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Localization of sparse and coherent sources by
Orthogonal Least Squares

Gilles Chardon,1 François Ollivier,2 and José Picheral1
1)L2S, CentraleSupelec - Université Paris Sud - CNRS, Université ParisSaclay, 2 rue Joliot Curie,
91190 Gif sur Yvette, Francea

2Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, F-75005 Paris, France

This paper proposes an efficient method for the joint localization of sources and estimation of
their mutual correlations. In practice, such an estimation is useful to study correlated sources
existing for instance in presence of reverberations or for spatially distributed sources, but is
confronted to the challenge of computational complexity due to a large number of required
estimates. The proposed method is named CMF-OLS (for Covariance Matrix Fitting by
Orthogonal Least Squares). It is based on a greedy approach exploiting the OLS algorithm
in order to reduce the computational complexity of the estimation. Compared to existing
methods for sources correlation matrix estimation, its lower computational complexity allows
to deal with large dimensions and to explore large regions of interest. As shown by numerical
results, it is more accurate and does not require the tuning of any regularization parameter.
Experiments involving reverberations show the ability of the method to locate and identify
physical and mirror sources as well.

[http://dx.doi.org(DOI number)]
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I. INTRODUCTION

Source imaging methods have been developed for
decades in order to locate acoustic sources and to es-
timate their power. Many works have proposed to
overcome the well-known limitations of the delay and
sum (DAS) beamforming technique, based on paramet-
ric approaches(?), or non-parametric approaches based
on Bayesian estimation (??), or based on sparsity and
compressed sensing (???).

This paper addresses the inverse problem of esti-
mating the spatial covariance matrix of acoustic sources.
This estimate not only quantifies the power of each point
on the source grid but also estimates the correlation be-
tween each of these points.

In practice, sources correlation estimation can be
useful in various scenarios: in a reverberant space, mirror
sources will be correlated with the corresponding phys-
ical source. Estimating the coherence between sources
will allow to pair physical sources with their reflections.
Another typical case of correlated sources are extended
sources whose distributions radiate correlated signals.

Localizing coherent sources poses an important chal-
lenge to subspace based localization methods such as
MUSIC or ESPRIT. In this case the covariance matrix of
the sources, and thus of the data, is rank-deficient, lim-
iting the performances of these methods. For particular
array configurations, this issue can be mitigated by the
use of spatial smoothing, at the price of reduced array
aperture (?). Methods based on sparse approximations

a)gilles.chardon@centralesupelec.fr

or Bayesian estimation can deal with correlated sources,
using the complete measurements (??).

In the cases where correlations are not seen as a
nuisance, but as parameters to be estimated, an addi-
tional challenge is the computational complexity of the
estimation. Compared to a standard localization prob-
lem, where the space is usually discretized on a grid of L
points, the estimation of the correlations between sources
involves the estimation of a covariance matrix of size
L × L. The computational cost increases dramatically
with the number of points requiring suitable algorithms.
Numerical methods with a complexity larger than lin-
ear in the size of the grid will be limited to small grid
discretizations.

Beyond the coarse estimation provided by the de-
lay and sum beamformer extended to covariance estima-
tion (called DAS-C in the remainder of the article), few
methods have been proposed in the literature to solve the
covariance source estimation problem (a short review is
given in section II). Based on convex optimization meth-
ods, their complexity is in the order of O(L6) (?), or
O(L3L3

h) where Lh is an upper bound on the number of
independent sources (?). Such computational complexi-
ties will limit the application of these methods to coarse
discretizations of the physical space.

In this paper, we propose a method named CMF-
OLS (for Covariance Matrix Fitting by Orthogonal Least
Squares) to solve the covariance matching problem with
a greedy approach. It is based on the Orthogonal Least
Squares (OLS) algorithm (?), similar to the well-known
Orthogonal Matching Pursuit algorithm (?), but better
suited to the problem of covariance matrix estimation.
Indeed, it can take full advantage of the matrix structure
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of the estimation problem. Moreover, OLS is expected
to exhibit better behavior than OMP in cases where the
dictionary is strongly coherent (in the sense that columns
of the dictionary are near linearly dependent) (?).

The main advantage of this approach compared to
existing methods is that its time complexity is linear with
respect to the size of the discretization L, allowing fine
grid discretizations and short running times. Moreover,
in contrary to methods based on regularization, the algo-
rithm takes only one parameter, the number of sources,
that can be estimated by inspecting the convergence of
the algorithm. A post-processing can then be applied
to the estimated covariance matrix to extract the spatial
shapes of each coherent source.

The article is structured as follows: Section ?? in-
troduces the problem and notations. Correlated source
localization methods and greedy sparse approximations
are briefly reviewed in section ??. Section ?? and ?? in-
troduce the CMF-OLS algorithm for covariance matrix
estimation, and the post-processing respectively.

Simulation results presented in Section ?? performed
in a 1D scenario show that the proposed method is more
accurate and faster than the methods of the literature
such as DAS-C or MACS. In addition, Section ?? in-
troduces experiments that have been conducted in an
anechoic room in various settings : uncorrelated sources,
correlated sources, and reflections. Results confirm that
positions and correlations of the sources can be accu-
rately estimated in large-scale (in fact, realistic) scenar-
ios where other methods are too demanding in time or
memory size. Section ?? concludes the paper.

II. PROBLEM FORMULATION

Assume that N microphones provides the N×1 mea-
sured signals x(ti) and let be I the number of available
snapshots.

