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Graphon-based sensitivity analysis of SIS epidemics*

Renato Vizuete, Paolo Frasca, and Federica Garin

Abstract— In this work, we use the spectral properties of
graphons to study stability and sensitivity to noise of deter-
ministic SIS epidemics over large networks. We consider the
presence of additive noise in a linearized SIS model and we
derive a noise index to quantify the deviation from the disease-
free state due to noise. For finite networks, we show that the
index depends on the adjacency eigenvalues of its graph. We
then assume that the graph is a random sample from a piecewise
Lipschitz graphon with finite rank and, using the eigenvalues
of the associated graphon operator, we find an approximation
of the index that is tight when the network size goes to infinity.
A numerical example is included to illustrate the results.

I. INTRODUCTION

In recent years, the attention to the analysis of net-
works has increased in the scientific community due to
the continuous evolution of the world towards a networked
environment, where ever more connections are established
at every instant, thereby generating networks with a large
number of components, which we will refer to as large
networks. Traditionally, researchers have used concepts of
Graph Theory for the analysis of networks, where a com-
plete knowledge of the network graph is required for most
applications. This assumption is reasonable for systems with
a relatively small number of agents, but in the case of large
networks, significant problems arise. Firstly, a complete and
updated representation of the network may not be available
because of the presence of noise and errors in data and the
constant evolution of links and nodes. Secondly, even when it
is possible to obtain a good knowledge of network topology,
their sheer size prevents the full simulation or analysis of the
dynamics, or the computation of relevant network properties,
because of limitations in computational resources.

One of the most promising tools to address these problems
are graph functions, also called graphons, which are limits of
sequences of dense graphs [1], [2], [3], [4]. Researchers have
already developed numerous applications of graphons to the
analysis of network structures, including the approximation
of centrality measures [4] and link prediction problems
[5]. Very recently, researchers are also beginning to use
graphons to study dynamics on large networks: questions
of interest include modeling power networks dynamics [6]
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and epidemics [7], developing control methods [8], [9], [10],
and studying large population games [11], [12].

In this letter, we focus on the deterministic Susceptible-
Infected-Susceptible (SIS) epidemic model, which describes
a disease that can infect agents irrespective of whether they
were infected earlier. This model is often interpreted as a
meta-population model, where the state of each node is the
fraction of infected individuals in a sub-population [13], [14],
[15], [16].

Even if the analysis and control of epidemics are well
studied topics, the applicability of the theoretical results is
often limited by restrictive assumptions that require complete
knowledge of the dynamical laws of the nodes, of their
states, and of the structure of the network [17], [18]. The
uncertainty in the network knowledge has been among the
motivations to study epidemics by mean-field models [19],
[15]. In this paper, we take a different approach and account
for uncertainties by modeling the network as a graphon.

The inclusion of additive noise is also frequently used to
include un-modeled phenomena and features in epidemics
models [20], [21], [22]. In network dynamics, the properties
of robustness to noise can often be expressed through the
spectral properties of the network [23], [24], [25], [26].
Therefore, it becomes natural to look at the spectral prop-
erties of graphons to evaluate the robusteness properties of
large networks described by graphons [7].

Special cases of graphons are those corresponding to
stochastic block models [27], which are used to model the
community structures that are frequent in real social net-
works [28]. For instance, if we consider the case of spreading
of epidemics in meta-populations, a natural approach is to
consider each node as a small population, like a village or a
neighborhood, and each block as a region or city.

The aim of this work is to leverage the properties of
piecewise Lipschitz graphons with finite rank (that encom-
pass stochastic block models) for the stability and sensitivity
analysis of SIS epidemics over large networks. Our main
contribution is to show that the spectral properties of the
graphon allow to approximately evaluate stability and ro-
bustness to noise.

In order to derive our approximation results, we introduce
graphons and their relevant properties (see Section 2). We
then develop the analysis of SIS epidemics over a network
sampled from a graphon (Section 3): we define a suitable
sensitivity index, we express it by using the spectral proper-
ties of the graph, and we approximate it by using the spectral
properties of the graphon. Finally, we illustrate our results
by simulations on a stochastic block model (Section 4) and
comment about our results and future work (Section 5).



