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Introduction

Let ξ be a zero-mean Gaussian process indexed by R d and denote by k the covariance function of ξ, which is assumed to belong to a parametrized family {k θ ; θ ∈ Θ}, where Θ ⊆ R q denotes a q-dimensional space of parameters. We can safely say that the most popular methods for estimating k from data are maximum likelihood and related techniques.

1

In this article we focus instead on cross-validation methods. Classical cross-validation methods for estimating k are based on the leave-one-out mean squared prediction error or PRESS [START_REF] Allen | The relationship between variable selection and data agumentation and a method for prediction[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimation of hyper-parameters of Gaussian processes with model misspecification[END_REF], and leave-one-out log predictive density (see, e.g., [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. These leave-one-out goodness-of-fit criteria can be computed using closed-form formulas [START_REF] Dubrule | Cross validation of kriging in a unique neighborhood[END_REF].

The contribution of this work is twofold. First, we suggest extending the range of classical cross-validation criteria available in the literature of Gaussian processes by using the broad variety of scoring rules (see [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF], for a survey), such as the continuous ranked probability score (CRPS). Second, we provide an efficient way for computing the gradient of any cross-validation criterion, which can then be used in gradient-based optimization algorithms. The only requirement is for the criterion to be differentiable in closed form with respect to leave-one-out posterior predictive means and variances. The new procedure has a O(n 3 + qn 2 ) complexity, against the O(qn 3 ) that was deemed "unavoidable" by [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF].

The article is organized as follows. Section 2 introduces scoring rules and how they can be used for estimating k. Section 3 presents the details of our contribution to the computation of gradients of a cross-validation criterion and Section 4 presents our conclusions and perspectives.

Scoring rules and cross-validation criteria

Let Z i = ξ(x i ) + ε i , 1 ≤ i ≤ n, be some observations of ξ, at points x i ∈ R d , where the ε i s are assumed independent and identically N (0, σ 2 ε )-distributed, with σ 2 ε ≥ 0. The classical framework of Gaussian process regression allows one to build a predictive distribution for an unobserved ξ(x) at x ∈ R d from the Z i s. Criteria for assessing the quality of probabilistic predictions have been studied in depth under the name of scoring rules in the seminal article of [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF]. A scoring rule for real variable prediction is a function S : P × R → [-∞, +∞], where P is a class of probability measures on (R, B(R)). For P ∈ P and z ∈ R, S(P, z) measures the goodness of prediction P for z.

Assume that we want to use a scoring rule S for estimating the parameters of a covariance function. [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF] suggest building a leave-one-out crossvalidation criterion L defined as

L(θ) = 1 n n i=1 S(P θ -i , Z i ), (1) 
where P θ -i is the conditional distribution of Z given the Z j s, for 1 ≤ j ≤ n, j = i. In our Gaussian process regression framework, it is well known that

P θ -i is a Gaus- sian distribution N (µ i , σ 2 i ). Let K = (k θ (x i , x j )) 1≤i
,j≤n be the covariance matrix of (ξ(x 1 ), . . . , ξ(x n )) T , then [START_REF] Dubrule | Cross validation of kriging in a unique neighborhood[END_REF][START_REF] Sundararajan | Predictive approaches for choosing hyperparameters in Gaussian processes[END_REF]Craven and 2 Wahba, 1979) show that

µ i = Z i - (BZ) i B i,i and σ 2 i = 1 B i,i , (2) 
where Craven and Wahba (1979, Lemma 3.1 and 3.2) show that (2) could be generalized to other types of linear predictors, beyond the particular Gaussian process regression framework considered in this article.

B = (K + σ 2 ε I) -1 and Z = (Z 1 , . . . , Z n ) T . Note that (2) still stands true if σ 2 ε = 0. Remark 1.
The mean squared prediction error and log-predictive density criteria mentioned in Section 1 correspond respectively to the scoring rules S 1 (P, z) = -(E Z∼P (Z)z)2 and S 2 (P, z) = log(f (z)), where f denotes the density of P with respect to some reference measure. A scoring rule is said strictly proper if E Z∼P (S(P, Z)) > E Z∼P (S(Q, Z)) for all P, Q ∈ P with P = Q. Strict propriety can be viewed as a sanity condition for performing estimation by maximizing (1). Note that S 1 is not strictly proper relative to the class of Gaussian measures whereas S 2 is. A large variety of scoring rules is surveyed by [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF]. We shall use the CRPS in Section 4 for illustration.

Efficient computation of the gradient of a leaveone-out criterion

In this section we present our contribution for computing the gradient ∇ θ L of (1). Let

1      Γ : θ ∈ R q → K ∈ R n 2 , ̺ : K ∈ R n 2 → (µ, σ 2 ) ∈ R 2n according to (2), ϕ : (µ, σ 2 ) ∈ R 2n → L ∈ R according to (1), (3) 
where

µ = (µ 1 , ..., µ n ) T and σ 2 = (σ 2 1 , ..., σ 2 n ) T , in such a way that L(θ) = (ϕ • ̺ • Γ) (θ)
. Write w = (µ, σ 2 ) for simplicity. Let J ϕ,w , J ̺,K and J Γ,θ be the 1 × 2n, 2n × n 2 , n 2 × q Jacobian matrices of ϕ, ̺ and Γ at w, K and θ respectively. Using the chain rule for derivation we have

