

NPFC

.

These steps yield the following approximation of the COI

frequency dynamics (4)

ω̇av =
ω2
0

2HtotSB

(

Pm,PFC + PPFC,tot − Pe,PFC

ωav

)

, (6)

which is used in the remainder of this work.

Furthermore, the above discussion on the available measure-

ments is summarized in the following assumption.

Assumption 2.1: The signals ωav, PPFC,tot and Pe,PFC are

measurable.

If information on the type and parameters of the turbine-

governor systems is available, PPFC,tot can be obtained from the

average frequency ωav. Then, Assumption 2.1 can be further

relaxed. This is demonstrated in Section IV for the ENTSO-E

1013-machine system.

In addition to the online application, i.e., using data arriving

in real time, the proposed algorithm can also be used offline

with the (standard) requirement being that all data is time

stamped. This, however, would result in a delayed estimation

in the sense that it no longer is executed in real time.

We are interested in the following problem.

Problem 2.2: Consider the system (6) with measurable

signals ωav, PPFC,tot and Pe,PFC. Identify the parameters Htot

and Pm,PFC.

We remark that, as in (4), the parameter Htot is the total

inertia constant of PFC and non-PFC units. Hence, we seek

to estimate the total system inertia using only partial system

information from the PFC units. In addition, the total mechan-

ical power Pm,PFC should be estimated. This is useful in case

any frequency variations are caused by changes in Pm,PFC,

e.g., due to rescheduling or an outage of a PFC generator.

III. SYSTEM PARAMETRIZATION, REGRESSION

CONSTRUCTION AND DREM ESTIMATOR

A. System Parametrization

We begin our exposition by bringing the model (6) in

the standard form for dynamic parameter estimation schemes

[23]–[25]. First, we define the new variables

y = ωav, x = PPFC,tot, u = Pe,PFC,

the constant

b1 =
ω2
0

2SB

,

and the parameters

η1 =
1

Htot

, η2 =
Pm,PFC

Htot

. (7)

Then, (6) takes the form

ẏ = η1b1

(

x− u

y

)

+ η2
b1
y
. (8)

This system parametrization is used for the regression con-

struction and estimator development detailed below.

B. Regression Construction

To address Problem 2.2, we construct a regression by using

the dynamics described by (8). Let

p =
d

dt

denote a differentiation operator. Then, by applying the oper-

ator α
(p+α) with some α > 0 to (8), we obtain

αp

(p+ α)
y = η1

α

(p+ α)
b1

(

x− u

y

)

+ η2
α

(p+ α)

b1
y
+ ǫ, (9)

where ǫ is an exponentially decaying term stemming from the

filters’ initial conditions. Then, by setting

ξ1 =
αp

(p+ α)
y, ξ2 =

α

(p+ α)
b1

(

x− u

y

)

, ξ3 =
α

(p+ α)

b1
y
,

we can rewrite (9) compactly as

ξ1 = η1ξ2 + η2ξ3 + ǫ,

or, equivalently,

z = φ⊤η + ǫ, (10)

with

z = ξ1, φ⊤ =
[

ξ2 ξ3
]

, η⊤ =
[

η1 η2
]

.

C. DREM Parameter Estimator

To construct a parameter estimator for the regressor equation

(10), we follow the DREM procedure [18]. The regression (10)

is of dimension 1, but the number of unknown parameters is

q = 2. Hence, the first step of the procedure is to introduce

a linear, L∞-stable operator H : L∞ → L∞, the output of

which may be decomposed for any bounded input as

(·)f (t) = [H(·)](t) + ǫt,

where ǫt is an exponentially decaying term. This operator can

be chosen in several ways. For instance, a possible choice

would be an exponentially stable linear time-invariant (LTI)

filter of the form

H(p) =
α

p+ α
, α 6= 0.

