
HAL Id: hal-02458649
https://centralesupelec.hal.science/hal-02458649

Submitted on 7 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of Dentin Elastic Properties Based on
Microstructure Characterization, Statistical

Back-Analysis, and FEM Simulation
Romain Jeanneret, C. Arson, Elsa Vennat

To cite this version:
Romain Jeanneret, C. Arson, Elsa Vennat. Homogenization of Dentin Elastic Properties Based on
Microstructure Characterization, Statistical Back-Analysis, and FEM Simulation. 6th Biot Confer-
ence on Poromechanics, Jul 2017, Paris, France. pp.1339-1346, �10.1061/9780784480779.166�. �hal-
02458649�

https://centralesupelec.hal.science/hal-02458649
https://hal.archives-ouvertes.fr


i
i

“Template” — 2017/1/3 — 18:19 i
i

i
i

i
i

Homogenization of dentin elastic properties
based on microstructure characterization,

statistical back-analysis and FEM simulation

January 3, 2017

R. Jeanneret 1,2, C. Arson 1, E. Vennat 2

1 Georgia Institue of Technologies, School of Civil and Environnemental engineering,
790 Atlantic Drive, Atlanta, GA, 30318, USA
2 Laboratoire MSSMat, CNRS, Centrale-Supélec, Université Paris-Saclay, 92290
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Abstract

The dentinal tissue is made of tubules surrounded by peri-tubular dentin
(PTD), embedded in a matrix of inter-tubular dentin (ITD). Hashin and Rosen
found exact stiffness bounds for hexagonal patterns of hollow fibers. But State-
of-the-Art micro-macro models rely on simplified microstructure representations
and lack experimental validation. The Poissons ratios of dentin microstructure
components cannot be determined by direct experimental methods. By contrast,
we apply Hashins homogenization scheme to a non-uniform PTD distribution, de-
termined from image analysis. According to Finite Element simulations, a cube
containing 60 tubules is a Representative Elementary Volume. Microscopy, nano-
indentation and Resonant Ultrasound Spectroscopy data were collected from each
dentin sample studied for model calibration. Despite the high variability of mi-
crostructure descriptors and mechanical properties, statistical analyses show that
Hashins bounds converge and that the proposed model can be used for back-
calculating the microscopic mechanical properties of dentin constituents.

1 Introduction
Dentine is the tissue of the tooth that is located between the pulp and the enamel. Most
materials used to repair dentin cavities (e.g., amalgam, cement, sealants) do not last
more than 15 years, which raised interest in the micro-macro mechnical modeling of
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dentin [7]. Dentin can be seen as a bundle of hollow fibers of peri-tubular dentin (PTD)
embedded in a matrix of inter-tubular dentin (ITD). The rigorous calculation of the
stiffness coefficients of a solid with hollow cylinder inclusions remains a challenge.
Hashin and Rosen [2] computed exact bounds in the case of a hexagonal pattern of
fibers, assuming a transverse isotropy for the homogenized material. Improvements
were then made by Herve and Zaoui [3], Hongjun [4], Shi [12] and Tsukrov [11].
Due to their complexity, these models were never used to back analyze the mechani-
cal properties of dentin constituents. Previous studies of dentin homogenized proper-
ties were based on Reuss and Voigt bounds [5], the self-consistent method [6], aver-
aging techniques assuming periodic structure [1] and Hashin and Rosen bounds [9].
However, none of these models was validated experimentally and the values of the
microscopic Poisson’s ratios had to be postulated instead of being calibrated. By con-
trast, we establish a stiffness homogenization scheme based on microstructure images,
nano-indentation test results and measured macroscopic mechanical properties. In the
first section, we explain the dentin stiffness model, which is based on Hashin’s ho-
mogenization scheme with a non-uniform distribution of peri-tubular dentin volume
around the tubules, determined from image analysis. In the second section, we present
a calibration technique that can be employed for tooth dentinal tissue.

2 Micro-Macro Model for Dentin Stiffness

2.1 Homogenization Scheme
Figure 1 shows a Scattered Electron Microscope (SEM) image of dentin, taken in a
horizontal plane in a tooth. Inter-Tubular Dentin (ITD), made of collagen and apatite,
forms a matrix that contains fluid-filled tubules surrounded by Peri-Tubular Dentin
(PTD), mostly made of apatite [8]. Tubules are between 2.9 µm and 3.02 µm in size
and the tubule concentration is between 18.2 fibers/mm2 and 24.162 fibers/mm2 [10].
The surface concentration of tubules is higher close to the pulp than to the enamel, be-
cause tubules spread out forming a fan. In the following, we propose a homogenization
scheme for an elementary block of dentin, at the scale of which tubules can be con-
sisdered parallel (Fig.2). Accordingly, we assume that dentine follows a transversely
isotropic behavior, characterized by five elastic parameters.

