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Abstract 18 

As well known, Particulate matter (PM) is an air pollutant that causes damage to the 19 
health of humans, other animals, plants, affects the climate and is a potential cause of 20 
annoyance through deposition on various surfaces. The perceived annoyance caused by 21 
particulate matter is related mainly to the increase of settled dust in urban and residential 22 
environments. PM can originate from many sources, i.e., paved and unpaved roads, 23 
buildings, agricultural operations and wind erosion represent the largest contributions 24 
beyond the relatively minor vehicular and industrial sources emissions. The aim of this 25 
paper is to quantify the relationship between perceived annoyance and particulate matter 26 
concentration and to estimate the relative risk (RR). The data was collected in the 27 
Metropolitan Region of Vitoria (MRV), Brazil. For this purpose, the variables of interest 28 
were modelled using vector time series model (VAR), principal component analysis 29 
(PCA), and logistic regression (LOG). The combination of these techniques resulted in a 30 
hybrid model denoted as LOG-PCA-VAR which allows to estimate RR by handling 31 
multipollutant effects. This study shows that there is a strong association between the 32 
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perceived annoyance and different sizes of PM. The estimates of RR indicate that an 33 
increase in air pollutant concentrations significantly contributes in increasing the 34 
probability of being annoyed. 35 

 36 

Key words: Annoyance, principal component analysis, logistic regression, relative risk. 37 

 38 

1- Introduction 39 

Particulate matter, such as dust, dirt, soot, and smoke, are environmental stressors that 40 
can cause annoyance, disturbance, stress and impairs well-being (Colls, 2002; Cox, 2000; 41 
Dockery and Pope, 1994; Farfel et al., 2005). According to Nordin and Lidén (2006), 42 
perceived annoyance can be considered as a community problem even if only a small 43 
proportion of the population is annoyed on sparse occasions. The World Health 44 
Organization (WHO, 1946) defines health as a state of complete physical, mental and 45 
social well-being and not merely the absence of disease.  46 
 47 
PM is formed by particles with different composition, form and sizes: ultrafine particles 48 
(PM0.1) whose effects on human health are still poorly studied, fine particles (PM2.5) that 49 
are housed in the terminal bronchiole, inhalable particles (PM10) that penetrate the 50 
respiratory system, total suspended particles (TSP) which are represented by all particles 51 
suspended in the atmosphere (size range from 0.005μm to 100μm), and the sediment 52 
particles matter (SPM) that result from the sedimentation or deposition of particles 53 
previously suspended in the atmosphere, with different sizes and origin, that accumulate 54 
on the surfaces and cause annoyance (Holgate et al., 1999). 55 
 56 
The association between air pollutants and perceived annoyance is the subject of interest 57 
in several studies.  Most of them, have considered regression models to quantify this 58 
relationship, for example, in the cases of odours (Blanes-Vidal, 2012), gases (Klaeboe et 59 
al., 2000; Oglesby et al. (2000a), and particles (Klaeboe et al., 2003; Rotko et al. 2002; 60 
Jacquemin et al., 2007; Llop et al., 2008; Klaeboe, 2008; Amundsen et al. 2008; 61 
Nikolopoulou et al., 2011).  62 

