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Abstract—To accelerate the time-consuming 3D back-
projection used by CT reconstruction algorithms, hard-
ware accelerators are needed. Since 2007, GPU is by
far the main one. In this article, we propose a pipeline
implementation of the 3D back-projection algorithm on
a high-end FPGA using Intel FPGA SDK for OpenCL
while presenting some optimization metrics for task par-
allelism. Compared to a non-optimized version on Arria
10, we achieved a speedup of 23 regarding execution
time, by applying these techniques correctly. We then
compared these results with a low-end FPGA, CPU, and
GPU in terms of execution time and energy efficiency.

Index Terms—Algorithm architecture co-design, Intel
FPGA SDK for OpenCL, hardware acceleration, FPGA,
Computed Tomography.

I. Introduction

PRogrammable Gate Arrays (FPGAs) is becoming
an attractive technology for High-Performance Com-

puting thanks to increasing floating-point computation
power and High-Level Synthesis (HLS) tools becoming
more and more mature. These tools allow developers to
generate a hardware implementation on FPGAs using
software programming languages like C, C++, or OpenCL.
One of the promises of those tools is to make FPGA
development accessible by software engineers. Like GPUs
or multi-core CPUs, FPGAs are often considered and
included in heterogeneous systems, to speed up time-
consuming applications. One main advantage is also to be
more energy-efficient compared to GPUs and CPUs.

Some recent work focused on explorations of HLS tools
efficiency includes [1], [2], [3] for Intel OpenCL SDK, or
[4], [5] for Xilinx Vivado HLS. In particular, [6] presented
an OpenCL implementation that was better than a Ver-
ilog/VHDL design in terms of frequency, latency, and
resource utilization. The authors of [7] proposed a novel
method that separates memory access from computation
for OpenCL kernels based on a Low-Level Virtual Machine
(LLVM) compiler. The authors of [8] use OpenMP to
generate OpenCL code from a higher abstraction level,
which is then synthesized by OpenCL SDK for bitstream
generation. These works underline the interest for FPGAs
in the High-Performance Computing (HPC) field.

In the past years, FPGAs for Computed Tomography
(CT) were configured with Hardware Description Lan-
guage (HDL) [9], [10], [11], [12], where the goal was to
model a pipeline (from the algorithm) and perform a voxel

update at every clock cycle. The main concern of the HDL
implementation is the very long development time, even
though the results were significant in terms of execution
time. More recently, new approaches based on HLS tools
for FPGAs were developed, to obtain better reconstruction
times and energy efficiency while accelerating development
time. One such work proposed a hardware acceleration
based-FPGA of the Maximum Likelihood Expectation
Maximization (MLEM) algorithm [4] and achieved a sig-
nificant acceleration in execution time compared to an
optimized CPU multi-core version.

FPGAs are reconfigurable, and this allows programmers
to have a better algorithm architecture adequacy, by lever-
aging data or task parallelism. Furthermore, tools included
in the Intel FPGA SDK for OpenCL enable a developer to
implement a wide range of optimizations quickly but give
less control compared to the traditional HDL approach.

In this paper, we propose a pipeline implementation
of the 3D back-projection algorithm based on the Reflex
Attila Arria 10 device, using Intel FPGA SDK for OpenCL
18.1. From a first implementation of this CT algorithm
on a low-end DE1-SoC board [1], we show in this paper,
the benefits of using a higher-end FPGA and explore new
optimization possibilities based on task parallelism.

The remainder of this paper is organized as follows:
in Section II, we present the back-projection algorithm.
Section III introduces some OpenCL metrics relevant to
pipeline parallelism, and Section IV details different opti-
mization techniques. The results are discussed in section
V, and we conclude this work.

II. 3D computed tomography reconstruction

3D tomography used in medical imaging or non-
destructive testing (NDT) aims to acquire the internal
structure of 3D objects from external measurements. As
illustrated in Fig. 1, an X-ray source and an array of
detectors are rotating around the object (3D volume). The
radiation emitted from the source is attenuated depending
on the object’s local density. A sinogram is created by
stacking all of the measured attenuations from the detec-
tors acquired at different angles.