In the following, we consider an elementary volume of composite material con-
taining parallel hollow cylinders oriented along direction 1. When cylinders are peri-
odically distributed according to a hexagonal pattern, the lower and upper bounds of
the five independent elastic parameters E1, E2, G12, ν12 and G23 are equal [2]. For a
random distribution, only the transverse shear modulus G23 has two distinct bounds.
In the original model of Hashin and Rosen, hollow cylinders are aligned and have a
circular cross section characterized by the same ratio inner radius / outer radius (noted
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Figure 1: SEM image of dentin (left) taken in a horizontal plane of the tooth. Binarized
image (right), showing the PTD in black.

Figure 2: Schematic view of the elementary block of dentin modeled with the proposed
homogenization scheme. Tubules are considered parallel, which allows assuming trans-
verse isotropy.

α). In this work, the non-uniform distribution of α is modeled by a Gaussian law:

ρ(α) =
1√
2πσ
· e
−

(µα − α)2

2σ2
α

In which µα and σα are the mean and standard deviation of the probability density func-
tion ρ(α), respectively. Considering that in dentine, α varie sbetween 0.2 and 0.8, for
any of the homogenized elastic moduli Cij(α), Reuss and Voigt bounds are computed
as follows: ∫ α=0.8

α=0.2

ρ(α)Ci,j(α)dα ≤ Cij ≤
∫ α=0.8

α=0.2

ρ(α)C−1
i,j (α)dα

where Ci,j(α) is the homogenized stiffness coefficient for a given value of α, and Cij
our global homogenized stiffness coefficient. The proposed homogenization scheme
requires seven microscopic parameters: the Young’s modulus and Poisson’s ratio of the
ITD and of the PTD, statistical parameters µα and σα, and the volume fraction of ITD
in the elementary cell (noted vm).
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Figure 3: FEM models used to simulate strain-controlled compression tests. The load
was applied along the x-axis (direction of the tubules) and the transversal displacements
on orthogonal faces were calculated.

2.2 Representative Elementary Volume (REV)
We used the Finite Element Method (FEM) to simulate the mechanical response of
dentin subjected to a strain-controlled uniaxial compression along the axis of the
tubules. Numerical samples were parallelepipedic with 4 to 400 parallel hollow cylin-
ders of circular section and same external radius. Cylinders are assigned a random
distribution of α, which determines the inner radius distribution. Tubules were placed
on rectangular and hexagonal grids, with a random distribution of offsets along the
x and y directions. In total, 20 FEM models were tested for each of the two patterns
(Figure 3). Results for hexagonal and rectangular pattern are plotted in Figure 4. The
difference between transverse displacements on opposite vertical faces decreases with
the number of cylinders, and then stabilizes at around 2% for samples with 60 cylinders
or more, for both hexagonal and rectangular patterns. This means that the assumption
of transverse isotropy is valid for dentin samples containing 60 tubules or more, which
we consider as the Representative Elementary Volume (REV).

3 Model Calibration

3.1 Experimental Data
We calibrate the microscopic Poisson’s ratios of ITD and PTD by fitting the macro-
scopic elastic parameters of dentin against measures obtained by Resonant Ultrasound
Spectroscopy (RUS) at LIB (Paris VI University), with constrained values for the four
other microscopic parameters. The Young’s moduli of ITD and PTD were obtained by
nano-indentation at MSSMat (Ecole Centrale de Paris). ESEM microstructure images
obtained at LMS (Ecole Polytechnique), which allowed determining the probability
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Figure 4: Difference between transversal displacements on opposite vertical faces of
the FEM models shown in Figure 3. A small error on the displacements indicates that
the assumption of transverse isotropy is valid, and that the FEM domain is a REV.

density function (pdf) of the ratio α and the volume fraction of ITD (vm). RUS and
nano-indentation results are summarized in Table 1, and results of image analysis are
presented in Table 2. Note that RUS, nano-indentation and imaging were performed on
the same samples, which ensured consistency between the measures used for calibra-
tion. To determine the pdf of α, we obseved 1,186 fibers in 6 SEM images. We modeled
the pdf as a truncated Gaussian distribution, varying between 0.2 and 0.8. The averaged
error between the pdf obtained by image analysis and the fitted pdf is 15%, which was
considered acceptable, provided the variability of biological parameters. To find vm,
we analyzed 24 images of dentin in cross-sections located at different elevations in the
tooth. As explained above, the large difference of tubule surface density between sec-
tions close to the pulp and section close to the enamel results in a great variance. In the
following, we take the average value of vm for the calculations.

Table 1: Dentin mechanical properties obtained by RUS and nanoindentation

Resonant ultrasound spectroscopy Nanoindentation
E1 (GPa) E2 (GPa) ν12 ν23 G12 (GPa) EITD (GPa) EPTD (GPa)
23.35 21.9 0.298 0.512 9.63 18.46 31.08

Table 2: Results of dentine image analysis. SD: Standard Deviation.