 63 
Klaeboe et al. (2000) have considered logistic regression to correlate NO2 concentration 64 
and degrees of annoyance due to traffic, and they have found that people are more likely 65 
to be annoyed when they are exposed to high air pollution levels. Oglesby et al. (2000) 66 
have applied a linear regression model to correlate annoyance and concentration levels of 67 
NO2 and PM10, and they have found significant correlations between these variables. 68 
Rotko et al. (2002) have compared exposures to PM2.5 and NO2 concentrations and 69 
perceived annoyance using a linear regression model, and they have observed a high 70 
correlation between personal 48h-PM2.5 and 48h-NO2 concentrations exposure and 71 
perceived annoyance at home. Jacquemin et al. (2007) have applied a linear regression, 72 
and they have found a strong positive correlation between the PM2.5 concentration and 73 
perceived annoyance reported by people. Amundsen et al. (2008) have quantified 74 
exposure–response relationships between perceived annoyance and PM10, PM2.5 and NO2 75 
concentrations, and they have observed a significant correlation between these variables. 76 
Nikolopoulou et al. (2011) have used a logistic regression model to correlate air quality 77 
perception of pedestrians and PM1-10 concentration measured on sidewalks close to 78 
streets, and they have found a positive correlation in this study. 79 
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 80 
Note that, the above-mentioned studies have applied simple linear regression and logistic 81 
regression but have not considered a synergistic effect among pollutants and perceived 82 
annoyance. As pointed out by Vanhatalo et al. (2016), Souza et al. (2018) among others, 83 
this analysis becomes very restrictive and may lead to biased regression estimates because 84 
air pollutants covariates are physically and statistically correlated phenomena. In 85 
addition, to estimate any multiple regression model without considering the multi-86 
collinearity, the parameter estimates may lead to a spurious model. One way to mitigate 87 
the multi-collinearity problem is to apply principal component analysis (PCA). However, 88 
as pointed out by Zamprogno et al.  (2019), to use PCA technique the variables have to 89 
be uncorrelated in time.  90 
 91 
As well known, the air pollutants concentrations are time series and they can’t be assumed 92 
to be temporally uncorrelated. Thus, it is necessary to use the autocorrelation (ACF) and 93 
partial autocorrelation (PACF) functions of the pollutants to identify the existence of 94 
serial correlation, and to apply a Vector Autoregressive Model (VAR) as a filter to 95 
mitigate the temporal correlation in the covariates.  96 
 97 
In this context, this paper proposes a combination of multivariate statistical techniques to 98 
investigate the joint effect of different sizes of particulate matter to the perceived 99 
annoyance. Thus, the combination of the statistic tools LOG model, PCA and time series 100 
analysis can lead to an estimate of the relative risk of perceived annoyance by handling 101 
multipollutant effects. The relative risk is usually the parameter of interest to measure the 102 
impact of the covariates, especially the air pollutants on the population health (Zou, 103 
2004).  The proposed methodology results in a model called LOG-PCA-VAR. To our 104 
knowledge, this is the first work which uses logistic regression with PCA and multivariate 105 
time series models to quantify the relationships between particulate matter (PM10, TSP 106 
and SPM) and perceived annoyance to estimate the relative risk (RR), which is the ratio 107 
of the probability of an outcome in an exposed group to the probability of an outcome in 108 
an unexposed group. In the air pollution problems, it is usually to measure the impact of 109 
atmospheric pollutants on the health of the exposed population see, for example, (Martin 110 
et al., 1987).   111 
 112 
 113 

2- Material and methods 114 

2.1. Metropolitan Region of Vitoria 115 
 116 
The Metropolitan Region of Vitoria (MRV) is located on the east coast of Brazil, in the 117 
state of Espirito Santo (Figure 1). MRV is a densely populated region, with 1,500,000 118 
inhabitants and it is a  highly industrialized and expanding urban region with various air 119 
pollutants emission sources such as steel, pelletizing, mining, cement industries, vehicles, 120 
road re-suspension, port and airport operations, and construction (Santos et al., 2017). 121 

In the MRV area, there is an interest to investigate the impact caused by PM due to 122 
population reports of being constantly annoyed (approximately 25% of the complaints to 123 
environmental agency in 2008 are about air pollution), specially by the amount of dust in 124 
surfaces (Souza, 2014; Melo et al., 2015). Recently,  Machado et al. (2018) have 125 
developed a survey where showed that, in the MRV, more than 90% of the respondents 126 
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have complained about perceived annoyance caused by the air pollution and, the most of 127 
these complaints were related to the amount of dust in their houses. 128 

 129 

2.2. The particulate matter data 130 

In the MRV area the weather conditions and the air quality are monitored via two 131 
complementary sets of monitoring network stations: automatic air quality monitoring and 132 
the manual SPM monitoring. Figure 1 shows the map of the urbanized area divided by 133 
municipality (Cariacica, Serra, Viana, Vila Velha e Vitoria), the main roads, the main 134 
industrial sources of PM (point red) and the air quality monitoring stations networks (blue 135 
points). They are: (M1) Laranjeiras, (M2) Carapina, (M3) Jardim Camburi, (M4) 136 
Enseada, (M5) Vitória, (M6) Vila Velha, (M7) Ibes, (M8) Cariacica. The coverage areas 137 
are 1.5 km around of each air quality monitoring station.  138 

The monitoring station networks are managed by the local environmental agency (IEMA) 139 
that measure automatically hourly concentrations of different pollutants, specifically the 140 
PM10 (particulate matter less than 10µg/m³) and TSP (total suspend particles). The SPM 141 
(sediment particulate matter) are measured monthly only.  Therefore, for a coherence 142 
analysis, the maximum mean of PM10 and TSP concentrations were also monthly 143 
computed and used in the regression model.  144 