The possible positions of the source are described by
the parameter Θ ∈ R. The region R can be, depending
on the cases, a line, a surface, or a volume, and is dis-
cretized on a grid of L points defined by their position
{Θ`}`=1,...,L.

Assuming that the discretization of R is fine enough,
sources can be considered located at a point of the grid.
For narrow band sources, the measured signals can be
modeled by:

x(ti) =

L∑
`=1

a(Θ`)s`(ti) + n(ti), (1)

where al = a(Θ`) is the N×1 steering vector for a source
at the position Θ`, s`(ti) is the source amplitude at the
instant ti and n(ti) is an additive centered noise assumed
to be spatially white of variance σ2. The coefficients of
the steering vector a(Θ`) are the values of the Green
function of the propagation medium between the position
parametrized by Θl and a microphone at position rn. In
an homogeneous medium and assuming free propagation,

the Green function is G(r1, r2) = exp(−j‖r1−r2‖)/‖r1−
r2‖.

Let the N × L matrix A = [a(Θ1), . . . ,a(ΘL)] be
formed by the L steering vectors associated to the L
points of the source grid, the signal model can be rewrit-
ten as

x(ti) = As(ti) + (ti), (2)

where the L×1 vector s(ti) = [s1(ti), . . . , sL(ti)] contains
the amplitudes of the sources.

Under the hypothesis of independence between the
source signals and the noise, the covariance matrix can
be expressed as:

Γ = E{x(ti)x(ti)
H} = ACAH + σ2I, (3)

where C = E{s(ti)s(ti)
H} is the L×L source covariance

matrix (or spatial covariance matrix). Estimation of C is
the key point of the work presented in this paper since its
diagonal describes the power of the sources, and its off-
diagonal coefficients the covariance between each source.

In practice, the covariance matrix Γ is estimated by
the sample covariance matrix using the set of I measure-
ments:

G =
1

I

I∑
i=1

x(ti)x(ti)
H ≈ Γ (4)

The objective of our method will be to estimate the
positions, powers, and mutual covariances of the sources
from the matrix G.

III. STATE OF THE ART

A. Correlated sources estimation

A first estimation of the source covariance matrix is
given by the delay-and-sum beamformer for covariance
estimation (DAS-C):

ĈDAS−C =
1

L2
AHGA. (5)

The diagonal of ĈDAS−C is the output of the standard
DAS beamformer, and has the same limitations, i.e. wide
main lobes at low frequencies and presence of sidelobes.

In the case of punctual sources, the sparsity of the co-
variance matrix can be promoted by using an component-
wise `1 regularization term, as in the Sparse Spectrum
Fitting method (??). The covariance matrix is estimated
as the solution of the following optimization problem:

ĈSpSF = argmin
C

‖G−ACAH‖2F + λ‖C‖1

s.t. C ≥ 0. (6)

Alternatively, the CMF-C method (?) jointly esti-
mates the covariance matrix and the noise level assum-
ing that the rank of the covariance matrix is low. The
estimate is found as the solution of an optimization al-
gorithm fitting the covariance matrix to the data while
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bounding its trace, equal to the `1 norm of its eigenval-
ues, as a convex surrogate for limiting its rank:

ĈCMF−C = argmin
C,σ

‖G−ACAH − σ2I‖2F ,

s.t. C ≥ 0, tr(C) ≤ λ, σ2 ≥ 0. (7)

Sparsity and low-rankedness can be combined using
two regularization terms (?), yielding the following pe-
nalized optimization problem:

ĈSPLR = argmin
C

‖G−ACAH‖2F +λ1‖C‖1+λ2tr(C),

s.t. C ≥ 0. (8)

These three optimisation problems are convex, and can
be solved using off-the-shelf toolboxes such as CVX (??),
or more specialized algorithms (e.g. Simultaneous Direc-
tions of Multipliers Method).

However, the computational complexity of solving
these algorithms prevents their application for large-scale
problems, where the discretization grid has e.g. more
than ≈ 1000 elements. Estimation of the covariance ma-
trix by Sparse Spectrum Fitting and CMF-C with stan-
dard convex optimization (O(L6)) methods, is therefore
limited to low dimensional problems, i.e. coarse dis-
cretization of the physical space.

Yardibi et al. proposed MACS (Mapping of Acoustic
Correlated Sources) (?) with reduced complexity by as-
suming that the rank of the covariance matrix C to be es-
timated is at most Lh, an upper bound for the number of
independent sources. The covariance matrix is factorized
as C = C̃C̃H , where C̃ has dimension L×Lh. By adding
an additional sparsity constraint on the coefficients of C̃,
the following non-convex problem is formulated:

argmin
C,Q

‖ḠQ
H −AC‖2F s.t. ‖C‖1 ≤ β, QHQ = I

(9)
where Ḡ is the matrix square root of a low-rank approx-
imation of G. The authors propose an algorithm alter-
nating between `1 constrained least-squares minimization
and updates of Q, which is not guaranteed to converge
towards a global minimum. Improved MACS (IMACS)
(?) was recently proposed, by updating the bound β
between the iterations.

The complexity of the estimation is reduced to
O(L3L3

h), which makes estimation problems of moderate
dimensions tractable. However, the complexity remains
too high for large scale or real time problems, as run-
ning time of the order of the minute are announced for
problems of moderate dimensions (L < 1000).