Another option is to choose a delay operator, i.e.,

[H(·)](t) = (·)(t− d), (11)

for some d > 0. The impact of different operators on the

transient performance of the DREM estimator is extensively
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discussed in [18], [29]. In the authors’ experience the delay

operator (11) has proven very successful in power engineering

applications. Therefore, this option is also chosen for the

present application.
In the second step, we apply the operator (11) to the

regressor in (10). This yields the filtered regression3

zf = φ⊤
f η, (12)

which in the present case is equivalent to

z(t− d) = φ⊤(t− d)η. (13)

Many standard software packages, such as Matlab/Simulink,

contain delay operators, which can be used to implement (13)

in a straighforward manner.
The third step in DREM consists of piling up the original

regression (10) with the filtered regression (12), which gives

the extended regression system
[

z
zf

]

= Φη, (14)

where

Φ =

[

φ⊤

φ⊤
f

]

. (15)

Next, we have that

adj(Φ)Φ = ∆I2,

where I2 denotes the 2× 2 identity matrix and

∆ = det(Φ). (16)

Consequently, by premultiplying (14) with the adjunct matrix

of Φ we obtain two scalar regression equations

Z =

[

Z1

Z2

]

= ∆η, (17)

where

Z = adj(Φ)

[

z
zf

]

.

We define η̂ as the estimated value of the parameter vector η.

By using the decoupled regression (17), we can then estimate

η via the gradient algorithm [30]

˙̂η1 = γ1∆(Z1 −∆η̂1),

˙̂η2 = γ2∆(Z2 −∆η̂2),
(18)

where γ1 > 0 and γ2 > 0 are tuning gains. A block-diagram

of the proposed estimator is shown in Fig. 1.
Recall that a signal ξ : R≥0 → R

m is in L2 if its L2-norm

‖ξ‖L2
, given by

‖ξ‖L2
=

√

∫ ∞

0

ξ⊤(t)ξ(t)dt,

is finite. Introducing the error coordinates η̃ = η̂−η, recalling

the fact that η is a vector of constant parameters and using

(17), the error dynamics corresponding to (18) are given by

˙̃η = ˙̂η = diag(γ1, γ2)∆(Z −∆η̂)

= diag(γ1, γ2)∆(∆η −∆η̂) = −diag(γ1, γ2)∆
2η̃,

(19)

3To simplify the presentation in the sequel we neglect the ǫ and ǫt terms,
see also [18].

Regression
calculation

(10)PPFC,tot

Pe,PFC

ωav
z

φ

DREM
procedure

(17)

Z

∆

Gradient
algorithm

(18)

η̂

Fig. 1: Block diagram of the DREM-based online inertia

estimator.

where diag(·) denotes a diagonal matrix. Hence, we see that

the following equivalence holds

lim
t→∞

η̃ = 0 ⇔ ∆ /∈ L2. (20)

The requirement (20) is different from that in conventional

parameter identification techniques. The usual persistency of

excitation (PE) condition is defined as [23]–[25]
∫ t+τ

t

φ(s)φ⊤(s)ds ≥ δI2,

for some τ > 0 and δ. Hence, PE is a property of the regressor

φ, while DREM requires the determinant of the matrix Φ
not to be square integrable. We refer to [18], [29] for an in-

depth analysis of the convergence and robustness properties

of DREM parameter estimators as well as for examples of

regressors, which are not PE but satisfy ∆ /∈ L2. Some

guidelines on how to select the estimator parameters d in (13)

as well as γ1 and γ2 in (18) are given in Section IV-C.

IV. NUMERICAL VERIFICATION ON 1013-MACHINE

ENTSO-E SYSTEM: NOMINAL TEST CASE

The performance of the proposed inertia DREM estimator

is evaluated on the ENTSO-E system with topology and

parameters as detailed in [31]. The system has a total of 21382
buses and N = 1013 synchronous generators. Out of these,

PFC units are connected at NPFC = 871 buses, while the

generators at the remaining Nunc = N − NPFC buses have a

constant active power setpoint. The AVR, governor, and PSS

models of the PFC units are modeled each as detailed in [31]

and its references. The full detailed model consists of 133997
differential-algebraic states.

The performance evaluation is undertaken as follows. At

first, we demonstrate that the main frequency dynamics of

the 1013-machine ENTSO-E system can indeed be captured

by the model (6). In addition, we show that for our selected

benchmark system the PFC power injection PPFC,tot can be

well-approximated using an aggregated, simple, model of the

turbine-governor dynamics of the PFC units.