II. GRAPHONS

This section contains the definition of graphon and related
facts that will be needed in the following sections.

A. Graphons: Basic Notions and Examples

A graph is defined as a pair G = (V,E) where V , {} is a
finite set of vertices or nodes and E ⊆ {(i, j) ∈V ×V : i , j}
is the set of edges. In this work, we consider simple graphs,
such that they are undirected (i.e., edges with no direction),
unweighted (i.e., edges without weights) and do not contain
self-loops or multiedges.

The adjacency matrix of a graph A = [ai j] ∈ RN×N is
defined by ai j = 1 if (i, j) ∈ E and ai j = 0 otherwise. This
matrix is real symmetric non-negative with real eigenvalues
ordered as λ1(A)≥ λ2(A)≥ ·· · ≥ λN(A).

We denote by W the space of all bounded symmetric
measurable functions W : [0,1]2 → R. The elements of this
space are called kernels given their connection to integral
operators. The set of all kernels W ∈W such that 0≤W ≤ 1
is denoted by W0 and its elements are called graphons, whose
name is a contraction of graph-function. By analogy with
degrees in finite graphs, the degree function of a graphon
is defined as dW (x) :=

∫ 1
0 W (x,y)dy. In order to consider

differences between graphons, we shall sometimes work in
the set W1 of kernels W such that −1≤W ≤ 1.

Every function W ∈ W defines an integral operator TW :
L2[0,1]→ L2[0,1] by:

(TW f )(x) :=
∫ 1

0
W (x,y) f (y)dy.

This operator is compact and has a discrete spectrum with 0
as the only accumulation point. Every nonzero eigenvalue has
finite multiplicity [29]. A graphon W is said to have finite
rank if the spectrum of the associated operator contains a
finite number of nonzero eigenvalues [29].

A step graphon is a graphon defined as a step function.
A function is called a step function if there is a partition
S1 ∪ ·· · ∪ Sk of [0,1] into measurable sets such that W is
constant on every product set Si× S j where the sets Si are
the steps of W . This type of graphon is also called stochastic
block model graphon because of its relation to stochastic
block models [30]. Step graphons are finite rank graphons
with a rank at most equal to the number of steps. Also,
graphons expressed as a finite sum of products of integrable
functions have finite rank [4].

Each graph G has an associated step graphon WG obtained
by considering a uniform partition of [0,1] into the intervals
BN

i , where BN
i = [(i− 1)/N, i/N) for i = 1, . . . ,N − 1 and

BN
N = [(N−1)/N,1] such that:

WG(x,y) :=
N

∑
i=1

N

∑
j=1

ai j1BN
i
(x)1BN

j
(y),

where 1A(x) is the indicator function. The operator associ-
ated to the step graphon is

(TWG f )(x) :=
N

∑
j=1

ai j

∫
BN

j

f (y)dy for any x ∈ BN
i

Fig. 1. Graph G, adjacency matrix A and step graphon WG.

and the spectrum of TWG consists of the normalized spec-
trum of the graph (i.e., λi(TWG) = λi(A)/N), together with
infinitely many zeros.

A graphon is usually visualized with a pixel picture,
where each point (x,y) ∈ [0,1]2 is colored with a grey level
representing W (x,y). For a step graphon associated to a graph
G, we visualize a 0 as a small white square and a 1 as a small
black square as we can appreciate in Fig. 1.

B. Norms

In the study of kernels, various norms are relevant to
consider [29], [31], [4]. For 1 ≤ p < ∞, we define the Lp

norm of a kernel as

‖W‖Lp :=
(∫

[0,1]2
|W (x,y)|pdx dy

)1/p

and its cut norm by

‖W‖� := sup
S,T⊆[0,1]

∣∣∣∣∫S×T
W (x,y)dx dy

∣∣∣∣ .
For W ∈W1, we have the following inequalities between Lp

norms and the cut norm:

‖W‖� ≤ ‖W‖L1 ≤ ‖W‖L2 ≤ ‖W‖1/2
L1 ≤ 1.