B. Greedy source localization

An alternative to regularization based sparse esti-
mation methods are greedy algorithms. They are known
to be computationally less expensive than optimization
based method, at the price of reduced performances. In
particular, Orthogonal Matching Pursuit (OMP) (?) has

been used for several acoustical inverse problems, such as
Nearfield Acoustical Holography (?), source localization
(?), or DAMAS-like deconvolution of beamformer output
(?).

In general, OMP aims at estimating a sparse solution
of the undetermined linear system y = Dx, where y are
the observations, D a known dictionary with normalized
columns di (called atoms), and x the sparse coefficients
to be estimated. OMP works as follows:

1. Initialization: k = 1, residual r0 = y, set of identi-
fied indices S0 = ∅

2. Computation of the correlations of the residual
with the dictionary, ρk,l = |dHl rk−1|2

3. An atom (i.e. a nonzero coefficient in x)
is identified by the maximal correlation l? =
argmax1≤l≤L ρk,l

4. Its index is added to the set Sk+1 = Sk ∪ {l?}

5. The residual is updated by projecting y on the or-
thogonal of the space spanned by identified atoms:
rk = y −ΠSk

(y)

6. k = k+1 and go to step 2 until a stopping criterion
is met (number of iterations, norm of the residual,
etc.).

Under certain conditions on the dictionary D and
the number of non-zero coefficients in x, OMP is guar-
anteed to recover x exactly. Variants of OMP can deal
with structured sparsity, e.g. block sparsity (?), where
the support of x has a specific structure. In particular,
block sparsity can be applied to joint localization and
characterization of anisotropic sources (?) or extended
sources (??).

IV. ORTHOGONAL LEAST SQUARES FOR CORRELATED
SOURCES LOCALIZATION

In this section, a greedy method is proposed for cor-
related sources localization, using a slightly different al-
gorithm, Orthogonal Least Squares. The use of this al-
gorithm is justified by its better behavior in presence of
correlated dictionaries (?), which is the case in source
localization, when the possible source positions are dis-
cretized with a step smaller than the main lobe width.
Moreover, the selection criterion of OLS can be efficiently
computed using the matrix structure of the problem.

For a set of indices S, we name AS the matrix with
columns al, l ∈ S extracted from A.

The goal of sparse correlated sources estimation is to
decompose the data matrix G as

G ≈ AS̃C̃AH
S̃

(10)

where S̃ is the set of indices of the J sources, and the
positive definite matrix C̃ is the J ×J covariance matrix
of the sources. In particular, the power of the individual
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sources can be found on its diagonal. The data matrix
can be rewritten

G ≈
∑
i∈S̃

∑
j∈S̃

aia
H
j C̃ij , (11)

showing that G is a linear combination of J2 rank-1 ma-
trices aia

H
j .

With the complete dictionary A of steering vectors,
G can be decomposed as:

G ≈ ACAH , (12)

where C is positive semi-definite and sparse, as it has J2

nonzero coefficients, corresponding to the J sources and
their mutual covariances. These nonzero coefficients are
given by the coefficients of C̃.

Standard greedy recovery algorithm, such as OMP,
can be used to estimate C using the following reformu-
lation of the problem:

• The matrix G is vectorized as the N2 × 1 vector g

• A dictionary of rank-one matrices D1 is built, of
dimension N2×L2, with vectorized rank-1 matrices
ala

H
m as its columns.

• The covariance matrix C is vectorized as c, with
dimension L2 × 1.

This reparametrization yields the linear problem g =
D1c. The direct application of OMP to this problem is
however computationally expensive (D1 has dimension
N2 × L2, and J2 iterations are necessary), and the par-
ticular structure of the dictionary (a collection of rank-
1 matrices) and of the decomposition coefficients (they
form a positive definite matrix) are not used.

A. Leveraging the structure

The estimation of the covariance matrix C can be im-
proved using structured sparsity, i.e. the particular struc-
ture of its support. Here, the structure of the support of
the covariance matrix C stems from its non-negativity.

Indeed, in addition to the equality Clm = C̄ml, the
absolute value of the off-diagonal terms is controlled by
the diagonal terms: |Clm| = |Cml| ≤

√
CllCmm. This

implies that off-diagonal terms appear as pairs, and only
if the associated diagonal terms are non-zero. It is then
sufficient to know the support of the diagonal terms to
control the support of the complete matrix.

An efficient sparse recovery algorithm will thus iden-
tify a diagonal term at each iteration k, along with the
2(k − 1) off-diagonal terms describing the covariance of
this source with the previously identified sources. This
selection rule implies that only J iterations are needed.
The principle of the selection rule is illustrated on figure
??. At step 1, a first source is identified. At step 2, a
second source and its covariance with the first source are
identified, etc. until all sources are located.

position

Third identi ed

source

Covariance between third

and previous sources

Iteration 1 Iteration 2 Iteration 3

FIG. 1. Principle of the greedy source identification algo-
rithm: at each step, a source (diagonal term) is identified
along the covariance between itself and the previously identi-
fied sources.

The OMP algorithm can be modified to take into
account structured sparsity. In particular, block struc-
tures can be identified by replacing the scalar product in
step 3, by orthogonal projection on the space spanned
by the atoms of a block (?). In the covariance matrix
case, a block is a diagonal term along with its 2(k − 1)
associated off-diagonal terms. Step 3 of OMP is replaced
by:

• For all l, compute the norms of the projection of
the residual matrix Rk−1 on the space Ek,l spanned
by amaHl , ala

H
m and ala

H
l for m ∈ Sk−1 : ρk,l =

‖ΠEk,l
Rk−1‖22.