After this model validation step, we employ the DREM

estimator (18) to identify the overall inertia constant of the

1013-machine ENTSO-E system. The time-domain response

of the system is obtained using the dynamic simulation soft-

ware RAMSES [22].

A. Aggregated Power System Model Including Turbine-

Governor Dynamics of Primary-Controlled Units

The majority of power plants in the considered ENTSO-E

test system are thermal power plants. Therefore, similarly to

[28], we assume that the turbine dynamics of the aggregated
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TABLE I: Aggregated ENTSO-E system parameters

Parameter Value
SB 570.892 [GW]
Htot 3.665 [s]
ω0 1.000 [pu]
KP 2.495 [pu]
Pm 0.498 [pu]
Tp 12.983 [s]
Tz 6.000 [s]

primary-controlled power plants can be represented by the

TGOV1 model [32]

PPFC,tot =
1 + pTz

1 + pTp

(−KP (ωav − ω0)) , (21)

where KP ∈ R>0 is the total primary (droop) control gain

and Tz ∈ R>0 as well as Tp ∈ R>0 are time constants of the

turbine-governor system of the aggregated generators4.
Thus, the overall aggregated power system dynamics are

given by (6) and (21) and the corresponding system parameters

for the aggregated ENTSO-E system are given in Table I.
Remark 4.1: As indicated in [28], the model (21) has

proven to be sufficiently accurate for representing PFC effects

provided predominantly by steam power plants. If a significant

amount of other units, such as hydro or gas power plants, also

contribute to PFC, then the model (21) should be modified to

account for these dynamics. Since we are mainly concerned

with inertia estimation (and the dynamics (6) are independent

of the PFC mix), we leave this extension for future research.

B. Validation of Aggregated Model

To validate the aggregated reduced-order model (6), (21),

we first run a simulation of an outage of a power plant (the

PFC unit ’FR918226’ in France with SB645
= 1755 MW

and Pm645
= 1455 MW) in the bulk power system model

using RAMSES. Then, we compute the aggregated data and

parameters as defined in Section II-A. After that, we use

the variables Pe,tot and Pm,tot as inputs to the aggregated

model (6), (21) and run a simulation of the aggregated model

in Matlab/Simulink. Finally, the average frequency fav and

total PFC injections PPFC,tot obtained with both models are

compared. This comparison is illustrated in Fig. 2a and Fig. 2b.
These results show that the aggregated reduced-order model

(6), (21) offers a good approximation of the full-order ENTSO-

E model. A small discrepancy at the frequency nadir can be

explained by the fact that the non-PFC units are not explicitly

considered in the model (6), (21). Therefore, we conclude

that using the model (6) for the online-inertia estimator de-

sign is admissible. Likewise, the turbine-governor model (21)

provides a good approximation of the PFC power injection

PPFC,tot.

C. Online-Inertia Estimation: Nominal Test Scenario

The DREM-based estimator (18), see also Fig. 1, is im-

plemented in Matlab/Simulink. The estimator parameters are

chosen as

α = 103, d = 2, γ1 = γ2 = 1010.

4We recall that p = d
dt

is a differentiation operator.
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(a) Comparison of the average electrical frequency fav
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t
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u
]

(b) Comparison of the PFC power injection PPFC,tot

Fig. 2: Comparison of the average electrical frequency fav

and the PFC power injection PPFC,tot obtained from the bulk

ENTSO-E system (’–’) and from the aggregated model (6),

(21) (’- -’).

This is motivated as follows. The operator used in (9) should

not remove any important information from the filtered signals.

Furthermore, the inertia constant mainly impacts the first few

seconds of the power system’s response to a disturbance.

Hence, the choice d = 2s. Finally, the values for the gains

γ1 and γ2 have been tuned, such that the estimator possesses

satisfactorily convergence properties for the ENTSO-E system

under study.

For the considered test system we work in per unit. Hence,

the system base SB is removed from (6). Moreover, we find

from Table I the nominal parameter values (see also (7))

η1 =
1

Htot

= 0.273, η2 =
Pm,PFC

Htot

= 0.136.

The performance of our proposed estimator is illustrated for

the considered test case in Fig. 3a with initial condition

η̂(0) = diag(0.3, 0.2)η. It can be observed that, after some

initial transients, the estimates η̂ converge to constant values.