The 3D back-projection described in detail in [9] algo-
rithm is given by

d(c) =
∫
SCT (u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ



Fig. 1: 3D Computed Tomography

Where (u, v) are the cone bean coordinates, ϕ is the
angular trajectory of the detector and w is the distance
weight.

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z

As the distribution of the sensor is discrete, the integral
transforms in a sum for all ϕ values. This algorithm is
particularly suited for SIMD cores, because this sum has
to be computed for every voxel of the object, and is best
executed on massively parallel architectures. However, one
way to accelerate our algorithm is to make use of coalesced
memory access patterns, also referred to as memory coa-
lescing. Many times, memory objects are retrieved in large
blocks and cached in smaller but faster caches.

III. OpenCL metrics for pipeline

characterization

For a given program, instead of having to transform the
source code into instructions that depend on the target
processor, High-level tools will create an architecture
made of elementary blocks for each algorithm. Figure 2
represents a computation architecture that corresponds
to the calculation of u and v coordinates for the 3D back-
projector. All data goes through the pipeline, and we can
see that a new iteration starts every two clock cycles with
a pipeline depth of 5 due to data dependency. The overall
efficiency of this generated hardware is only 50% in theory.

Three main metrics characterize a pipeline. First, the
Initiation Interval (II) represents the number of clock
cycles between the launch of consecutive loop iterations.
It means that one loop iteration is launched every II
hardware clock cycles. The ideal II value is 1, and the
offline compiler attempts to achieve that value for a given
loop whenever possible, and it is achieved when depen-
dency is absent or handled in one cycle. In most cases,
internal iteration dependencies causes poor II value and it
can be fixed with some optimization techniques, like shift
register pattern. Secondly, the Pipeline depth (P) is the
number of cycles required by one data to pass through the

Fig. 2: Pipeline fragmentation of a function on FPGA

entire calculation pipeline, i.e. the number of stages of the
pipeline. For a given amount of iterations n, the global
cycle number of a pipeline can be computed with those
two metrics: cycles = P + II(n − 1). By adding a third
metric, the operating frequency (F), it is possible to
compute the execution time of a pipeline, as given here:
T = P +II(n−1)

F .
Optimizing an OpenCL implementation is finding a

balance between those three metrics.

IV. Pipeline parallelism

OpenCL on FPGA supports data-parallel (NDRange)
as well as task parallel (Single Work Item) programming
models, and this makes FPGAs useful for a wide range of
applications.

NDRange kernel is the GPU-like data-parallel com-
puting model on FPGAs using OpenCL, which aims to
perform the same set of instructions on multiple ele-
ments of a memory object. Each instance of execution is
called work-item, which are grouped in work-group. In [1]
we performed an NDRange implementation of 3D back-
projection and presented the OpenCL memory architec-
ture as well as the impact of their utilization.

Fig. 3: Back-projection algorithm pipeline architecture

As Intel FPGA SDK for OpenCL allows both data
and task (pipeline) parallelism, the choice of a type of
parallelism, based on the application, requires adequate
knowledge of both the application specificity and the
tools. In our case, since FPGA resources do not allow
massive data parallelism, we chose the pipeline parallelism
approach to implement the 3D back-projection algorithm.
Even before HLS tools, FPGAs were well known for their
deep and efficient pipeline execution pattern, resulting in
good performances and low latency. For instance, in com-
puted tomography, a highly efficient hardware architecture
for forward projection in Computed Tomography based
on Xilinx Virtex-5 FPGA was proposed in [12] using a
floating-point to fixed-point conversion and a two-level



memory, for separable-footprint (SF) forward-projector.
Some OpenCL optimization techniques were presented
in previous work [1], such as memory architecture and
memory pre-fetching, as well as the difference between
NDRange kernel and Single Work Item (SWI) kernel.
Here, we will present other SWI optimizations based. The
3D back-projector is divided into several pipeline stages
as shown in Fig. 3, which correspond to the crucial steps
of the algorithm, this function level pipelining and each
block can be split at loop level.