The matrix structure can be efficiently leveraged by
using the Orthogonal Least-Squares algorithm. OLS is
similar to OMP, with the identification step replaced by
the maximization of the projection of the signal to be
decomposed in the space spanned by the candidate atoms
and the previously identified atoms. Step 3 of the OMP
algorithm is further replaced by the following step:

• compute the norms of the projection of the residual
on the space Fk,l spanned by anaHm, for n,m ∈
Sk,l = (Sk−1 ∪ {l}) : ρk,l = ‖ΠFk,l

Rk−1‖2F .

In this case, simple algebraic manipulations show
that the orthogonal projection of a matrix M in the space
FS spanned by the rank-1 terms ala

H
m for l,m ∈ S is

ΠFS
(M) = A⊥SA⊥HS MA⊥SA⊥HS (13)

where A⊥S is an orthogonal basis for the space spanned
by the al, l ∈ S. The selection criterion at iteration k is:

ρk,l = ‖ΠFk,l
(G)‖2F (14)

= ‖A⊥Sk,l
A⊥HSk,l

GA⊥Sk,l
A⊥HSk,l

‖2F (15)

= ‖A⊥HSk,l
GA⊥Sk,l

‖2F (16)

The CMF-OLS algorithm for covariance matrix esti-
mation then writes:

1. Initialization: k = 1, residual R0 = G, set of in-
dices S0 = ∅

2. Projections of the residual on the blocks are com-
puted, ρk,l = ‖ΠFk,l

(Rk−1)‖2F
3. An additional source is identified by the maximal

norm of the projection l? = argmaxl ρk,l
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4. Its index is added to the set Sk+1 = Sk ∪ {l?}

5. The residual is updated by orthogonaly projecting
G on the space spanned by the identified atoms:
Rk = G−ΠFk+1

(G)

6. k = k+1 and go to step 2 until a stopping criterion
is met.

After K iterations, the OLS estimation of the K × K
covariance matrix C̃ is given by the solution of the least-
squares problem

ˆ̃COLS = argmin
C

‖G−ASK
CAH

SK
‖2F . (17)

with explicit solution ˆ̃COLS = A†SK
GA†HSK

. where ·† de-
notes the Moore-Penrose pseudo-inverse. The estimate
ĈOLS of the complete covariance matrix C is then given
by setting the diagonal and off-diagonal coefficients with
indices in SK with the coefficients of ˆ̃COLS .

The main computational burden is the computation
of the selection criterion. This criterion can be efficiently
computed the following way. The orthogonal matrix
A⊥Sk,l

is obtained by concatenating A⊥Sk
with the nor-

malized orthogonal projection ãl of al on the orthogonal
of A⊥Sk

. The criterion then writes

‖A⊥HSk,l
GA⊥Sk,l

‖2F =

∥∥∥∥∥
(

A⊥HSk−1

ãHl

)
G
(

A⊥Sk−1
ãl

)∥∥∥∥∥
2

F

(18)

= ‖A⊥HSk−1
GA⊥Sk−1

‖2F+ (19)

2‖ãHl GA⊥Sk−1
‖22 + |ãHl Gãl|2. (20)

The first term being constant with respect to l, only the
last two terms have to be computed.

B. Computational complexity

The computational complexity of the algorithm de-
pends on the number of sensors N , the discretization
size L and the number of iterations K, that are such
that K ≤ N ≤ L. The computational complexity of an
iteration of OLS is governed by

• the construction of the orthogonal matrices A⊥Sk,l
,

by projection and normalization of the al:
O(LKN)

• and the computation of the norm of the projection
using the two last terms of (??): O(LN2)

AsK ≤ N , the total cost is O(LN2K). We note that
the complexity is linear with respect to the size of the grid
L. The memory usage of CMF-OLS is dominated by the
size of the dictionary LN .

As a comparison, MACS has a time complexity in L3,
and the time complexity of DAS-C is O(L2N), quadratic
in the size of the grid. Memory footprint of MACS and
DAS-C is at least the size of the covariance matrix L2.

V. SEPARATION OF THE SOURCES

Once the covariance matrix is estimated, the differ-
ent sets of correlated sources can be identified. First,
the number of groups of correlated sources is estimated
by computing the eigenvalues of the covariance matrix.
The number of groups G is the number of singular values
higher than the noise floor.

The information on their spatial shape is included
in the singular vectors of the estimated covariance ma-
trix. The singular vector associated to a group describe
the relative level of the sources at their respective loca-
tions. Combined with the corresponding singular values,
respective powers of the sources can be estimated in each
group.

However, because of the presence of noise, the sin-
gular vectors are combinations of several spatial shapes
for sources associated with similar eigenvalues. A simple
algorithm is proposed to disentangle the sources, based
on the assumption that the supports of the sources are
disjoint. With vk the first K singular vectors of ˆ̃COLS ,
assumed to be normalized, and vkl their coefficients, the
source shapes sk are estimated by the following algo-
rithm:

1. k = 1

2. Compute l? = argmaxl |
∑K
n=1 vnl|2,

3. Let sk =
∑K
n=1 v̄nl?vn/

√∑K
n=1 |vnl? |2,

4. Replace the K vector vn by their projections on
the orthogonal of sk.

5. k = k + 1 and go to step 2 until k = G.

The algorithm is supported by the following inter-
pretation: the vectors vk form an orthogonal basis of the
space spanned by the shape vectors sk, itself an orthog-
onal basis as their support are disjoint. Each step of the
algorithm rotates the basis vk such that one of the vec-
tor is equal to one of the shape vectors. The algorithm
is then iterated in the space orthogonal to this vector.