The datasets used are the flow of monthly average sediment particulate matter (SPM) as 145 
well as monthly maximum and average values of particulate matter (PM10) and total 146 
suspended particle (TSP) from the eight air quality monitoring stations measured during 147 
3 years (from July 11 to July 2014). 148 

 149 

2.3. The Survey 150 
 151 
Measurements of PM and perceived annoyance were performed monthly from July 11 to 152 
July 2014. Perceived annoyance was collected in two steps: face-to-face interview to the 153 
first contact with respondent and monthly telephone updates (panel survey). The face-to-154 
face interviews randomly selected surrounding 1.5 km of each air-quality monitoring 155 
station (Figure 1). On the face-to-face interview the respondent confirmed in continuing 156 
the interviews in the following months (panel survey) about perceived annoyance (details 157 
in Machado, 2018).  158 
The monthly panel survey questionnaire only included two questions were applied to 220 159 
respondents (over 16 years old) from July 11 to July 2014. Telephone questions aimed at 160 
monitoring the evolution of perceived annoyance over time-related to PM in the 161 
environment. 162 
To quantify the perceived annoyance, categorical and numerical scales were considered 163 
and applied according to the context of the question (for example, “Do you feel annoyed 164 
by dust during this last month?” With the categorical answers option: not annoyed, 165 
slightly annoyed, moderate annoyed, very annoyed, extremely annoyed and “do not 166 
know”. And a second question with a numerical scale: “What is the score that represents 167 
your perceived annoyance last month? from 1 to 10 points scales, where 1 is not annoyed 168 
and 10 is extremely annoyed.”). These questions were formulated based on the following 169 
studies Rotko et al. (2002), Klaeboe, (2008) and Amundsen et al. (2008). 170 
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 171 
From these questions, the average levels of perceived annoyance reported by all 172 
respondents was calculated. The results were dichotomized to be used as the dependent 173 
variable in the logistic regression model discussed in Section 2.4. The cut-off sample 174 
score of the perceived annoyance  was the median  7, i.e., the scores levels of perceived 175 
annoyance attributed high scores (≥7) was codified by 1 while the average levels of 176 
annoyed reported low scores (<7) was codified as 0.  Similar approach was used by Rotko 177 
et al. (2002), Egondi et al. (2013) and Whittle et al. (2014).   178 
 179 
 180 
2.4. Statistical Techniques 181 
 182 
As previously mentioned, the main objective of this paper is to quantify the association 183 
between perceived annoyance (response) and pollutants (covariates) variables using data 184 
observed in the Metropolitan Region of Vitoria (MRV). The response variable is binary. 185 
Therefore, the logistic regression becomes the appropriate regression method to describe 186 
the association among variables. However, for this statistic model, some assumptions are 187 
required, and, among them, the covariates should be independent from each other and 188 
independent of time.  And, the air pollutants do not follow these assumptions. From this 189 
matter raised one of the main contribution of this papers which is to proposed a hybrid 190 
logistic regression model (LOG_VAR_PCA) to quantify the association between the 191 
perceived annoyance and pollutant variables using the data set referred in the previous 192 
section.  193 
 194 
Since the covariates (air pollutants) are time series,  the use of time series models can 195 
help to understand the dynamic of the data and, additionally, to give a more precise 196 
statistical support  in  quantifying  and discussing the association between particulate 197 
matter concentrations and perceived effects (Schwartz et al., 2000, Gouveia et al., 2004).   198 
 199 
Multivariate techniques are also required for the purpose of this paper as justified as 200 
follows. To analyse the perceived annoyance caused by particulate matter a joint analysis 201 
of sediment particulate matter (SPM), particulate matter (PM10) and total suspended 202 
particles (TSP) is required. In this context, an analysis of the multivariate data set will be 203 
performed without simply isolating the effects of a single pollutant.  204 

Since the covariates are time series and  cross-correlated, the data requires a prior 205 
treatment using principal component analysis, see Zamprogno et al. (2019), Souza et al. 206 
(2018) Vanhatalo et al. (2016) and reference therein. Although the components obtained 207 
from PCA are not correlated, they can also present autocorrelation, which is transferred 208 
to the residuals of the fitted model. Thus, in this work, data are filtered through a 209 
multivariate time series model  (the VAR model  see, for example, Wei (2006)) before 210 
applying the PCA technique, as suggested by Souza et al. (2018) and Zamprogno et al. 211 
(2019). The models and techniques are summarized in the next subsections.  212 

