
HAL Id: hal-02500994
https://centralesupelec.hal.science/hal-02500994v1

Submitted on 6 Mar 2020 (v1), last revised 8 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An OpenCL pipeline implementation on Intel FPGA for
3D backprojection

Daouda Diakite, Maxime Martelli, Nicolas Gac

To cite this version:
Daouda Diakite, Maxime Martelli, Nicolas Gac. An OpenCL pipeline implementation on Intel FPGA
for 3D backprojection. 6th International Conference on Image Formation in X-Ray Computed To-
mography, Aug 2020, Regensburg, Germany. �hal-02500994v1�

https://centralesupelec.hal.science/hal-02500994v1
https://hal.archives-ouvertes.fr


1

An OpenCL pipeline implementation on Intel
FPGA for 3D backprojection

Daouda Diakite1, Maxime Martelli1,2, and Nicolas Gac1

1 Université Paris-Saclay, CNRS, CentraleSupélec, L2S, 91190, Gif-sur-Yvette, France.
2 Thales DMS, Elancourt, France.

Abstract—3D back-projector computation is a time-
consuming task, and hardware accelerators are used in
order to speedup this algorithm. We propose a pipeline
implementation of the 3D back-projection algorithm on
a high-end FPGA using Intel FPGA SDK for OpenCL
while presenting some optimization metrics for task par-
allelism. Compared to a non-optimized version on Arria
10, we achieved a speedup of 23 regarding execution
time, by applying these techniques properly. We then
compared these results with a low-end FPGA, CPU and
GPU in terms of execution time and energy efficiency.

Index Terms—Algorithm architecture co-design, Intel
FPGA SDK for OpenCL, hardware acceleration, FPGA,
Computed Tomography.

I. Introduction

RECENT improvements of Field Programmable Gate
Arrays (FPGAs) are increasingly attracting interest

in the field of High Performance Computing. This is in part
due to the multiplication of floating point computing units
inside those architectures (DSP) and the improvement of
High-Level Synthesis (HLS) tools which allow developers
to generate a hardware implementation on FPGAs using
software programming languages like C, C++ or OpenCL.
One of the promises of those tools is to make FPGA
development accessible by software engineers. Like GPUs
or multi-core CPUs, FPGAs are the often considered and
included in heterogeneous systems, in order to speed up
time-consuming applications. One main advantage is to
also be more energy efficient compared to GPUs and
CPUs.

Some recent work focused on exploration of HLS tools
efficiency includes [1], [2], [3] for Intel OpenCL SDK, or
[4], [5] for Xilinx Vivado HLS. In particular, [6] presented
an OpenCL implementation that was better than a Ver-
ilog/VHDL design in terms of frequency, latency, and
resource utilization. The authors of [7] proposed a novel
method which separates memory access from computation
for OpenCL kernels based on a Low-Level Virtual Machine
(LLVM) compiler. The authors of [8] use OpenMP to
generate OpenCL code from a higher abstraction level,
which is then synthesized by OpenCL SDK for bitstream
generation. These works underline the interest for FPGAs
in the High Performance Computing (HPC) field.

In the past years, FPGAs for Computed Tomography
(CT) were configured with Hardware Description Lan-
guage (HDL) [9], [10], [11], where the goal was to model

a pipeline (from the algorithm) and perform a voxel
update at every clock cycle. The main concern of the HDL
implementation is the very long development time. More
recently, new approaches based on HLS tools for FPGAs
where developed, to obtain better reconstruction times
and energy efficiency while accelerating development time.
One such work proposed a hardware acceleration based-
FPGA of the Maximum Likelihood Expectation Maxi-
mization (MLEM) algorithm [4] and achieved a significant
acceleration in execution time compared to an optimised
CPU multi-core version.

FPGAs are re-configurable, and this allows program-
mers to have a better algorithm architecture adequacy,
by leveraging data or task parallelism. Furthermore, tools
included in the Intel FPGA SDK for OpenCL allow a
developer to implement a wide range of optimizations
quickly, but give less control compared to the traditional
HDL approach.

In this paper we propose a pipeline implementation
of the 3D back-projection algorithm based on the Reflex
Attila Arria 10 device, using Intel FPGA SDK for OpenCL
18.1. From a first implementation of this CT algorithm
on a low-end DE1-SoC board [1], we show in this paper
the benefits of using a higher-end FPGA and explore new
optimization possibilities based on task parallelism.

The remainder of this paper is organized as follows:
in Section II, we present the back-projection algorithm.
Section III introduces some OpenCL metrics relevant to
pipeline parallelism and Section IV details different opti-
mization techniques. The results are discussed in section
V and we conclude this work.

