Bayesian multi-objective optimization with noisy evaluations using the Knowledge Gradient
Bruno Barracosa, Julien Bect, Héloïse Baraffe, Juliette Morin, Gilles Malarange, Emmanuel Vazquez

To cite this version:
Bruno Barracosa, Julien Bect, Héloïse Baraffe, Juliette Morin, Gilles Malarange, et al.. Bayesian multi-objective optimization with noisy evaluations using the Knowledge Gradient. PGMO Days 2019, Dec 2019, Palaiseau, France. hal-02475345
Bayesian Multi-objective Optimization with Noisy Evaluations using the Knowledge Gradient

Bruno Barracosa1,2, Julien Bect2, Héloïse Baraffe1, Juliette Morin1, Gilles Malarange1, Emmanuel Vazquez2

1EDF R&D, France, bruno.tebbal-barracosa@edf.fr, heloise.baraffe@edf.fr, juliette.morin@edf.fr, gilles.malarange@edf.fr
2Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France, julien.bect@centralesupelec.fr, emmanuel.vazquez@centralesupelec.fr

Keywords: Bayesian optimization, global optimization, multi-objective optimization, noisy optimization, simulation optimization

We consider the problem of multi-objective optimization in the case where each objective is a stochastic black box that provides noisy evaluation results. More precisely, let \(f_1, \ldots, f_q \) be \(q \) real-valued objective functions defined on a search domain \(X \subset \mathbb{R}^d \), and assume that, for each \(x \in X \), we can observe a noisy version of the objectives: \(Z_1 = f_1(x) + \epsilon_1, \ldots, Z_q = f_q(x) + \epsilon_q \), where the \(\epsilon_i \)'s are zero-mean random variables. Our objective is to estimate the Pareto-optimal solutions of the problem:

\[
\min f_1, \ldots, f_q. \tag{1}
\]

We adopt a Bayesian optimization approach, which is a classical approach when the affordable number of evaluations is severely limited—see, e.g., [1], in the context of multi-objective optimization. In essence, Bayesian optimization consists in choosing a probabilistic model for the outputs \(Z_i \) and defining a sampling criterion to select evaluation points in the search domain \(X \).

Here, we propose to discuss the extension of the Knowledge Gradient approach [2] for solving the multi-objective problem (1). For instance, such an extension has been recently proposed by Astudillo and Frazier [3].

References