 213 
 214 
2.4.1 The Logistic Regression model 215 
 216 
In many practical situations, the response variable in a regression model is categorical, 217 
for example, when the variable is binary, indicating the presence or absence of a 218 
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characteristic. Therefore, the logistic regression model becomes an important statistical 219 
tool to measure and quantify the relationship between perceived annoyance and a set of 220 
explanatory variables (particulate matter).   221 

The logistic regression model and its parameter estimates are summarized. For more 222 
details see, for example, Abraham and Ledolter (2006). 223 

Let 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑝)𝑡 be a vector containing p explanatory variables. Suppose that the 224 
response variable Y is dichotomic (binary), that is,  Y = 1 or Y = 0 for the outcome to 225 
be success or failure, respectively.  Let the probability of Y to have success or failures, 226 
with respect to X, be defined as   𝑃(Y = 1|𝑿) = 𝜋(𝑿) and 𝑃(Y = 0|𝑿) = 1 − 𝜋(X), 227 
respectively.    228 

 229 

For the explanatory vector X,  with the parameter vector 𝜷 = (β0, … , βp)
t
, and the 230 

response Y, the probability of success is parameterized as 231 
 232 

𝑃(𝑌 = 1) = 𝜋(𝑿) = 𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

1+𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝. (1)  
 233 

Since this probability is a logistic function  of  the vector 𝜷 = (β0, … , βp)
t
, it can be 234 

shown that the logit of the multiple logistic regression model is given by 235 

ln ( 𝜋(𝑿)
1 − 𝜋(𝐗) 

) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝.  (2)  
 

The parameter 𝛽𝑖, 𝑖 = 0, … , 𝑝, are unknown and have to be estimated based on sample 236 
data by the iteratively reweighted least squares approach. Let now 𝑿𝟏, … , 𝐗𝐧 be a sample 237 
of observations of the vector of covariates 𝐗 and Y1,…, Yn  are the corresponding 238 
response variables.  It can be shown that the vector parameter β can be estimated by  239 

�̂� = (𝑷′�̂�𝑷)
−1

𝑷′�̂�𝒁,  (3)  
where the matrix P is the matrix of regressors which has one in the first column for the 240 
intercept parameter and  �̂� is a diagonal matrix of dimension 𝑛 𝑥 𝑛 with elements given 241 
by �̂�𝑖(1 −  �̂�𝑖), 𝑖 = 1, … , 𝑛, where �̂�𝑖 have to be estimated using the maximum 242 
likelihood method based on sample data, 𝒁 is a 𝑛 𝑥 1 matrix which elements are 243 

𝑍𝑖 = ln { �̂�𝑖
1−�̂�𝑖

} + { 𝑌𝑖− �̂�𝑖
�̂�𝑖(1−�̂�𝑖)

}. (4)  
It can be demonstrated that 244 

𝑉𝑎�̂�(�̂�) = (𝑷′�̂�𝑷)
−1

 (5)  
Regarding to Equations (4) and (5) it is possible to identify a problem that may occur: the 245 
multicollinearity. The exact multicollinearity occurs when the matrix of covariates is not 246 
a full rank matrix, i.e., when the maximal number of linearly independent columns of P 247 

is less than the number of columns.  Hence, the determinant of the matrix (𝑷′�̂�𝑷)
−1

is 0 248 
and the matrix is not invertible.  249 
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This problem can be seen  by writing �̂� = �̂�
𝟏
𝟐�̂�

𝟏
𝟐  and 𝑳 = �̂�

𝟏
𝟐𝑷  then 250 

𝑽𝒂𝒓 (�̂�) = (𝑳′𝑳)−𝟏. (6) 
It can be shown that 𝑟𝑎𝑛𝑘(𝐿) = 𝑟𝑎𝑛𝑘(𝑷), where rank (.) denotes the operator which 251 
counts the quantity of linear independent lines. Therefore, if 𝑷 has not full rank or its 252 
columns are very close to being linearly dependent (highly correlated), this will have an 253 
effect on (𝑳′𝑳)−1 matrix, thus, affecting the estimated parameters (Lutkepohl, 1991). 254 

 255 

2.4.2  Principal Component Analysis  256 
 257 

As well known, Principal Component Analysis (PCA) is a multivariate statistical 258 
technique that aims, in general, to reduce the dimensionality of a data matrix space 259 
through linear transformations of the original variables.  260 