II. 3D computed tomography reconstruction

3D tomography used in medical imaging or non-
destructive testing (NDT) aims to acquire the internal
structure of 3D objects from external measurements. An
object (3D volume) is placed between an X-ray source and
an array of detectors as illustrated in Fig. 1. Detectors
and the source rotate around the object and the radiation
emitted from the source is attenuated depending on the
object local density. A sinogram is created by stacking all
of the measured attenuation from the detectors acquired
at different angles.



2

Fig. 1: 3D Computed Tomography

The 3D back-projection described in detail in [9] algo-
rithm is given by

d(c) =
∫
SCT (u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ

Where (u, v) are the cone bean coordinates, ϕ is the
angular trajectory of the detector and w is the distance
weight.

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z

As the sensors distribution is discrete, the integral
transforms in a sum for all ϕ values. This algorithm is
particularly suited for SIMD cores, because this sum has
to be computed for every voxel of the object, and is best
executed on massively parallel architectures. However, one
way to accelerate our algorithm is to make use of coalesced
memory access patterns, also referred to as memory coa-
lescing. Many times, memory objects are retrieved in large
blocks, and cached in smaller but faster caches.

III. OpenCL metrics for pipeline

characterization

For a given program, instead of having to transform the
source code into instructions that depends on the target
processor, High-level tools will create an architecture
made of elementary blocks for each algorithm. Figure 2
represents a computation architecture which corresponds
to the calculation of the u and v coordinates for the 3D
back-projector. All data goes through the pipeline and we
can see that a new iteration starts every two clock cycles
with a pipeline depth of 5 due to data dependency. The
overall efficiency of this generated hardware is of only
50% in theory.

Three main metrics characterize a pipeline. First, the
Initiation Interval (II) represents the number of clock
cycles between the launch of consecutive loop iterations.
This means that one loop iteration is launched every II
hardware clock cycles. The ideal II value is 1, and the
offline compiler attempts to achieve that value for a given

Fig. 2: Pipeline fragmentation of a function on FPGA

loop whenever possible and it is achieved when there are no
dependency or if the dependency is handled in one cycle.
In most cases, internal iteration dependencies causes poor
II value and it can be fixed with some optimization tech-
niques, like shift register pattern. Secondly, the Pipeline
depth (P) is the number of cycles required by a data to
pass through the entire calculation pipeline i.e. the number
of stages of the pipeline. For a given number of iterations
n, the global cycle number of a pipeline can be computed
with those two metrics : cycles = P + II(n − 1). By
adding a third metric, the operating frequency (F), it
is possible to compute the execution time of a pipeline, as
given here : T = P +II(n−1)

F .
Optimizing an OpenCL implementation is finding a

balance between those three metrics.

IV. Pipeline parallelism

OpenCL on FPGA supports data parallel (NDRange)
as well as task parallel (Single Work Item) programming
models and this makes FPGAs useful for a wide range of
applications.

NDRange kernel is the GPU-like data parallel comput-
ing model on FPGAs using OpenCL which aims to per-
form the same set of instructions on multiple elements of a
memory object. Each instance of execution is called work-
item which are grouped in work-group. In [1] we performed
an NDRange implementation of 3D back-projection and
presented the OpenCL memory architecture as well as the
impact of their utilization.

Fig. 3: Back-projection algorithm pipeline architecture

As Intel FPGA SDK for OpenCL allows both data
and task (pipeline) parallelism, the choice of a type of
parallelism, based on the application, requires an adequate
knowledge of both the application specificity and the
tools. In our case, since FPGA resources do not allow a
massive data parallelism, we chose the pipeline parallelism
approach to implement the 3D back-projection algorithm.
Even before HLS tools, FPGAs were well known for their



3

deep and efficient pipeline execution pattern, resulting in
good performances and low latency. For instance in com-
puted tomography, a highly efficient hardware architecture
for forward projection in Computed Tomography based
on Xilinx Virtex-5 FPGA was proposed in [11] using a
floating-point to fixed-point conversion and a two level
memory, for separable-footprint (SF) forward-projector.
Some OpenCL optimization techniques were presented
in previous work [1], such as memory architecture and
memory pre-fetching, as well as the difference between
NDRange kernel and Single Work Item (SWI) kernel.
Here, we will present other SWI optimizations based. The
3D back-projector is divided in several pipeline stages as
shown in Fig. 3, which correspond to the crucial steps of
the algorithm, this function level pipelining and each block
can be split at loop level.