The estimated covariance matrix is then projected
on the rank 1 matrices sks

H
k , with coefficients αk. The

final estimation of the covariance matrix is:

ˆ̃C =

G∑
i=1

αisis
H
i . (21)

From this decomposition, one can

• compute the power emitted at each location of
space: P̂l =

∑G
k=1 αk|skl|2,

• or analyze a unique source by using its rank-one
description αksksHk .

The computational complexity of this step is domi-
nated by the SVD of the matrix ˆ̃COLS , in O(K3), itself
dominated by the complexity of the OLS algorithm.
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VI. SIMULATIONS

The method is demonstrated on a simple case by sim-
ulating a linear antenna, and locating correlated sources
on a line parallel to the array at a distance of 5m. The
antenna is composed of N = 19 sensors spaced by a half
wavelength. Two groups of coherent sources are consid-
ered, with respectively 2 and 3 narrow band sources emit-
ting at 3500 Hz. Locations and powers of the sources are
given in table ??. The SNR is set to 0 dB and I = 500
time samples are collected. The 1D region of interest of
the sources is discretized with a 5 mm step, such that
L = 400 grid points are considered.

The estimation of the source covariance matrix pro-
vided by the DAS-C beamformer is pictured on figure ??.
Its diagonal, the output of the standard DAS beam-
former, is plotted on figure ??. We note in particular
that the two less powerful sources cannot be identified
by DAS beamforming, as they are below the level of the
sidelobes of more powerful sources. Correlations between
sources are represented by the off-diagonal coefficients.

The coefficients of the covariance matrix estimated
by CMF-OLS are pictured on figure ??. One can note
that the two groups of correlated sources can be easily
identified from this estimation while it was not possible
with the DAS-C estimation. The estimated positions and
powers of the sources estimated by CMF-OLS are given
in table ??, and plotted on figure ??. Positions and pow-
ers of the five sources are estimated correctly, even for
the sources that cannot be identified by beamforming.

The source powers estimated by IMACS are plotted
on fig ??. As the value proposed for the regularization
parameter in (?) did not yield accurate results, it was
set manually. The rank of the covariance matrix is as-
sumed to be Lh = 2, and 50 iterations are used. The
weaker sources are not estimated accurately by IMACS.
Moreover, for some sources, the power is spread over con-
tiguous grid points, making the estimation of the power
difficult. This is a well known phenomenon in sparse de-
convolution (?), that cannot be avoided by refining the
discretization.

The energy of the residual before each step of CMF-
OLS is plotted on figure ??. The number of sources is
estimated by the location of the discontinuity in the de-
cay of the energy, here at K = 5 iterations. The singular
values of the estimated covariance matrix with 5 itera-
tions are plotted on the same figure, showing that the
sources can be separated in two correlated groups.

Computation times for CMF-OLS is 0.003s, and
22.7s for IMACS. For this set of data, the proposed meth-
ods is about 10 000 times faster that IMACS algorithm
which is known as one of the fastest approaches for source
covariance matrix estimation. The algorithm is imple-
mented in MATLAB R2018b, and is run on a laptop
equipped with an Intel Core i7-7820HQ CPU @ 2.90GHz
× 8 CPU and 16 GB memory.

True values

Positions [m] -0.8 0.0 0.9 -0.3 0.5

Power [dB] - group 1 -7.95 0.00 -13.98 -Inf -Inf

Power [dB] - group 2 -Inf -Inf -Inf -10.46 -1.94

Estimation by CMF-OLS

Positions [m] -0.79 0.00 0.89 -0.30 0.50

Power [dB] - group 1 -7.78 0.07 -13.59 -36.70 -334.59

Power [dB] - group 2 -32.52 -37.16 -27.10 -10.32 -1.55

TABLE I. Simulation (5 sources). Position and Power of the
sources: true values and estimations by CMF-OLS. Powers
are given with reference to the most powerful source at x =

0.0.
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FIG. 2. Simulations (5 sources) - source covariance matrix.
In both representation, the powers of the sources are found on
the diagonal, off-diagonal terms indicate correlation between
sources.
Left: Output of DAS-C, the actual sources are superimposed,
crosses and circles denotes the two source groups.
Right: Covariance matrix estimated by CMF-OLS, the ra-
dius of the disks are proportional to the absolute value of the
coefficients.
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FIG. 3. Simulations (5 sources) - position and power.
Top: estimation by CMF-OLS, K = 5.
Bottom: estimation by IMACS.
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FIG. 4. Simulations (5 sources).
Left: Energy of the residual of the CMF-OLS.
Right: Singular values of the covariance matrix.

VII. EXPERIMENTAL VALIDATION

The method is now tested experimentally in an ane-
choic chamber. The following experiments, make use of
the same sources built out of baffled broadband omnidi-
rectional loudspeakers (Visaton-BF32 - [150Hz-20kHz]).

A. Set Up

Two different acoustic antennas are implemented.
They use the same acoustic sensors : MEMS digital mi-
crophones (invensense - INMP441) with a 26 dBFS sen-
sitivity (1kHz, 94dBSPL) and a flat response in the band
[150 Hz - 15 kHz].

The first antenna counts 32 elements irregularly
spaced on a straight line, 1.36 m long, with an average
step of 45 mm.

The second antenna counts 128 elements distributed
along 16 linear rays. The 8 microphones on a ray are
spaced according to a geometric law and the origins of
the 16 rays follow a pseudo random distribution.