By considering the operator TW associated to a kernel W ∈
W , we can define the operator norm:

|||TW ||| := sup
f∈L2[0,1]
‖ f‖L2=1

‖TW f‖L2 .

For graphons, the operator norm is equal to the largest
eigenvalue of the operator: |||TW |||= λ1(TW ). For the elements
of W1, the cut and operator norms are related by:

‖W‖� ≤ |||TW ||| ≤
√

8‖W‖1/2
� .

Finally, we can define the Hilbert-Schmidt norm of the
operator as:

‖TW‖2
HS := ∑

i
|λi(TW )|2.

For all W ∈ W , ‖TW‖HS is finite (i.e., kernel operators are
Hilbert-Schmidt operators), and moreover ‖TW‖HS = ‖W‖L2 .



C. Sampling and Approximation

A graphon W can be used to generate random graphs using
a sampling method [29].

Definition 1 (Sampled Graph [4]): Given a graphon W
and a size N ∈ N, we say that the graph G is sampled from
W if it is obtained through:

1) Fixing deterministic latent variables {ui =
i
N }

N
i=1.

2) Taking N vertices {1, . . . ,N} and randomly adding
undirected edges between vertices i and j independently
with probability W (ui,u j) for all i > j.

Definition 2 (Piecewise Lipschitz graphon [4]): Graphon
W is said to be piecewise Lipschitz if there exists a
constant L and a sequence of non-overlapping intervals
Ik = [αk−1,αk) defined by 0 = α0 < · · · < αK+1 = 1, for a
finite non-negative integer K, such that for any k, l, any set
Ikl = Ik× Il and pairs (x1,y1) and (x2,y2) ∈ Ikl we have that:

|W (x1,y1)−W (x2,y2)| ≤ L(|x1− x2|+ |y1− y2|).
Definition 3 (Large enough N [4]): Given a piecewise

Lipschitz graphon W (as per Definition 2) and ν < e−1, N
is large enough if N satisfies the following conditions:

2
N

< min
k∈{1,...,K+1}

(αk−αk−1), (1a)

1
N

log
(

2N
ν

)
+

1
N
(2K +3L)< max

x
dW (x), (1b)

Ne−N/5 < ν . (1c)

Lemma 1 (Theorem 1 [4]): Let W be a piecewise Lips-
chitz graphon (as per Definition 2) and G a graph with
N nodes sampled from W . Then for N large enough with
probability at least 1−ν :

∣∣∣∣∣∣TWG −TW
∣∣∣∣∣∣≤ √4log(2N/ν)

N
+

2
√

L2−K2 +KN
N

=: φ(N).

By considering a constant value of ν , the difference
between the graphons in the operator norm is bounded by:∣∣∣∣∣∣TWG −TW

∣∣∣∣∣∣= O
(
(logN/N)1/2

)
.

Lemma 2: Let W be a piecewise Lipschitz graphon and
G a graph with N nodes sampled from W . Then for N large
enough, with probability at least 1−ν :

‖W −WG‖L2 ≤ 4√2N
√

φ(N).

Proof: First, we have

‖W −WG‖� ≤
∣∣∣∣∣∣TW −TWG

∣∣∣∣∣∣≤ φ(N).

It is easy to see that WG is a step graphon that takes values
in {0,1} and we can apply the inequality derived in [31,
Remark 10.8], so that:

‖W −WG‖L1 ≤
√

2N‖W −WG‖� ≤
√

2Nφ(N).

Applying the relation ‖W−WG‖L2 ≤‖W−WG‖1/2
L1 yields the

desired result.