Fig. 4: Loop unroll vs loop pipeline

A. Loop pipelining

In SWI design, the offline compiler automatically tries
to pipeline all the loops in the kernel. The idea is to split
the body of the loop in a succession of micro-operations
which can execute concurrently. The advantage is that
the pipelined loop can launch a new iteration at every
clock cycle by using the same hardware resources as the
traditional sequential one but with better performances.

On FPGAs, the loop pipeline is the best solution in
terms of resources and performances ratio. However an
efficient pipeline must not stall which means it has to
perform an ideal initiation interval.

In certain rare cases, achieving an II value of 1 might
lower the kernel maximum operating frequency therefore
lead to poor performances, for such a loop it is more
convenient to use the ii pragma to fix the II value that
performs the best frequency. It is also possible to fix
the maximum operating frequency by using the Fmax

attribute or by including it in the aoc command at compile
time. However, if the offline compiler cannot meet all the
constraint bitstream generation will be impossible.

B. Loop unrolling

Another loop optimization is the unrolling, which con-
sists of replicating, with a configurable factor, the body
of the loop. Unlike pipelining, unrolling replicates also
hardware resources which by the way maximize memory

bandwidth utilization i.e maximally unrolling the most
nested loop increases the amount of memory access per
iteration, this is because the unrolled loop is closest to
the computation. A loop can be fully or partially unrolled
depending on the available logic element or the size of
the cache memory (if applicable), the cache misses will
increase if it cannot deliver all the data needed for com-
putation.

V. Results and discussion

We used for this work the FPGA Attila Arria 10 device
coming with 8 GB of DDR4 memory, with a maximum
FPGA frequency of 405 MHz. The FPGA was in PCIe
connection with the host system. The considered volume
is a 2563 voxel, with 256 angles variations. Each kernel
execution is monitored through the Intel FPGA dynamic
Profiler for OpenCL. For each kernel, this tool provides
amongst other things the operating frequency, the execu-
tion time, the logic utilization, and the latency, bandwidth
and stall of most memory access. The coefficient α and
β are stored in the local memory due to their size and
their frequent solicitation for each detector coordinates
calculation.

In SWI kernel the loops being pipelined automatically
the challenge is to feed the loop in the most efficient way,
which brings us back to the loop unrolling. One of the
problems in the case of a nested loop algorithm is the
choice of the loop to be unrolled and the unrolling factor.
One way to get to achieve the finest granularity possible is
to first unroll the most nested loop and gradually consider
the rest of the loops as long as the hardware resources
allow. Based on this, in our case, the loop to be unrolled
is the ϕ. This unrolling does not mean that several voxels
are updated by clock cycle, but allows the accumulation
of the sensor contributions to be accelerated according to
the projection angles.

Board HLS Logic (%) Freq.(Mhz) time(s)
Arria 10 SWI ϕ unroll 1 24 196.97 124.82
Arria 10 SWI ϕ unroll 16 50 170.45 19.09
Arria 10 SWI ϕ unroll 32 62 150 5.34
Arria 10 SWI ϕ unroll 40 80 134.94 68.63
Arria 10 NDRange 86 168.23 28
DE1-Soc SWI 36 63.6 67.5
DE1-Soc NDRange 96 140 16.9

TABLE I: Performances comparaison between FPGAs
Arria 10 (764k LUTs) and DE1-SoC (118k LUTs)

However, our first implementation, in table I, is the
CPU-like version FPGA-friendly implemented to get an
efficient pipeline with ideal II value and the unroll1 forces
the compiler to not unroll the loop. The offline compiler
achieves for this version an operating frequency of 196,97
Mhz with an execution time of 124,82 s. This is the result
of under-utilization (only 24% of hardware resources In
table I) of available resources on Arria 10 device and
therefore it doesn’t take full advantage of the parallelism
potential. Exceeding this frequency by applying the op-
timizations, based on SWI, will be almost impossible as



4

the depth of the pipeline will be variable according to the
number of replication.

By replicating 16 times (unroll 16), we double the num-
ber of resources and get a 6.5 fold acceleration compared
to the first version. We notice that the offline compiler
sacrificed Fmax to achieve the II value of 1. The best
execution time was obtained by a replication factor of
32 with 80% logic utilization at 150Mhz, this version is
the most optimal and takes advantage of automatic cache
mechanism. Having the same features of this version with a
larger frequency, using Fmax attribute, was not possible for
the offline compiler, it increased the number of constraints
at the place and route time.

For this algorithm on Arria 10 device, the maximum
possible replication factor is 40, once greater than 40 we
exceed 100% of the device capabilities. This version is sub-
optimal not only because of the low frequency but because
the number of iterations is not divisible by 40. There will
be an epilogue to handle which will substantially increase
the depth of the pipeline and lead to poor performances.
It is imperative, as far as possible, to know the number of
iterations of a loop at compile time to have a bitstream
that best fit the algorithm.