The second microphone array and the sources are
pictured on fig. ??. They are located in two parallel
planes, at a distance d = 4.3m.

The microphone signals are sampled at Fs = 50 kHz
and analyzed by Short-Term Fourier Transform, with
a 2048 samples Hann window (41ms duration and 75%
overlap).

B. Experiment 1: Linear array

The linear array is used in this experiment. Four
sources are located at a 5.18 m distance. They are cor-
related by pairs. The source space consists of a parallel
2m long straight line with a 5 mm step (L = 400 points).

The output of the DAS beamforming is pictured on
figure ?? at frequency F = 11kHz. The power of the
weaker source is below level of a more powerful source,
and cannot be located. On the same figure, crosses and
circles indicates the sources found by CMF-OLS. They
are correctly grouped, and their location is close to the
actual locations of the source (dashed lines). The number
of iterations, K = 5, and the number of groups, J = 2
are obtained form the decay of the residual energy and
the singular values of the covariance matrix.
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FIG. 5. Experimental results, linear array. Top: Two pairs
of correlated F = 2.2 kHz. The sources identified by CMF-
OLS are superimposed over the output of the standard beam-
former. Bottom: Estimation by IMACS.

1 2 3

4

FIG. 6. Experimental setup. Top: Acoustical sources. Bot-
tom: Positions of the array microphones.

The bottom part of the figure shows the source esti-
mated by IMACS. Similar results to CMF-OLS are ob-
tained, with a computation time of 24.3s, compared to
0.06s for CMF-OLS.
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FIG. 8. Experimental results with four uncorrelated sources
at F = 2.2 kHz. The sources identified by CMF-OLS are
superimposed over the output of the standard beamformer.

C. Experiment 2: 2D array, Uncorrelated sources

The localization of uncorrelated sources is tested
first. They sources are located in a parallel plane, at a
distance d = 4.3 m. The region of interest is a 2 m×4 m
rectangle discretized over M = 400× 200 = 8e4 points.

The output of the DAS beamforming is pictured on
figure ?? at frequency F = 2.2kHz. Source 4 cannot be
identified as it is below the level of the mainlobe of source
2.

The sources identified by CMF-OLS are superim-
posed on the same image. The number of iterations
(K = 4) and number of source groups 4) are chosen ac-
cording to the residual energy decay and the singular
values of the estimated covariance matrix, see figure ??.

The computation time is here 1.4s. As the complex-
ity of the MACS method is proportional to L3, compu-
tation times for MACS would be in the order of several
years. The size of the output of DAS-C is L2, more than
25 GB as single floats, larger than the memory of the
computer used for the numerical applications.

D. Experiment 3: 2D array, Pairs of correlated sources

In the next experiment, the same setup is used, with
two pairs of correlated sources (1-2, 3-4). As in the pre-
vious experiment, source 4 cannot be identified by DAS
beamforming.
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FIG. 9. Experimental results with uncorrelated (Exp. 2) and
correlated sources (Exp. 3). Left: Energy of the residual
before each step of the CMF-OLS algorithm. Right: Singular
values of the estimated covariance matrix for K = 4.
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FIG. 10. Experimental results with two pairs of correlated
sources at F = 2.2 kHz. The sources identified by CMF-
OLS are superimposed over the output of the standard beam-
former.

For CMF-OLS, the residual energy decay indicates
four sources as above. Here, two groups are identified
using the singular values of the estimated covariance ma-
trix, superimposed on the output of the beamformer on
figure ??.

The estimated covariances with individual sources
are pictured on figure ??. The covariances are given by
the column of the estimated covariance matrix C̃ asso-
ciated to a given source. In the case of source 1, both
DAS-C and OMF-CLS yield correct estimation of the
covariances, as source 1 is correlated with source 2 only.
The covariances estimated by DAS-C for source 4 are
however inexact, as source 4 is estimated to be corre-
lated with all four sources. This is explained by the fact
that source 4 is in the main lobe of source 3, itself corre-
lated with source 1. CMF-OLS does not find significant
correlation with source 3 only.

E. Experiment 4: 2D array, Sources with reflections

Finally, the identification of reflections is tested. A
reflector is set up in the anechoic room, and uncorre-
lated sources (3 and 4) are used. The sources and their
reflections are expected to be strongly correlated, and
the number of correlated blocks is the number of actual
sources. The scan area is augmented to include points in
the reflected, virtual space, with dimension 7m × 1.5m,
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FIG. 11. Experimental results. Covariances estimated by
DAS-C and CMF-OLS with a source. Top: source 4 , bottom:
source 1.
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FIG. 12. Experimental results with two sources and their
reflections at F = 2.93 kHz. The sources identified by CMF-
OLS are superimposed over the output of the standard beam-
former.

and L = 1.05e5 points. The computation time is here
1.74s. The four sources located by OLS are correctly
identified as two pairs of correlated sources, one real
source and its reflection.

VIII. CONCLUSION

In this paper the CMF-OLS method is proposed for
the estimation of the source covariance matrix which pro-
vides simultaneously location, power, and mutual covari-
ances of acoustic sources. The interest of this approach
compared to standard methods is its ability to distin-
guish correlated sources. Simulations and experimental
results are presented that illustrate this capacity.