This can also be appreciated from the trajectories in Fig. 3b,

which show the evolution of the relative errors η̂i

ηi

, i = 1, 2.
The final estimates are

η̂s1 = 0.290, η̂s2 = 0.145,

or, expressed in relative terms,

η̂s1
η1

= 1.064,
η̂s2
η2

= 1.064.

Hence, the final estimation error is below 7%. In further

numerical experiments we have observed a very similar be-

havior for a large variety of other initial conditions η̂(0) =
diag(α1, α2)η with αi ∈ [0, 30], i = 1, 2.

To assess the impact of the error introduced when using

the model (21), we take the measurement of PPFC,tot from the
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Fig. 3: Absolute and relative trajectories of the parameter

estimates η̂i, respectively η̂i

ηi

(i = 1 ’–’ and i = 2 ’- -’) with

initial condition η̂(0) = diag(0.3, 0.2)η.

simulation and feed it directly as input to the estimator (18)

instead of using the model (21). Doing so yields a stationary

estimation error of only 1%. Hence, as one would expect,

while the use of the model (21) reduces the number of required

measurements, this is done at the expense of a (slightly)

higher estimation error (7% instead of 1%). Furthermore,

these experiments show that the approximations made in the

derivation of the aggregated model (6) and the use of only

data from PFC units (see Section II) does not have significant

effect on the estimation accuracy.

With regard to tuning of the inertia estimator (18), we note

the following. As can be seen from (19), the fact that ∆ /∈ L2

with ∆ given in (16) is crucial for the performance of the

inertia estimator (18). Since the numerical experiments are

conducted on a finite time-horizon, we investigate the behavior

of the truncated L2-norm of ∆, i.e.,

‖∆T ‖L2
=

√

∫ T

0

∆2dτ,

instead of the L2-norm itself. The evolution of ‖∆T ‖L2
is plot-

ted in Fig. 4. As one would expect, it increases significantly

shortly after the disturbance and settles once the transients

in fav and PPFC,tot have decayed. The magnitude of ‖∆T ‖L2

can be shaped by varying the magnitude of the delay d in

the DREM operator [H(·)](t) = (·)(t − d), see (11). In our

experience, the best results can be obtained with d ∈ [1, 8]s,

which—as mentioned above—also roughly corresponds to the

time span during which the inertia constant has the strongest

influence on the aggregated power system trajectories, see

also Fig. 2a. Once d is fixed, the gains γ1 and γ2 have to

be chosen large enough to ensure a desired convergence of

the gradient algorithm (18). As in all parameter (or state)

0 10 20 30 40 50 60 70 80
0

2

4

·10
−4

t [s]

‖∆
T
‖ L

2
[p

u
]

Fig. 4: Evolution of the truncated L2-norm ‖∆T ‖L2
=

√

∫ T

0
∆2dτ of ∆ defined in (16).

estimation problems the choice of γ1 and γ2 is a trade-off

between speed of convergence and noise sensitivity.

V. FURTHER TEST CASES: GENERATOR OUTAGE AND

RESCHEDULING

The performance and accuracy of the inertia estimator (18)

is investigated via further test scenarios. The same ENTSO-E

system and simulation software as well as the same estimator

tuning gains as detailed in Section IV are employed. The latter

is crucial to assess whether a single set of tuning gains yields

satisfactorily performances in diverse operating scenarios.

A. Online-Inertia Estimation: Further Generator Outages

To confirm the positive results of the previous section, we

investigate the estimator performance in several further gen-

erator outage scenarios. We remark that for every considered

outage scenario the inertia of the disconnected generator is

removed from the total inertia constant Htot. Hence, for each

outage scenario the final total system inertia is different.
In our second test scenario the PFC unit ’ES917736’ in