In this study, the PCA technique is used to circumvent the problem of pollutants that are 261 
correlated with each other, i.e., the multicollinearity phenomenon. In general, the whole 262 
variability of a system determined by p variables can only be explained using all the p 263 
principal components. However, a large part of this variability can be explained using a 264 
lower number r of components (r <p) see for example, Johnson and Wichern (2007). 265 

As mentioned before, the use of PCA requires attention regarding the covariates that are 266 
correlated in time (serial correlation) as it is the case of air pollutants. The time correlation 267 
of the vector 𝐗 will lead to PCs auto-correlated and cross-correlated in time. As pointed 268 
by Souza et al. (2018) and Zamprogno et al. (2019), the effect of time correlation in 269 
atmospheric pollutants strongly influences the estimates of the principal components, 270 
increasing the total variability of the data and increasing the retained variability of the 271 
first component. This can be mitigate using a multivariate time series to filter the data, as 272 
suggested in Souza et al. (2018) and Zamprogno et al. (2019).  273 

In Equation (2), the vector X will be the PCA variables generated from the sample 274 
covariance  matrix of the filtered pollutants using a multivariate autoregressive time series 275 
model of order 1 ( VAR(1)) ( see, for example,  Wei (2006)). 276 
 277 
 This is addressed in the Result and discussion Section.   More details of the use of PCA 278 
in regression models can be recently found in Souza et al. (2018)  Zamprogno et al. 279 
(2019), Hu and Tsay (2014) and Roberts and Martin (2006). 280 
 281 
2.4.3  Relative Risk 282 
 283 
The relative risk (RR) is frequently used in epidemiological studies to measure the impact 284 
of atmospheric pollutant concentrations on the health of the exposed population. The RR 285 
can be defined as the association that an effect (annoyance) can occur following a certain 286 
exposure to a risk factor, which corresponds to the exposure to particulate matter 287 
concentration levels in this study. The relative risk is used in data analysis with binary 288 
outcomes (0 or 1) as in the case of annoyance. According to Bishop (2007) the relative 289 
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risk is the result of dividing the probability of the event (being annoyed when exposed – 290 
A|B) by the probability of the event (being annoyed when not exposed – A|BC ), i.e.: 291 

𝑅𝑅(𝐴, 𝐵) =
𝑃(𝐴|𝐵)
𝑃(𝐴|𝐵𝑐) (7) 

 292 

According to Baxter (1997), by analogy, the relative risk function at level 𝑥 of the desired 293 
pollutant, denoted RR (𝑥), is defined as: 294 

𝑅𝑅(𝑥) =
𝐸(𝑌|𝑋 = 𝑥)
𝐸(𝑌|𝑋 = 0) (8) 

 295 

It is the ratio of the expected value of the response variable at level 𝑥 of the independent 296 
variable to the expected of the response if the independent variable was 0. 297 

In this context, for the logistic regression, it can be shown that the RR can be estimated 298 
by 299 

𝑅�̂�(𝑥𝑖) ≈ 𝑒𝑥𝑖�̂�𝑖 (9) 
 300 

where 𝑥𝑖 is the interquartile variation (3st quantile - 1st quantile from Table 1) in the ith 301 
pollutant concentration and �̂�𝑖 is represented by: 302 

β̂𝑖 =  ∑ α̂ij𝛾𝑗
𝑟
j=1    i = 1,2, … , p, (10) 

where �̂�𝑗 = (�̂�𝑗𝑖) is the j-th estimated eigenvector of the covariates matrix (from Table 303 
3); 𝛾𝑗 is the estimated coefficient of the j-th PC calculated in the logistic regression (from 304 

Table 4). Through the coefficient �̂�𝑖 it is computed the individual contribution of each 305 
pollutant to the perceived annoyance see, for example, Souza et al. (2018). 306 

 307 

1- Results and discussion 308 

Table 1 presents the descriptive statistics (minimum, maximum, average and standard 309 
deviation) of the pollutants monthly measured in the Vitoria region from 2011 to 2014.  310 
Note that, the maximum particulate matter concentrations observed for PM10 and TSP 311 
pollutants can be very dangerous for the health system since its values are above the limits 312 
set by the World Health Organization (WHO, 2006). The maximum value for SPM is also 313 
higher than the annoyance standard values considered in many countries see, for example, 314 
(Vallack and Shilitto, 1998; Melo et al., 2018). 315 