α determination vm determination
Average SD Min Max Average SD Min Max
0.49 0.093 0.15 0.79 0.75 0.0754 0.60 0.86
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3.2 Convergence of Hashin’s Bounds
As explained above, Hashin’s bounds are equal for E1, E2; G12 and ν12. In order to
check the suitability of our model to homogenize dentin properties, we check that the
bounds of the transverse shear modulus G23 converge for the range of values taken
by the seven microstructure parameters found for dentin. We use a genetic algorithm
to find the maximum difference between the two bounds of G23 (noted ∆max

G23 ) under
the following constraints: the Young’s moduli of the ITD and PTD are assigned the
values of EITD and EPTD found by nano-indentation (Table 1); the Poisson’s ratios
of ITD and PTD vary between 0 and 0.5; vm ranges between 0.6 and 0.86, according
to image analyses (Table 2); and we divide the range of values taken by α into seven
intervals between 0.2 and 0.8. We calculate then the maximum difference beween the
two bounds of the transverse shear modulus on that interval (noted Ei for the i-th
interval). The average maximum difference between the two bounds is calculated as:

∆max
G23 =

∫ 0.8

0.2

ρ(α)× e(α)dα, e(α) = Ei in [αmini ;αmaxi ]

In which [amini ; amaxi ] designates the ith of the seven subintervals used for the dis-
cretized calculation of the bounds difference. We tested the optimization techniques
for four ranges of values [amin1 ; amax7 ] (and adapted the seven subintervas accordingly).
The corresponding values of E are provided in Table 3. The global upper bound for
∆max
G23 is equal to 24.1 %. Note that the values of the Poisson’s ratios were fixed on each

interval, and that the discretization was coarse (only seven intervals). Thus the opti-
mization method employed in this study overpredicts errors. A maximum difference of
24.1% in the bounds of the shear modulus is considered acceptable.

Table 3: Maximum difference between the bounds of hte transverse shear modulus for
difference ranges of values of α

Interval for α [0.2; 0.8] [0.3; 0.7] [0.4; 0.6] [0.45; 0.55]
Ei (%) 79 41 19 13

3.3 Back calculation of microscopic Poisson’s ratio
We now calibrate the microscopic Poisson’s ratios of ITD and PTD (νITD and νPTD) by
fitting the macroscopic elastic parameters of dentin against measures obtained by RUS,
under the constraint that EITD, EPTD, µvm , µα and σα take the values determined by
nano-indentation and image analysis (Tables 1 and 2). Using * and Hashin superscripts
to refer to RUS measures and model predictions respectively, we define the following
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function:

F1(νITD, νPTD) =
1

7
[
∑

Γ ∆Γ + δG23 + δstat]

∆Γ = |ΓHashin(νITD,νPTD)−Γ∗|
Γ∗ , Γ = E1, E2, ν12, G12, G23

δstat = max(∆Γ)−min(∆Γ)
max(∆Γ)

, δG23 =
Gmax

23 −Gmin
23

Gmin
23

Since the transverse shear modulus is characterized by two bounds only, ∆G23 is taken
equal to the relative error between G23∗ and the closest bound, and to 0 if to 0 if G23∗
is outside of the bounds found numerically. The parameter δstat is used to balance
the optimization criteria between the five macroscopic elastic properties, and δG23 is
introduced to put more weight on the solutions for which the two bounds of the shear
modulus are close. We used a genetic algortihm to optimize values of the ITD and PTD
Poisson’s ratios in the range [0.05; 0.5]. We found νITD = 0.381 and νPDT = 0.344.
The corresponding value of the fitness function was 18% and the maximum difference
between the two bounds of the transverse shear modulus was 0.23%. The relative errors
for the macroscopic elastic parameters were the following: ∆E1 = 14%; ∆E2 = 14%;
∆ν12 = 13%; ∆G12 = 26%; ∆G23 = 22%.

4 Conclusions
Restorative materials used to fill teeth cavities are anchored in dentin. State-of-the-Art
micro-macro models rely on simplified microstructure representations and lack exper-
imental validation. The Poissons ratios of dentin microstructure components cannot be
determined by direct experimental methods. We model dentin as a bundle of parallel
hollow cylinders made of tubules surrounded by Peri-Tubular Dentin (PTD), embedded
in a matrix of Inter-Tubular Dentin (ITD). By contrast with the previous models, we
establish a homogenization scheme for a non-uniform distribution of PTD, determined
from image analysis. The minimum size of the Representative Elmentary Volume is
a cube containing 60 tubules. Microscopy, nano-indentation and Resonant Ultrasound
Spectroscopy data were collected from each dentin sample studied for model calibra-
tion, which is unprecedented. Statistical analyses show that Hashins bounds converge
and that the proposed model can be used for back-calculating the microscopic me-
chanical properties of dentin constituents, in particular the most probable values of
the Poisson’s ratios of ITD and PTD. More experimental results will be collected to
validate the model and study damaged or restored tissues.
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