Spain with SB644
= 1227 MW and Pm644

= 1013 MW is

tripped. For this scenario we obtain a stationary estimation

error of 7%, which is reduced to 2% if the measurement of

PPFC,tot is directly taken from the simulation in RAMSES as

input to the estimator, instead of using the model (21). Hence,

despite the fact the generators are in different countries in each

scenario, the obtained results are very similar to those of the

previous scenario investigated in Section IV.
To further evaluate the dependency of the estimation accu-

racy on the geographical location and size of the generator

outage, we investigate 23 further generator outage scenarios

across the whole ENTSO-E area. To this end, we trip randomly

selected generators in Bulgaria (BG), Germany (DE), France

(FR), Italy (IT), Romania (RO), Serbia (RS), Spain (ES) and

Turkey (TR). Thereby, the disturbance sizes in terms of lost

generation range from 500 MW to 1200 MW.
We find that for 21 out of the 25 outage scenarios considered

in total, the estimation error is 15% or lower and for some

cases it is even below 1%, see Fig. 5. Only for 4 cases,

we obtain an estimation error larger than 15%. These cases

correspond to disturbances with a magnitude above 800 MW

in Germany, France and Italy. This suggests that neither the

location nor the size of the disturbance are the key decisive

factors for the estimator performance.
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Fig. 5: Relative estimation errors for 25 generator outage

scenarios across the whole ENTSO-E area.

In order to further investigate these findings and, more

importantly, the validity of the obtained estimated total inertia

coefficient Ĥtot = 1
η̂1

, we simulate the average frequency

dynamics (6) for two settings: First, by using the nominal

inertia coefficient Htot obtained directly from the data in [31]

(and references therein) and, second, by using the estimated

inertia coefficient Ĥtot. In both cases, the time series for the

signals Pm,PFC and Pe,PFC in (6) are taken from the simulation

results in RAMSES, while PPFC,tot is modeled with (21). The

obtained frequency curves are denoted by ωHtot
av and ωĤtot

av . The

average frequency obtained from the full-system simulation in

RAMSES is denoted by ωRAMSES
av .

For the outage of the unit ’DE912342’ in Germany with

SB645
= 2154 MW and Pm154

= 1078.5 MW and a relative

estimation error in η1 of 27.5%, the evolution of the frequency

deviations

∆f Ĥtot
av =

1

2π

(

ωĤtot
av − ωRAMSES

av

)

,

∆fHtot
av =

1

2π

(

ωHtot
av − ωRAMSES

av

)

,
(22)

are shown in Fig. 6. Clearly, the evolution of f Ĥtot
av resembles

very closely that of fRAMSES
av , while the evolution of fHtot

av

shows some larger discrepancies with respect to fRAMSES
av

(though for both cases the deviations are in the mHz-range).

This may indicate that—at least with the model (6), (21)—

the estimated inertia coefficient Ĥtot provides a more accurate

representation of the true system response and, hence, of

the effective inertia than the nominal inertia coefficient Htot

calculated directly from the system data.

The same experiment is performed for all 24 other outage

scenarios and the maximum frequency errors are shown in

Fig. 7. There is a clear trend that whenever the estimation

error for η is above 15%, then

‖∆f Ĥtot
av ‖∞ < ‖∆fHtot

av ‖∞,

where ‖ ·‖ denotes the vector infinity norm, i.e., the estimated

inertia coefficient Ĥtot provides a better characterization of the

actual system behavior than the nominal one Htot, at least with

the model (6), (21).

This observation opens many new, interesting questions

regarding the influence that dynamic phenomena associated

to voltage, reactive power or renewable generation and load

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

t [s]

∆f Ĥtot

av [mHz]

∆fHtot

av [mHz]

Fig. 6: Trajectories of ∆f Ĥtot
av and ∆fHtot

av defined in (22) for the

outage of the unit ’DE912342’ in Germany with SB645
= 2154

MW and Pm154
= 1078.5 MW.
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Fig. 7: Maximum frequency deviations ‖∆f Ĥtot
av ‖∞ and

‖∆fHtot
av ‖∞ in mHz with respect to average frequency obtained

from full-system simulations in RAMSES for 25 generator

outage scenarios across the whole ENTSO-E area.

dynamics may have on the behavior of the system frequency.

Similar observations on the load voltage dynamics affecting

the effective inertia of the system were made in [3], [28].

Given the complexity of the employed ENTSO-E model, we

leave a detailed investigation of these aspects as well as a

possible extension of the model (6), (21) to incorporate some

of them for future work.