 316 

In the standard regression model, the basic assumption is that the covariates are not 317 
correlated and not time-dependent.  However, in the case studied here, the predicable 318 
variables do not satisfy these properties, since the pollutant variables are serially and time 319 
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dependent. As shown in Table 2, the pollutants are contemporaneously correlated, for 320 
example, the sample correlation between SPM x PM10 is �̂�𝑆𝑃𝑀,𝑃𝑀10 = 0.424. The 321 
pollutants are time series, and their behaviours over time are displayed in Figures 2 to 6. 322 
These figures show the monthly data time series of each air pollutant (particles deposition 323 
rate, monthly averages of PM10 and TSP, monthly maximum averages of PM10 and TSP) 324 
from July 2011 to October 2014. These also display the sample autocorrelation (ACF) 325 
and partial autocorrelation (PACF) functions which clearly show that the pollutants are 326 
time-dependent. In the ACF and Partial ACF plots (Figures 2-11), the vertical axis 327 
measures the strength of the correlation and the horizontal axis is the time lag at which 328 
the correlation was calculated.  The dashed lines represent the 95% confidence intervals 329 
for uncorrelated data.  330 

The sample ACF measures the dependence between the observations of the same time 331 
series at different delays, usually detonated as lags in time series methods. Figures 7 to 332 
11 show that the VAR (1) removed the time correlations. From these, it appears that the 333 
series have a very weak yearly seasonality. However, it should be noted that the seasonal 334 
yearly effect (if any) may be reduced by the smoothing of the monthly mean average of 335 
the pollutants PM10 and TSP.  336 

Since the covariates do not meet the regression basic assumption, one way to mitigate the 337 
problem is to remove the time correlation (serial-correlation) of the series. In this context, 338 
it is suggested here to use a linear time series filter as a procedure to transform the data 339 
into a “white noise” process. This problem and how to mitigate it are well-addressed in 340 
the recent publications Souza et al. (2018), Vahatalo and Kulahci (2016), and Zamprogno 341 
et al. (2019). 342 

Based on the sample ACF plots, the residual analysis and the Akaike information 343 
criterion (AIC), which  is an estimator of the relative quality of statistical models for a 344 
given set of data,   a Vector Autoregressive Model of order 1, denoted by  VAR (1), was 345 
chosen  to model the vector of all pollutants time series (particles deposition rate, monthly 346 
averages of PM10 and TSP, monthly maximum averages of PM10 and TSP).  The sample 347 
ACF plots of the filtered data are displayed in Figures 7 to 11. From these plots, it can be 348 
seem that the time-correlation of the series was removed, and the filtered data displays a 349 
similar behaviour of a white noise process, that is, the correlations of the residuals are 350 
nulls.  In addition, the residuals do not show any anomaly (results are available upon 351 
request). Therefore, this indicates that the VAR (1) model well-fitted the data. For a more 352 
details of multivariate linear time series models see, for example, Wei (2006). 353 

Table 3 displays the results of the PCA technique applied to the filtered series. The total 354 
cumulative variance was used as a criterion for choosing the number of components 355 
resulted by the PCA. Thus, the first three components were chosen, which explain 86% 356 
of the total variability. In the PC1, the higher contributions come from TSP, PM10 TSP. 357 
In the case of PC2, SP gives most of the variability and, for the PC3, PM10 gives the 358 
highest contribution. The pollutants indicated by (*) are the ones that give more 359 
contributions to the variability of the PC.  For more details on PCA and its application 360 
see, for example, Cadima and Jolliffe, (1995). 361 



 

10 
 

In the multiple logistic regression model, the response variable (perceived annoyance) 362 
was associated with the covariates PC1, PC2 and PC3 resulting in the hybrid LOG-PCA-363 
VAR  fitted model and its parameter estimates are in Table 4.    364 

The relative risk (RR) of annoyance results were expressed by the interquartile variation 365 
range. The RR analysis was performed for different levels of pollutants concentrations to 366 
test the null hypotheses H0: RR =1 against H1: RR > 1, using significance level of 5%. 367 
Tor each pollutant,  Table 5 displays the results of the estimates of RR and the respectively 368 
confidence interval (CI), for the standard and the proposed methodology, that is, 𝑅𝑅 ∗̂  369 
refers to the estimated RR using the standard logistic regression, and 𝑅�̂�  corresponds to 370 
RR estimate based on the LOG-PCA-VAR model.  Note that, the 𝑅𝑅 ∗̂   was considered 371 
in the study for comparison purpose, that is, to quantify (if any) the impact on the RR 372 
when the multivariate time series properties (multicollinearity and time and cross-373 
correlation structures) of the covariates are ignored. 374 