The proposed method is a greedy approach based on
the OLS algorithm. Its advantage lies in a very low nu-
merical complexity which is linear with respect to the
number of grid points in the scanned source domain.
Consequently it is drastically faster than similar meth-
ods based on the optimization of a regularized criterion.
Numerical examples show that the computing time is di-
vided by a factor 1000 at least. To our knowledge, it
is the first method for source covariance estimation that

can deal with large numbers of grid points, making it
usable in a wide range of applications. An other advan-
tage of the CMF-OLS method upon the regularization
approach, is that it does not require the tuning of any
parameter to get the optimal solution.

Finally experimental results in free field and semi
free field were presented which prove that the accuracy of
CMF-OLS outperforms those of regularized approaches
such as the MACS or IMACS methods, in terms both of
localization and power estimation.

H. Krim and M. Viberg, “Two decades of array signal process-
ing research: the parametric approach,” IEEE Signal Processing
Magazine 13(4), 67–94 (1996) doi: 10.1109/79.526899.

J. Antoni, T. L. Magueresse, Q. Leclère, and P. Simard,
“Sparse acoustical holography from iterated bayesian fo-
cusing,” Journal of Sound and Vibration 446, 289 –
325 (2019) http://www.sciencedirect.com/science/article/
pii/S0022460X1930001X doi: https://doi.org/10.1016/j.jsv.
2019.01.001.

N. Chu, A. Mohammad-Djafari, and J. Picheral, “Robust
Bayesian super-resolution approach via sparsity enforcing a
priori for near-field aeroacoustic source imaging,” Journal of
Sound and Vibration 332(18), 4369–4389 (2013) https://hal.
archives-ouvertes.fr/hal-00794230.

A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beam-
forming,” The Journal of the Acoustical Society of Amer-
ica 136(1), 260–271 (2014) http://asa.scitation.org/doi/10.
1121/1.4883360 doi: 10.1121/1.4883360.

E. Fernandez-Grande and L. Daudet, “Compressive acoustic holog-
raphy with block-sparse regularization,” The Journal of the
Acoustical Society of America 143(6), 3737–3746 (2018) http:
//asa.scitation.org/doi/full/10.1121/1.5042412 doi: 10.
1121/1.5042412.

G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, and
R. Gribonval, “Near-field acoustic holography using sparse reg-
ularization and compressive sampling principles,” The Journal
of the Acoustical Society of America 132(3), 1521–1534 (2012)
https://doi.org/10.1121/1.4740476 doi: 10.1121/1.4740476.

D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,”
IEEE Transactions on Signal Processing 53(8), 3010–3022 (2005)
doi: 10.1109/TSP.2005.850882.

A. Das, W. S. Hodgkiss, and P. Gerstoft, “Coherent Multi-
path Direction-of-Arrival Resolution Using Compressed Sensing,”
IEEE Journal of Oceanic Engineering 42(2), 494–505 (2017) doi:
10.1109/JOE.2016.2576198.

J. Zheng and M. Kaveh, “Sparse Spatial Spectral Estimation:
A Covariance Fitting Algorithm, Performance and Regulariza-
tion,” IEEE Transactions on Signal Processing 61(11), 2767–
2777 (2013) doi: 10.1109/TSP.2013.2256903.

T. Yardibi, J. Li, P. Stoica, N. S. Zawodny, and L. N. Cattafesta,
“A covariance fitting approach for correlated acoustic source
mapping,” The Journal of the Acoustical Society of America
127(5), 2920–2931 (2010) https://doi.org/10.1121/1.3365260
doi: 10.1121/1.3365260.

S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares
methods and their application to non-linear system identi-
fication,” International Journal of Control 50(5), 1873–1896
(1989) https://doi.org/10.1080/00207178908953472 doi: 10.
1080/00207178908953472.

Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krish-
naprasad, “Orthogonal matching pursuit: Recursive function ap-
proximation with applications to wavelet decomposition,” in Pro-
ceedings of the 27 th Annual Asilomar Conference on Signals,
Systems, and Computers (1993), pp. 40–44.

C. Soussen, R. Gribonval, J. Idier, and C. Herzet, “Joint K-
Step Analysis of Orthogonal Matching Pursuit and Orthogo-
nal Least Squares,” IEEE Transactions on Information Theory
59(5), 3158–3174 (2013) doi: 10.1109/TIT.2013.2238606.

J. Acoust. Soc. Am. / 21 June 2019 9

http://dx.doi.org/10.1109/79.526899
http://http://www.sciencedirect.com/science/article/pii/S0022460X1930001X
http://http://www.sciencedirect.com/science/article/pii/S0022460X1930001X
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2019.01.001
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2019.01.001
http://https://hal.archives-ouvertes.fr/hal-00794230
http://https://hal.archives-ouvertes.fr/hal-00794230
http://http://asa.scitation.org/doi/10.1121/1.4883360
http://http://asa.scitation.org/doi/10.1121/1.4883360
http://dx.doi.org/10.1121/1.4883360
http://http://asa.scitation.org/doi/full/10.1121/1.5042412
http://http://asa.scitation.org/doi/full/10.1121/1.5042412
http://dx.doi.org/10.1121/1.5042412
http://dx.doi.org/10.1121/1.5042412
http://https://doi.org/10.1121/1.4740476
http://dx.doi.org/10.1121/1.4740476
http://dx.doi.org/10.1109/TSP.2005.850882
http://dx.doi.org/10.1109/JOE.2016.2576198
http://dx.doi.org/10.1109/TSP.2013.2256903
http://https://doi.org/10.1121/1.3365260
http://dx.doi.org/10.1121/1.3365260
http://https://doi.org/10.1080/00207178908953472
http://dx.doi.org/10.1080/00207178908953472
http://dx.doi.org/10.1080/00207178908953472
http://dx.doi.org/10.1109/TIT.2013.2238606


J. W. Paik, W. Hong, J.-K. Ahn, and J.-H. Lee, “Statistics on
noise covariance matrix for covariance fitting-based compressive
sensing direction-of-arrival estimation algorithm: For use with
optimization via regularization,” The Journal of the Acousti-
cal Society of America 143(6), 3883–3890 (2018) http://asa.
scitation.org/doi/full/10.1121/1.5042354 doi: 10.1121/1.
5042354.