III. SIS EPIDEMICS

We consider a deterministic SIS model over a network
modeled by a connected graph G with homogeneous recov-
ery and infection rates. The dynamics of each agent can be
modeled by [17]:

ẋi(t) =−δxi(t)+
N

∑
j=1

ai jβx j(t)(1− xi(t)),

where xi(t) ∈ [0,1] is the fraction of the ith subpopulation
that is infected at time t, δ is the recovery rate and β is the
infection rate. The model of all the network can be expressed
in vector form as:

ẋ(t) = (βA−δ I)x(t)−βX(t)Ax(t), (2)

where x(t) = [x1(t),x2(t), . . . ,xN(t)]T is the state vec-
tor of the system, I is the identity matrix, X(t) =
diag[x1(t),x2(t), . . . ,xN(t)] is a diagonal matrix and A is the
adjacency matrix of the network.

A. Stability of SIS epidemics

For any initial condition, the equilibrium x = 0 (disease-
free state) is globally asymptotically stable if the following
condition is satisfied [17, Theorem 6]:

λ1(A)
β

δ
< 1. (3)

In the perspective approximating graphs with graphons, it
is convenient to consider sequences of graphs parametrized
by their size N. Therefore, it is reasonable to assume that
parameters δ or β be also dependent on N: upon need, we
shall emphasize this dependence by writing δN and βN .

As a first example of application of graphons, we deter-
mine a condition to reach the disease-free state for a graph
sampled from W , based on the characteristics of the graphon.

Proposition 1 (Stability of epidemics): Let W be a piece-
wise Lipschitz graphon and G a graph with N nodes sampled
from W , representing the network for the SIS epidemic
modeled in (2). Then for N large enough, the epidemic will
reach the disease-free state with probability at least 1−ν if:

δN > NβN(|||TW |||+φ(N)). (4)
Proof: Condition (3) is equivalent to δ > βλ1(A). By

Lemma 1, with N large enough and probability at least 1−ν :∣∣λ1
(
TWG

)
−λ1(TW )

∣∣≤ φ(N),

λ1
(
TWG

)
≤ λ1(TW )+φ(N).

Since λ1(A) = Nλ1
(
TWG

)
, the above inequality yields (4).

B. An Index for the Sensitivity to Noise

When the focus is stability of the disease-free state, it is
natural to study the linearization of (2) near the origin [32]:

ẋ(t) = (βA−δ I)x(t) = A x(t). (5)

This linearization is exponentially stable [18] under con-
dition (3). We now turn our attention to the robustness of
this stability property and more precisely to quantifying how



the epidemics react to noise in the neighborhood of the
equilibrium. Indeed, noise can represent migrations or other
phenomena that are not included in the original model [20].
To this purpose, we include additive noise in (5) and define

ẋ(t) = A x(t)+n(t), (6)

where n(t) ∈RN is a stochastic noise process. A measure of
this sensitivity can be defined as the asymptotic mean-square
error:

Jnoise
G := lim

t→∞

1
N
E
[
‖x(t)‖2

2
]
. (7)

Under suitable assumptions on the noise vector1, this noise
index is determined by the eigenvalues of the network.

Proposition 2: Consider the system given in (6) satisfying
condition (3) and a noise vector with zero mean and auto-
correlation function E[n(t)n(t− ξ )T ] = σ2δ(ξ )I. Then, the
noise index (7) can be expressed as:

Jnoise
G =

σ2

2N

N

∑
i=1

1
δ −βλi(A)

. (8)

Proof: Considering that the solution of system (6) is
x(t) = eA tx(0)+

∫ t
0 eA (t−τ)n(τ)dτ, we calculate the expected

value of ‖x(t)‖2
2:

E
[
‖x(t)‖2

2
]
=E

[∥∥∥∥eA tx(0)+
∫ t

0
eA (t−τ)n(τ)dτ

∥∥∥∥2

2

]

=E
[∥∥∥eA tx(0)

∥∥∥2

2

]
(9)

+2E
[(

eA tx(0)
)T ∫ t

0
eA (t−τ)n(τ)dτ

]
+E

[(∫ t

0
eA (t−τ)n(τ)dτ

)T ∫ t

0
eA (t−τ)n(τ)dτ

]
.