According to Table 5, the estimate of the RR for SPM increases approximately by a factor 375 
of 1.5 considering the interquartile variation equal to 2g/m² 30 days whereas, for PM10 376 
(monthly mean), 𝑅�̂� increases by a factor of 1.6 considering the interquartile variation 377 
equal to 5µg/m³. In the case of TSP (monthly mean), 𝑅𝑅 ̂  can be interpreted as a factor 378 
that increases 2.2 when exposed to the interquartile variation equal to 13 µg/m³.  For  379 
PM10 (monthly maximum) variable,  𝑅𝑅 ̂ growths by a factor of 2.4 considering the 380 
interquartile variation equal to 8 µg/m³ whereas,  for the variable TSP (monthly 381 
maximum),  𝑅�̂� is equal to 1.8 considering the interquartile variation equal to 20 µg/m³. 382 
The estimated confidence intervals were calculated based on the central limit theorem as 383 
showed by Souza et al. (2018). The 𝑅�̂� values indicate that, all pollutants contributes 384 
significantly for the increase of the probability of being annoyed with 95% of confidence. 385 
It is interesting to note that the values of 𝑅𝑅 ∗̂  was not significant in any case. This is not 386 
a surprising result since the temporal correlation in data was not considered in the 387 
regression model which lead to underestimating the regression parameter and inflating 388 
the intercept.  Consequently, this gives a spurious result in the sense that the pollutants 389 
don’t make any impact on the perceived annoyance.   390 

The proposed hybrid LOG-PCA-VAR model, in addition to the estimation of the impact 391 
of particulate   matter on the perceived annoyance, which indicated significantly 392 
contribution of the pollutant  to this response variable, it contributed to show  the spurious 393 
result when the temporal correlation structure in the data is not considered to obtain the 394 
estimates of a logistic regression model. This corroborates the use of the proposed 395 
methodology when dealing with regression models in which the covariates are 396 
multivariate time series and all results are in accordance with Souza et al. (2018).  397 

 398 
2- Conclusion 399 

This study proposes the application of multivariate statistical techniques (time series 400 
models, principal component analysis and logistic regression) to estimate the effect 401 
between exposure to particulate matter concentrations (SPM, PM10 and TSP) and 402 
response of the population measured by the perceived annoyance levels.  403 
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The descriptive and graphical analysis motivated the use of the PCA technique for the air 404 
pollutant data by the initial indication of cross-correlation between the covariates 405 
(pollutants). The VAR(1)  model was used to transform the original time series of air 406 
pollutants, resulting in time uncorrelated data (white noise) before applying the PCA 407 
technique. Based on these modelling steps, the PCA variables becomes uncorrelated and 408 
not cross-correlated.  409 

The logistic regression model was applied with the level of annoyance as the dependent 410 
variable and the air pollutants as covariates. Moreover, by the new methodology 411 
developed in this study (LOG-PCA-VAR), the combined effect of particulate matter was 412 
analysed and the relative risk of annoyance for each original air pollutants was calculated.  413 
The estimates of relative risk, i.e,  𝑅�̂�,  showed that, in general, an increase in air pollutant 414 
concentrations (i.e., the particulate matter metrics examined here: TSP, PM10 and SPM) 415 
significantly contributes in increasing the probability of being annoyed. 416 

In summary, the results obtained in this study provide evidence of a significant correlation 417 
between particulate matter and perceived annoyance levels, also indicating that, at least 418 
for particulate matter, perceived annoyance is not only related to one pollutant but to a 419 
group of pollutant. In future work, this methodology should be used to analysis with other 420 
pollutants. Other methodologies, such as bootstrap techniques, could also be used to 421 
estimate the confidence intervals more precisely, and GLARMA modelling could be used 422 
to solve the data autocorrelation problem.  423 
 424 
 425 
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Figure 1- Metropolitan Region of Vitoria, the main sources, the main roads and the air quality monitoring 
stations network: (M1) Laranjeiras, (M2) Carapina, (M3) Jardim Camburi, (M4) Enseada, (M5) Vitoria, 
(M6) Vila Velha, (M7) Ibes, (M8) Cariacica. 
 