Fig. 4: Loop unroll versus loop pipeline

A. Loop pipelining

In SWI design, the offline compiler automatically tries
to pipeline all the loops in the kernel. The idea is to split
the body of the loop in a succession of micro-operations
that can execute concurrently. The advantage is that
the pipelined loop can launch a new iteration at every
clock cycle by using the same hardware resources as the
traditional sequential one but with better performances.

On FPGAs, the loop pipeline is the best solution in
terms of resources and performance ratio. However, an
efficient pipeline must not stall which means it has to
perform an ideal initiation interval.

In certain rare cases, achieving an II value of 1 might
lower the kernel maximum operating frequency, therefore
lead to poor performances; for such a loop, it is more
convenient to use the ii pragma to fix the II value that
performs the best frequency. It is also possible to fix
the maximum operating frequency by using the Fmax

attribute or by including it in the aoc command at compile
time. However, if the offline compiler cannot meet all the
constraint bitstream generation will be impossible.

B. Loop unrolling

Another loop optimization is the unrolling, which con-
sists of replicating, with a configurable factor, the body
of the loop. Unlike pipelining, unrolling also replicates
hardware resources, which by the way, maximize memory
bandwidth utilization i.e maximally unrolling the most
nested loop increases the amount of memory access per
iteration; this is because the unrolled loop is closest to
the computation. A loop can be fully or partially unrolled
depending on the available logic element or the size of
the cache memory (if applicable), the cache misses will

increase if it cannot deliver all the data needed for com-
putation.

V. Results and discussion

We used for this work the FPGA Attila Arria 10 device,
which offers 8 GB of DDR4 memory and a maximum
FPGA frequency of 405 MHz. The FPGA was in PCIe
connection with the host system. The considered volume
is a 2563 voxel, with 256 angles variations. Each kernel
execution is monitored through the Intel FPGA dynamic
Profiler for OpenCL. For each kernel, this tool provides,
amongst other things, the operating frequency, the execu-
tion time, the logic utilization, and the latency, bandwidth,
and stall of most memory access. The coefficient α and
β are stored in the local memory due to their size and
their frequent solicitation for each detector coordinates
calculation.

In SWI kernel, the loops are pipelined automatically;
the challenge is to feed the loop in the most efficient way,
which brings us back to the loop unrolling. For a nested
loop algorithm, which loop to unroll and which unrolling
factor have to be chosen. One way to get to achieve the
finest granularity possible is first to unroll the most nested
loop and gradually consider the rest of the loops as long as
the hardware resources allow. Based on this, in our case,
the loop to be unrolled is the ϕ. This unrolling does not
mean that several voxels are updated by clock cycle but
allows the accumulation of the sensor contributions to be
accelerated according to the projection angles.

Board HLS Logic (%) Freq.(Mhz) time(s)
Arria 10 SWI ϕ unroll 1 24 196.97 124.82
Arria 10 SWI ϕ unroll 16 50 170.45 19.09
Arria 10 SWI ϕ unroll 32 62 150 5.34
Arria 10 SWI ϕ unroll 40 80 134.94 68.63
Arria 10 NDRange 86 168.23 28
DE1-Soc SWI 36 63.6 67.5
DE1-Soc NDRange 96 140 16.9

TABLE I: Performances comparison between FPGAs Ar-
ria 10 (764k LUTs) and DE1-SoC (118k LUTs)

However, our first implementation on Arria, in table
I, is the CPU-like version FPGA-friendly implemented
to get an efficient pipeline with ideal II value, and the
unroll1 forces the compiler not to unroll the loop. The
offline compiler achieves for this version an operating
frequency of 196,97 Mhz with an execution time of 124,82
s. This is the result of under-utilization (only 24% of
hardware resources In table I) of available resources on
Arria 10 device. Therefore it does not take full advantage
of the parallelism potential. Exceeding this frequency by
applying the optimizations based on SWI, will be almost
impossible as the depth of the pipeline will be variable
according to the number of replication.