We begin by studying the third term (hereby denoted by U):

U =
∫ t

0

∫ t

0
E
[(

eA (t−τ1)n(τ1)
)T (

eA (t−τ2)n(τ2)
)]

dτ1dτ2.

Since for a real scalar a, we have a = tr(a), we can apply
the trace to the integrand and its cyclic property, obtaining:

U =
∫ t

0

∫ t

0
E
[
tr
(

eA (t−τ1)eA (t−τ2)n(τ2)n(τ1)
T
)]

dτ1dτ2

=
∫ t

0

∫ t

0
tr
(

eA (t−τ1)eA (t−τ2)E
[
n(τ2)n(τ1)

T ])dτ1dτ2.

1Under the assumptions of Proposition 2, noisy system (6) can have
negative states, which lack physical meaning: in this case, system (6)
should be interpreted as a purely mathematical construct whose purpose
is quantifying the sensitivity of system (2) to small perturbations in a
neighborhood of the disease-free state. However, a different choice of the
noise model can avoid negative states. One option is the state-dependent
noise defined in [21]: this noise model preserves asymptotic stability of the
system, thus making index (7) trivially zero and therefore uninformative.
Another option is taking an uncorrelated positive noise: this choice entails
a positive mean m and yields

Jnoise
G ≤ σ2

2N

N

∑
i=1

1
δ −βλi(A)

+
m2

(δ −βλ1(A))2 .

The analysis of this upper bound follows the same considerations that we
have developed for (8).

Due to the characteristics of the autocorrelation function of
the noise, we have E

[
n(τ2)n(τ1)

T
]
= σ2δ(τ2− τ1)I. Thus:

U =
∫ t

0

∫ t

0
tr
(

eA (t−τ1)eA (t−τ2)σ
2
δ(τ2− τ1)I

)
dτ1dτ2

= σ
2tr
(∫ t

0

(∫ t

0
δ(τ2− τ1)eA (t−τ1)dτ1

)
eA (t−τ2)dτ2

)
.

Using linearity of the trace and Dirac’s delta property that∫
Ia δ(τ − a)ϕ(τ)dτ = ϕ(a) for any interval Ia that has a in

its interior and any test function ϕ , we get:

U = σ
2
∫ t

0
tr
(

e2A (t−τ2)
)

dτ2.

Being matrix A symmetric, it can be written A = QΛQT

where Q is an orthogonal matrix and Λ is a diagonal matrix
with the eigenvalues of A . Since eA = QeΛQT , we have:

U = σ
2
∫ t

0
tr
(

Qe2Λ(t−τ2)QT
)

dτ2

= σ
2
∫ t

0
tr
(

e2Λ(t−τ2)
)

dτ2

= σ
2
∫ t

0

N

∑
i=1

e2(t−τ2)λi(A )dτ2

= σ
2

N

∑
i=1

e2tλi(A )
∫ t

0
e−2τ2λi(A )dτ2

= σ
2

N

∑
i=1

1
2λi(A )

[
e2tλi(A )−1

]
.

We observe that the first term in (9) becomes zero when
t → ∞ because of condition (3), while the second term is
zero because the expected value of the noise is zero. Then,

Jnoise
G =

1
N

lim
t→∞

(
σ

2
N

∑
i=1

1
2λi(A )

[
e2tλi(A )−1

])
.

The conclusion follows because condition (3) implies that all
eigenvalues of A are negative.

Our objective is to estimate this noise index for a graph
sampled from a graphon, by using the spectrum of the
graphon operator. Assuming that the graphon W has finite
rank M, for all N ≥M we define

Jnoise
W,N :=

σ2

2N

N

∑
i=1

1
δN−βNNλi(TW )

,

where λi(TW ) are the nonzero eigenvalues of TW for i =
1, . . . ,M and λi(TW ) = 0 for i = M + 1, . . . ,N. We will use
Jnoise