 
  

 
(a) (b) (c) 

Figure 2 – Time series (a), autocorrelation function (b) and partial autocorrelation function (c) for SPM from 
2011 to 2014. 
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Figure 3- Time series (a), autocorrelation function (b) and partial autocorrelation function (c) for monthly 
mean concentration of PM10 from 2011 to 2014. 
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Figure 4- Time series, autocorrelation function and partial autocorrelation function for monthly maximum 
PM10 concentration from 2011 to 2014. 
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(a) (b) (c) 

Figure 5- Time series, autocorrelation function and partial autocorrelation function for monthly mean TSP 
concentration from 2011 to 2014. 
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Figure 6- Time series, autocorrelation function and partial autocorrelation function for monthly maximum 
TSP concentration from 2011 to 2014. 
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(a) (b) 

Figure 7 - Autocorrelation function (a) and partial autocorrelation function (b) for particles deposition rate 
from 2011 to 2014 after filtering. 
 

 

(a) (b) 

Figure 8- Autocorrelation function (a) and partial autocorrelation function (b) for monthly mean concentration 
of PM10 from 2011 to 2014 after filtering. 

 

(a) (b) 

Figure 9- Autocorrelation function (a) and partial autocorrelation function (b) for monthly maximum PM10 

concentration from 2011 to 2014 after filtering. 
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(a) (b) 

Figure 10- Autocorrelation function (a) and partial autocorrelation function (b) for monthly mean TSP 
concentration from 2011 to 2014 after filtering. 

 

 

(a) (b) 

Figure 11- Autocorrelation function (a) and partial autocorrelation function (b) for monthly maximum TSP 
concentration from 2011 to 2014 after filtering. 
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Table 1 – Descriptive statistics of air pollutants (from July 2011 to November 2014) 

Variable Minimum Maximum Mean Std. 
Dev. 

1st 
quantile 

3st 
quantile 

90th 
percentile 

SPM (g/m² 30 
days) 6.267 13.283 9.097 1.680 7.683 9.969 11.173 

PM10 (µg/m³) 23.002 35.167 28.818 2.962 26.670 31.575 32.590 

TSP (µg/m³) 33.166 61.167 48.665 7.808 42.705 55.899 58.830 

 

 

Table 2 – Correlation matrix for the original variables (before time series analysis) 
Variables SPM  PM10 

(mean) 
TSP 

(mean) 
PM10 

(maxim) 
TSP 

(maxim) 
SPM 1.     

PM10 (mean) 0.424** 1    

TSP (mean) 0.278 0.764** 1   

PM10 (maxim) 0.409** 0.681** 0.654** 1  

TSP (maxim) 0.342* 0.701** 0.754** 0.772** 1 

**p-value=0,01 
*p-value=0,05 

     

 
 
 

Table 3- Results of factor loadings statistics and application of PCA 
  PC1 PC2 PC3 PC4 PC5 

Eigenvalue 2.576 1.071 0.681 0.396 0.276 

Variability (%) 51.528 21.426 13.622 7.913 5.510 

Cumulative % 51.528 72.955 86.577 94.490 100.000 

SP (monthly rate) 0.267 0.733* -0.554 -0.269 -0.112 

PM10 (monthly mean) 0.495* -0.257 -0.365 0.674 -0.319 

TSP (monthly mean) 0.400* -0.583 -0.318 -0.607 0.172 

PM10 (monthly maxim) 0.492* 0.104 0.611* -0.254 -0.557 

TSP (monthly maxim) 0.531* 0.214 0.293 0.200 0.739 

*High contributions 

Table
Click here to download Table: Tables rev out.pdf
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Table 4- Parameters estimated by the multiple logistic model estimated for the first three 
components 
 �̂� Standard error Exp(�̂�) 
PC1 0.053 0.202 1.054 
PC2 0.058 0.309 1.060 
PC3 -0.245 0.390 0.783 
Intercept 0.204 0.320  - 

 
 
Table 5- The estimate RR of annoyance for each pollutant and the respective interval 
confidence 
Pollutants 𝑹𝑹 ∗̂  

(standard methodology) 
CI (95%) 𝑹�̂�  

(LOG-PCA-VAR) 
CI (95%) 

SPM  0.865 (0.582;1.283) 1.462 (1.070; 1.854) 
PM10 (monthly mean) 0.819 (0.650; 1.031) 1.649 (1.061; 2.237) 
TSP (monthly mean) 0.953 (0.875; 1.037) 2.181 (1.471; 2.891) 
PM10 (monthly maxim) 0.977 (0.877; 1.088) 2.411 (1.401; 3.421) 
TSP (monthly maxim) 0.965 (0.918; 1.014) 1.822 (1.52; 3.052) 

 
 
 
 
 
 
 
 