∇ θ L T = J ϕ,w J ̺,K J Γ,θ .
(4) [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] propose an algorithm in O(qn 3 ) time for computing ∇ θ L from J Γ,θ . Suppose that these Jacobian matrices are already built and stored. Then, computing (4) by multiplying those matrices from the right to the left costs about 2n • n 2 • q + 1 • 2n•q = O(qn 3 ) additions and multiplications, corresponding to the complexity announced by [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. On the other hand, proceeding from the left to the right costs about 1 • 2n • n2 + 1 • n 2 • q = 2n 3 + qn 2 additions and multiplications. (This kind of consideration is a basic illustration of what has been studied in depth in the literature as the matrix chain multiplication problem for variable length products of matrices; see, e.g., Hu and Shing, 1982, and references therein.) Let us now investigate the price paid for building J ϕ,w and J ̺,K . First of all, the computation of B = (K + σ 2 ε I) -1 and then w = (µ, σ 2 ) from K can be performed in O(n 3 ) operations using (2). Moreover, knowing w, L and J ϕ,w can be computed in O(n) time. In addition, equations used by [START_REF] Sundararajan | Predictive approaches for choosing hyperparameters in Gaussian processes[END_REF] show that J ̺,K can be build from B in O(n 3 ) elementary operations. Thus, previous arguments show that it is indeed possible to compute L and ∇ θ L from J Γ,θ and K for O(n 3 + qn 2 ) elementary operations, thereby avoiding the O(qn 3 ) complexity mentioned by [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF].

Furthermore, available implementations (see, e.g., [START_REF] Bect | STK: a Small (Matlab/Octave) Toolbox for Kriging[END_REF] show that it is possible build K and J Γ,θ from θ in a O(qn 2 ) complexity for the case of an anisotropic stationary covariance with q = d + 1 parameters (one variance parameter and q length scales). We see then that our contribution allows us in this case to keep the evaluation of L and ∇ θ L from θ in O(n 3 + qn 2 ), rather than O(qn 3 ).

The main drawback of this scheme is the 2n × n 2 storage of J ̺,K . We propose to circumvent this cost by directly implementing the adjoint operators of the differentials of ̺:

L * ̺ : (K, δ w ) → J T ̺,K δ w . ( 5 
)
This can be used to compute L * ̺ (K, J T ϕ,w ) = J T ̺,K J T ϕ,w and then ∇ θ L from (4). This way of implementing chain rule derivatives is well known and has been studied under the name of reverse-mode differentiation 2 or backpropagation, and its paternity can be traced back at least to [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF].

We propose Algorithm 1 to implement this operator. This algorithm only requires O(n 2 ) storage capacity and about 2n 3 additions and multiplications, thus reducing the burden of storage, while maintaining the global O(n 3 + qn 2 ) complexity. (Note that 2n 3 already corresponds to the cost of matrix multiplication in a "direct" approach that would first build J ̺,K and then compute L * ̺ (K, δ w ) by matrix multiplication.)

Remark 2. The algorithm can easily be adapted, through a suitable modification of the matrix B used in Step 6, to any type of linear model for which (2) holds (see Remark 1).

Conclusion and perspectives

We suggested using the scoring rules referenced by [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF] for the estimation of the parameters of a Gaussian process by leave-one-out cross-validation. We also proposed an efficient procedure for computing gradients of cross-validation criteria that is more efficient than what was available in the literature to our knowledge.

Algorithm 1: Implementation of L * ̺ for computing δ K = J T ̺,K δ w , from K and δ w . Inputs at first step refer to what has already been computed for evaluating µ and σ 2 . For vectors a and b, a ⊘ b and a • b denote the Hadamard element-wise division and multiplication respectively.

Input:

K, Z, B = (K + σ 2 ε I) -1 , α = By, κ = (B i,i ) 1≤i≤n , κ -1 = 1 ⊘ κ, χ = α • κ -1 , δ w = (δ µ , δ σ 2 ) Output: δ K = J T ̺,K δ w 1 κ -2 = κ -1 • κ -1 2 δ χ = -δ µ 3 δ α = δ χ • κ -1 4 δ κ = -δ χ • α • κ -2 -δ σ 2 • κ -2 5 δ B = δ α Z T + diag(δ κ ) 6 δ K = -B T δ B B T
Further work will consist in investigating the properties of these estimators for several scoring rules. For instance, one can choose to use the continous rank probability score (CRPS) defined as CRPS(F, z) = -+∞ -∞ (F (u) -1 z≤u ) 2 du, where F is a cumulative distribution function. The CRPS is strictly proper relative to the class of Gaussian measures3 . An empirical comparison with maximum likelihood for estimating the length scales is presented in Figure 1. Our contribution for computing gradients makes it possible to maintain the same complexity, both in terms of storage and calculation, for the two methods. 

Figure 1 :

 1 Figure1: Scatterplots of the estimates of the two length scales of a Gaussian process on R 2 . Blue points correspond to CRPS-based cross-validation estimates; orange points correspond to maximum likelihood estimates. True length scales are represented by black lines. Each scatterplot consists of 500 estimations obtained from a space filing design of size n = 500. The criteria were optimized using a quasi-Newton type algorithm.

We identify the space of n × n matrices with R n

and (R n ) 2 with R 2n with a slight abuse of notation.

In the context of Gaussian process regression, a reverse-mode differentiation approach has been proposed by[START_REF] Toal | An adjoint for likelihood maximization[END_REF] for the computation of the likelihood function and its gradient.

and more generally with respect to the class of all probability measures with finite first order moment (see, e.g.Gneiting and Raftery, 2007, Section 

4.2)