By replicating 16 times (unroll 16), we double the num-
ber of resources and get a 6.5 fold acceleration compared
to the first version. We notice that the offline compiler
sacrificed Fmax to achieve the II value of 1. The best
execution time was obtained by a replication factor of 32



with 80% logic utilization at 150Mhz. This version is the
most optimal and takes advantage of the automatic cache
mechanism. Having the same features of this version with a
larger frequency, using Fmax attribute, was not possible for
the offline compiler. It increased the number of constraints
at the place and route time.

For this algorithm on Arria 10 device, the maximum
possible replication factor is 40. Once greater than 40 we
exceed 100% of the device capabilities. This version is sub-
optimal not only because of the low frequency, but because
the number of iterations is not divisible by 40. There will
be an epilogue to handle, which will substantially increase
the depth of the pipeline and lead to poor performances.
It is imperative, as far as possible, to know the number
of iterations of a given loop at compile time to have a
bitstream that best fit the algorithm.

Algorithm 1 Kernel back-projector OpenCL

for all zn, yn, xn do
voxelsum ← 0
#pragma unroll factor
for all ϕ do
Compute(un, vn)
voxelsum+ = sinogram[un, vn, ϕ]

end for
volume[xn, yn, zn] = voxelsum

end for

A. FPGAs Arria 10 vs DE1-SoC
By comparing results shown in Table I with those

obtained previously in [1], we observe that DE1-SoC SWI
implementations were limited by its logical resources, as
the tool was unable to generate an efficient pipeline kernel.
Arria 10 implementations deliver better performance than
both SWI and NDRange versions on DE1-SoC with 12.6
and 3.1 speedup respectively. It should be noted that
interpolation was replaced by the nearest neighbor method
on the DE1-SoC and the Arria 10 because it required
more resources and computation. Besides, on DE1-SoC
device the accumulation of a variable cost six clock cycle
instead of one cycle for Arria 10. In terms of efficiency, the
DE1-SoC is more efficient than the Arria 10 device when
considering the number of logic elements.

B. FPGA, CPU, GPU
The GPUs are far ahead regarding performance (Table

II), mostly thanks to their high core count and frequency,
which makes them more suited for massive data-parallel
computing. However, FPGA implementation provides bet-
ter execution time than an optimized multi-core CPU
version despite its low operating frequency. Overall, GPUs
still consume less energy than FPGAs despite requiring
more instantaneous power.

VI. Conclusions

In this work, we presented a pipeline implementation of
a 3D back-projector on an Intel FPGA Arria 10. FPGA

Device Power(W) Energy(mWh) Execution time(s)
CPU E5-2667 47 862 66
Titan X Pascal 237 0,92 0.014
Jetson TX2 12,9 0,91 0,253
Arria 10 9,9 14,65 5,34

TABLE II

achieved better performance than CPU, but it does not
perform as well as the optimized versions on GPUs. Con-
sidering the specifics of the FPGAs and metrics presented,
the offline compiler can generate a pipeline architecture
similar, however less effective, to those generated through
HDL languages.

In SWI implementation, parallelism is to be extracted
in the body of the function, and optimizations must be
FPGA-centric to take full advantage of this architecture.
The FPGA leading manufacturers recommend this ap-
proach, but if the application does not match this type
of parallelism, it is a good idea to favor data parallelism.
Tomography algorithms are better suited for massive data
computing, which explains why GPUs are currently fa-
vored in this field.

To stand up to GPUs in tomography, FPGAs need to
improve their ability to express data parallelism better,
like having adapted memory buses or more DSP.

We would like to thank Daniel Charlet from the LAL
(Orsay, France) for granting us access to an Arria 10 board.
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