Algorithm 1 Kernel back-projector OpenCL

for all zn, yn, xn do
voxelsum ← 0
#pragma unroll factor
for all ϕ do
Compute(un, vn)
voxelsum+ = sinogram[un, vn, ϕ]

end for
volume[xn, yn, zn] = voxelsum

end for

A. FPGAs Arria 10 vs DE1-SoC

By comparing results shown in Table I with those
obtained previously in [1], we observe that DE1-SoC SWI
implementations were limited by its logical resources, as
the tool was unable to generate an efficient pipeline ker-
nel. Arria 10 implementations delivers better performance
than both SWI and NDRange versions on DE1-SoC with
12.6 and 3.1 speedup respectively. It should be noted that
interpolation was replaced by the nearest neighbor method
on the DE1-SoC and the Arria 10 because it required more
resources and computation. Besides, on DE1-SoC device
the accumulation of a variable cost 6 clock cycle instead of
one cycle for Arria 10. In terms of efficiency, the DE1-SoC
is more efficient than the Arria 10 device when considering
the number of logic elements.

B. FPGA, CPU, GPU

The GPUs are far ahead regarding performance (Table
II) mostly thanks to their high core count and frequency,
which makes them more suited for massive data paral-
lel computing. However, FPGA implementation provides

better execution time than an optimized multi-core CPU
version despite its low operating frequency. Overall, GPUs
still consume less energy than FPGAs despite requiring
more instantaneous power.

Device Power(W) Energy(mWh) Execution time(s)
CPU E5-2667 47 862 66
Titan X Pascal 237 0,92 0.014
Jetson TX2 12,9 0,91 0,253
Arria 10 9,9 14,65 5,34

TABLE II

VI. Conclusions

In this work, we presented a pipeline implementation
of a 3D back-projector on an Intel FPGA Arria 10.
FPGA achieved better performance than CPU but it
does not perform as well as the optimized versions on
GPUs. Considering the specifics of the FPGAs and metrics
presented, it is possible for the offline compiler to generate
a pipeline architecture similar, however less effective, to
those generated through HDL languages.

In SWI implementation, parallelism is to be extracted
in the body of the function and optimizations must be
FPGA-centric to take full advantage of this architecture.
This approach is recommended by the FPGA main man-
ufacturers but if the application does not match this type
of parallelism, it is a good idea to favor data parallelism.
Tomography algorithms are better suited for massive data
computing, which explains why GPUs are currently fa-
vored in this field.

To stand up to GPUs in tomography, FPGAs need to
improve their ability to express data parallelism better like
having adapted memory buses or more DSP.

We would like to thank Daniel Charlet from the LAL
(Orsay, France) for granting us access to an Arria 10 board.

[1] M. Martelli et al., “3D Tomography back-projection parallelization
on Intel FPGAs using OpenCL,” Journal of Signal Processing
Systems, 2018. https://hal.archives-ouvertes.fr/hal-01831884

[2] A. A. Purkayastha et al., “Exploring the efficiency of OpenCL pipe
for hiding memory latency on cloud FPGAs,” in IEEE HPEC, 2019.

[3] S. Hc et al., “FPGA accelerated PET image reconstruction,” Engi-
neering and Technology, 2019.

[4] M. Ravi et al., “FPGA as a hardware accelerator for computation
intensive mlem medical image reconstruction,” IEEE Access, 2019.

[5] F. Siddiqui et al., “FPGA-based processor acceleration for image
processing applications,” Journal of Imaging, 2019.

[6] M. A. Mansoori et al., “Efficient FPGA implementation of PCA
algorithm for large data using hls,” in PRIME Conference, 2019.

[7] A. A. Purkayastha et al., “LLVM-based automation of memory
decoupling for OpenCL applications on FPGAs,” MICPRO, 2019.

[8] M. Knaust et al., “OpenMP to FPGA offloading prototype using
OpenCL SDK,” in IEEE IPDPS, 2019.

[9] N. Gac et al., “High Speed 3D Tomography on CPU, GPU, and
FPGA,” EURASIP Emb Sys, 2008.

[10] M. Leeser et al., “Parallel-beam backprojection: an FPGA imple-
mentation optimized for medical imaging,” ACM/SIGDA, 2002.

[11] J. K. Kim et al., “Forward-Projection Architecture for Fast Iterative
Image Reconstruction in CT,” IEEE Trans Sign Process, 2012.