W,N as an approximation of Jnoise
G when G is a large

graph sampled from W ; Theorem 1 will ensure that the
approximation error is small with high probability. Since this
result involves epidemics on graphs of increasing size N, we
have to specify the dependence on N of the parameters δN
and βN . Clearly, we need to satisfy the stability condition
(3) for all N: actually, we will need the stronger property
that λ1(AN)βN/δN remains bounded away from 1 also in the
limit for N→∞. Since almost surely λ1(AN) grows linearly
with N (except for the trivial graphon W = 0), in order to



ensure a uniform bound on λ1(AN)βN/δN , we will assume
that the infection strength βN/δN satisfies

βN

δN
=

1
N

β̄

δ̄
(10)

for some positive constants β̄ and δ̄ .
Theorem 1 (Graphon approximation): Let W be a piece-

wise Lipschitz graphon with finite rank M and G a graph
with N nodes sampled from W with N ≥M. If δN = δ̄ and
βN = N−1β̄ satisfy condition (4), then for N large enough,
with probability at least 1−ν :

∆
noise :=

∣∣∣Jnoise
G − Jnoise

W,N

∣∣∣
≤ 1

N3/4

σ2β̄

√√
N log(2N/ν)+

√
L2−K2 +KN

4√2(δ̄ − β̄ |||TW |||− β̄ φ(N))(δ̄ − β̄ |||TW |||)
.

Proof: Throughout this proof, we will assume that
λi(TW ) (i.e., the M non-zero eigenvalues of TW and N−M
zeros) are sorted in non-increasing order: this choice does not
change the sum that defines Jnoise

W,N and is consistent with the
non-increasing ordering of λi(A). This consistency will be
useful in order to apply Wielandt-Hoffman Theorem. Since
λi(A) = Nλi

(
TWG

)
, δN = δ̄ and βN = N−1β̄ , we have:

∆
noise =

∣∣∣∣∣σ2

2N

N

∑
i=1

1
δN−βNλi(A)

− σ2

2N

N

∑
i=1

1
δN−NβNλi(TW )

∣∣∣∣∣
=

σ2

2N

∣∣∣∣∣ N

∑
i=1

1
δ̄ − β̄λi

(
TWG

) − N

∑
i=1

1
δ̄ − β̄λi(TW )

∣∣∣∣∣
=

σ2β̄

2N

∣∣∣∣∣ N

∑
i=1

λi(TW )−λi
(
TWG

)(
δ̄ − β̄λi

(
TWG

))
(δ̄ − β̄λi(TW ))

∣∣∣∣∣
≤ σ2β̄

2N

N

∑
i=1

∣∣λi(TW )−λi
(
TWG

)∣∣(
δ̄ − β̄λi

(
TWG

))
(δ̄ − β̄λi(TW ))

≤
σ2β̄ ∑

N
i=1

∣∣λi(TW )−λi
(
TWG

)∣∣
2N
(
δ̄ − β̄

∣∣∣∣∣∣TWG

∣∣∣∣∣∣)(δ̄ − β̄ |||TW |||)
.

We define the vector λTW−TWG
as:

λTW−TWG
=
[
λ1(TW )−λ1

(
TWG

)
, . . . ,λN(TW )−λN

(
TWG

)]T
,

so that the sum in the numerator is
N

∑
i=1

∣∣λi(TW )−λi
(
TWG

)∣∣= ∥∥∥λTW−TWG

∥∥∥
1
.

Then, the relation ‖ · ‖1 ≤
√

N‖ · ‖2 implies

∆
noise ≤

σ2β̄

(
∑

N
i=1

∣∣λi(TW )−λi
(
TWG

)∣∣2)1/2

2N1/2
(
δ̄ − β̄

∣∣∣∣∣∣TWG

∣∣∣∣∣∣)(δ̄ − β̄ |||TW |||)
.

We can apply Wielandt-Hoffman Theorem in infinite dimen-
sional spaces [33, Theorem 2] and, since N ≥M, get:

∆
noise ≤

σ2β̄
∥∥TW −TWG

∥∥
HS

2N1/2
(
δ̄ − β̄

∣∣∣∣∣∣TWG

∣∣∣∣∣∣)(δ̄ − β̄ |||TW |||)
.