T. Yardibi, J. Li, P. Stoica, and L. N. Cattafesta, “Sparsity con-
strained deconvolution approaches for acoustic source mapping,”
The Journal of the Acoustical Society of America 123(5), 2631–
2642 (2008) https://doi.org/10.1121/1.2896754 doi: 10.1121/
1.2896754.

W. Xiong, J. Picheral, S. Marcos, and G. Chardon, “Sparsity-
based localization of spatially coherent distributed sources,” in
2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) , Shangai, China (2016), https:
//hal-supelec.archives-ouvertes.fr/hal-01231789, doi: 10.
1109/ICASSP.2016.7472276.

M. Grant and S. Boyd, “CVX: Matlab software for disciplined con-
vex programming, version 2.1,” http://cvxr.com/cvx (2014).

M. Grant and S. Boyd, “Graph implementations for nonsmooth
convex programs,” in Recent Advances in Learning and Con-
trol, edited by V. Blondel, S. Boyd, and H. Kimura, Lec-
ture Notes in Control and Information Sciences (Springer-Verlag
Limited, 2008), pp. 95–110, http://stanford.edu/~boyd/graph_
dcp.html.

Y. Li, M. Li, D. Yang, and C. Gao, “Research of the im-
proved mapping of acoustic correlated sources method,” Applied
Acoustics 145, 290–304 (2019) http://www.sciencedirect.
com/science/article/pii/S0003682X17309118 doi: 10.1016/j.

apacoust.2018.10.009.
A. Peillot, F. Ollivier, G. Chardon, and L. Daudet, “Localization
and identification of sound sources using ”compressive sampling”
techniques,” in 18th International Congress on Sound and Vi-
bration, Rio de Janeiro, Brazil (2011), https://hal.inria.fr/
hal-00766968.

T. Padois and A. Berry, “Orthogonal matching pursuit applied to
the deconvolution approach for the mapping of acoustic sources
inverse problem,” The Journal of the Acoustical Society of
America 138(6), 3678–3685 (2015) https://doi.org/10.1121/
1.4937609 doi: 10.1121/1.4937609.

Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-Sparse Signals:
Uncertainty Relations and Efficient Recovery,” IEEE Transac-
tions on Signal Processing 58(6), 3042–3054 (2010) doi: 10.
1109/TSP.2010.2044837.

G. Chardon, “A block-sparse MUSIC algorithm for the localization
and the identification of directive sources,” in 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2014), pp. 3953–3957, doi: 10.1109/ICASSP.2014.
6854343.

M. R. Bai, C. Chung, and S.-S. Lan, “Iterative algorithm for solv-
ing acoustic source characterization problems under block spar-
sity constraints,” The Journal of the Acoustical Society of Amer-
ica 143(6), 3747–3757 (2018) http://asa.scitation.org/doi/
full/10.1121/1.5042221 doi: 10.1121/1.5042221.

V. Duval and G. Peyré, “Sparse regularization on thin grids I: the
Lasso,” Inverse Problems 33(5), 055008 (2017) doi: 10.1088/
1361-6420/aa5e12.

10 J. Acoust. Soc. Am. / 21 June 2019

http://http://asa.scitation.org/doi/full/10.1121/1.5042354
http://http://asa.scitation.org/doi/full/10.1121/1.5042354
http://dx.doi.org/10.1121/1.5042354
http://dx.doi.org/10.1121/1.5042354
http://https://doi.org/10.1121/1.2896754
http://dx.doi.org/10.1121/1.2896754
http://dx.doi.org/10.1121/1.2896754
http://https://hal-supelec.archives-ouvertes.fr/hal-01231789
http://https://hal-supelec.archives-ouvertes.fr/hal-01231789
http://dx.doi.org/10.1109/ICASSP.2016.7472276
http://dx.doi.org/10.1109/ICASSP.2016.7472276
http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://http://www.sciencedirect.com/science/article/pii/S0003682X17309118
http://http://www.sciencedirect.com/science/article/pii/S0003682X17309118
http://dx.doi.org/10.1016/j.apacoust.2018.10.009
http://dx.doi.org/10.1016/j.apacoust.2018.10.009
http://https://hal.inria.fr/hal-00766968
http://https://hal.inria.fr/hal-00766968
http://https://doi.org/10.1121/1.4937609
http://https://doi.org/10.1121/1.4937609
http://dx.doi.org/10.1121/1.4937609
http://dx.doi.org/10.1109/TSP.2010.2044837
http://dx.doi.org/10.1109/TSP.2010.2044837
http://dx.doi.org/10.1109/ICASSP.2014.6854343
http://dx.doi.org/10.1109/ICASSP.2014.6854343
http://http://asa.scitation.org/doi/full/10.1121/1.5042221
http://http://asa.scitation.org/doi/full/10.1121/1.5042221
http://dx.doi.org/10.1121/1.5042221
http://dx.doi.org/10.1088/1361-6420/aa5e12
http://dx.doi.org/10.1088/1361-6420/aa5e12