B. Online-Inertia Estimation: Rescheduling Events

As discussed in Section IV, a certain level of variation of

the measurement signal(s), also referred to as excitation in the

parameter identification literature [23]–[25], is essential for

the estimation problem to be feasible. The frequency variation

under usual operating conditions does—in our experience—

not possess a sufficient level of excitation. Therefore, thus far

and in line with other online inertia estimation approaches

[14], [15], we have focused our performance analysis on

outage scenarios. While these are clear opportunities for

inertia estimation, their occurrence is rather infrequent and

unscheduled. Hence, the question arises whether there are

other operating scenarios, which can be exploited to perform

the estimation. In this context, imbalances resulting from

scheduling changes can lead to significant frequency variations

[33]–[35]. In particular, this applies to rescheduling events at

full hours [33]–[35]. Hence, these are frequent, recurring, and

scheduled frequency variations, which can be another useful

source for inertia estimation.
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during a rescheduling process, based on [34, Fig. 1.2].

0 100 200 300 400 500 600 700

1

2

3

4

5

t [s]

η̂
i

η
i

,i
=

1,
2

[p
u

]

Fig. 9: Trajectories of the parameter estimates η̂ relative to

the nominal parameter values η, i.e.,
η̂i

ηi

(i = 1 ’–’ and i =
2 ’- -’) with initial condition η̂(0) = diag(0.3, 0.2)η in the

rescheduling scenario.

A typical frequency evolution during a rescheduling process

is shown in Fig. 8. This exemplary frequency trajectory fav is

based on [34, Fig. 1.2] and has been reproduced in RAMSES

using the ENTSO-E system described in Section IV and

performing scheduled power setpoint changes to generators

and loads. Furthermore, we measure PPFC,tot directly from the

simulation results in RAMSES. Feeding both signals fav and

PPFC,tot to the estimator (18) yields the relative estimation

trajectories η̂i

ηi

, i = 1, 2, shown in Fig. 9. It can be seen that

the trajectories converge to a band around the nominal value

of 1. We find that the maximum average relative estimation

error eavg over the time window t ∈ [T1, T2] = [300, 761]s is

given by

eavg = max
i=1,2

1

T2 − T1

∫ T2

T1

∣

∣

∣

∣

ηi − η̂i(τ)

ηi

∣

∣

∣

∣

dτ

)

= 0.08. (23)

Hence, also in this scenario, the estimation error is below 10%.
This confirms both that rescheduling events can provide useful

data for inertia estimation and that the proposed DREM-based

estimator (18) is well-suited for this task.

Remark 5.1: In the rescheduling scenario the variations in

the generator power injection are not solely dictated by the

model (21), but also by the rescheduling sequences, i.e.,

∆P = Pm,PFC + PPFC,tot + Pres,PFC − Pe,PFC,

where Pres,PFC : R≥0 → R≥0 denotes the power variation of

the PFC units due to the rescheduling event. Therefore in this

scenario using the model (21) does not yield any significant

advantages and is thus omitted.

VI. CONCLUSIONS

An algorithm to monitor in real time the inertia constant of

a large-scale power system has been presented. The increasing

penetration of renewable energy units makes this a highly

desirable feature to gain a better understanding of the system’s

inertial frequency response and the security of the system

in near to real time. In addition to the inertia constant, the

aggregated mechanical power setpoint of the PFC generators

is also estimated.

The proposed estimator is based on a nonlinear, aggregated

power system model and constructed using the recently pro-

posed DREM procedure. Its performance has been demon-

strated via 25 test scenarios, in 21 of which the estimation

error compared to the COI inertia constant was below 15%
while in all of them the response of the aggregated system

based on the estimated inertia matches the simulated one with

an error of only a few mHz. Remarkably, our approach is

also applicable in rescheduling events, which occur numerous

times every day in any deregulated power system. This is a

distinguished feature compared to other existing solutions and

significantly enhances the applicability of our solution.

The proposed estimator opens the door for many subsequent

applications in the realm of power system protection and

real-time control. Exploring these possibilities will be part of

our future research. In addition, we plan to investigate the

impact of both measurement data resolution and noise on the

estimation performance.
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