Fig. 2. Pixel diagram of the stochastic block model graphon.

Since
∥∥TW −TWG

∥∥
HS = ‖W −WG‖L2 , Lemma 2 implies that

∆
noise ≤

σ2β̄
4
√

2N
√

φ(N)

2N1/2
(
δ̄ − β̄

∣∣∣∣∣∣TWG

∣∣∣∣∣∣)(δ̄ − β̄ |||TW |||)
,

and the proof is completed by using the definition of φ(N)
and applying Lemma 1 in the denominator.

Assuming that δ = δ̄ is constant and β = N−1β̄ means
that, as the graph grows in size, the healing rate (which
depends on each individual) remains constant, whereas the
infection rate decreases. This natural scaling law is also
chosen in [7]. Indeed, on dense graphs this assumption
means that in larger graphs, even though there are more
potential interactions, the average strength of the connections
is suitably adjusted: this fact accounts for natural limitations
in the rates of contact between individuals.

Remark 1 (Asymptotics for N→ ∞ & scaling factors):
When we let N go to infinity, if ν is constant or if ν = Nα

for some constant α , we can see that the upper bound given
in Theorem 1 for the estimation error ∆noise goes to zero
as O

(
(logN)1/4/(N1/2)

)
. Hence, by choosing α > 1 and

applying Borel-Cantelli Lemma, we obtain that ∆noise almost
surely converges to zero with rate O

(
(logN)1/4/(N1/2)

)
.

Index Jnoise
G is bounded and bounded away from zero under

the assumptions of Theorem 1. Hence, the same asymptotic
behaviour holds for the relative error ∆noise/Jnoise

G . This
asymptotic behaviour of the relative error does not depend
on the assumption βN = N−1β̄ and remains true for any
choice of δN and βN that satisfies (4) and (10). Indeed, any
other choice of δN and βN satisfying (10) would modify
both Jnoise

G and Jnoise
W,N by the same multiplicative factor, so

that the relative error would remain the same.

IV. NUMERICAL AND SIMULATION RESULTS

We consider the stochastic block model graphon WSB with
pixel diagram in Fig. 2, where the values of the blocks are:

WSB =


0.9 0.7 0.6 0.5 0.2
0.7 0.4 0.1 0.3 0.1
0.6 0.1 0.5 0.9 0.8
0.5 0.3 0.9 0.5 0.5
0.2 0.1 0.8 0.5 0.7

 .
The nonzero eigenvalues of the graphon operator TWSB are

λ1 = 0.5275, λ2 = 0.2098, λ3 = 0.0126, λ4 = −0.0128 and
λ5 =−0.0971. We assume βN = β̄ = 0.1 and ν = 0.02, which
satisfies condition (1c) for N ≥ 40, and we generate sampled
graphs from WSB with 40 ≤ N ≤ 1000. For each network,



Fig. 3. Relative error ∆noise/Jnoise
G as a function of N for the stochastic

block model in Fig. 2.

the value of δN = Nδ̄ = Nβ̄ (|||TW |||+ φ(40)) is selected,
satisfying condition (4), and we compute the relative error
∆noise/Jnoise

G , obtaining the results of Fig. 3. As per Remark 1,
the relative error goes to zero as N increases.

V. CONCLUSION

This work presented an analysis of SIS epidemics on large
networks, under the assumption that the network is sampled
from a graphon. Relevant information about the stability of
an epidemic can be inferred from the graphon, without the
need to perform computations on, or even know, the full
network topology. In this vein, we have derived a stability
criterion in Proposition 1 and defined a noise-sensitivity
index (Theorem 1) that both only depend on the graphon.

Several questions are left open by this work, including
the extension of our results to networks sampled from
graphons that do not have finite rank: this extension could
be enabled by the spectral approximation tools developed in
[7]. Moreover, we believe that graphons can help not only
the analysis but also the control of epidemics: for instance,
graphon centrality [4] can provide guidance for targeted
interventions such as quarantine or vaccination.
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