
HAL Id: hal-02516559
https://centralesupelec.hal.science/hal-02516559

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bias Propagation and Estimation in Homogeneous
Differentiators for a Class of Mechanical Systems

Stanislav Aranovskiy, Igor Ryadchikov, Evgeny Nikulchev, Jian Wang, Dmitry
Sokolov

To cite this version:
Stanislav Aranovskiy, Igor Ryadchikov, Evgeny Nikulchev, Jian Wang, Dmitry Sokolov. Bias Prop-
agation and Estimation in Homogeneous Differentiators for a Class of Mechanical Systems. IEEE
Access, 2020, 8, pp.19450-19459. �10.1109/ACCESS.2020.2968219�. �hal-02516559�

https://centralesupelec.hal.science/hal-02516559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Received December 18, 2019, accepted January 16, 2020, date of publication January 20, 2020, date of current version January 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968219

Bias Propagation and Estimation in Homogeneous
Differentiators for a Class of Mechanical Systems
STANISLAV ARANOVSKIY 1,4, (Senior Member, IEEE), IGOR RYADCHIKOV 2,
EVGENY NIKULCHEV 3, JIAN WANG 4, AND DMITRY SOKOLOV 5
1Equipe Automatique, CentraleSupélec–IETR, 35576 Cesson-Sévigné, France
2Laboratory of Robotics and Mechatronics, Kuban State University, Krasnodar 350040, Russia
3MIREA–Russian Technological University, Moscow 119454, Russia
4School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
5Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Corresponding author: Jian Wang (wangjian119@hdu.edu.cn)

This work was supported in part by the Russian Ministry of Education and Science, under Grant 8.2321.2017, and in part by the
111 Project, China, under Grant D17019.

ABSTRACT Motivated by non-anthropomorphic dynamic stabilization of a walking robot, we consider the
bias propagation problem for a homogeneous nonlinear model-based differentiator applied to a reaction
wheel pendulum with a biased position sensor. We show that the bias propagates through the velocity
observer and compromises the vertical stabilization. To cancel the impact of the bias, we propose to augment
the differentiator with a reduced-order bias observer. Local asymptotic stability of the augmented nonlinear
observer is shown, where the observer gain can be tuned using matrix inequalities. Experimental results
illustrate the applicability of the proposed solution.

INDEX TERMS Sensor bias, velocity observer, homogeneous differentiator, inverted pendulum.

I. INTRODUCTION
The research problem of this paper is motivated by the
walking robot we are currently developing [1]. The robot
uses an auxiliary non-anthropomorphic dynamic stabilization
system that consists of two reaction wheels inside the robot’s
body (Figure 1). Since the flywheels are mutually orthogonal,
the vertical stabilization of the robot can be considered for
each axis separately, and a simplified model to study the sta-
bilization problem is the model of an inverted reaction-wheel
pendulum.

Stabilization of an inverted pendulum is well-studied, and
nowadays, it is included as a scholar example in many
graduate courses on control design. An in-depth analysis of
pendulum motion, including linear and nonlinear models,
is provided by Block et al. [2]. Spong et al. [3] have proposed
a switching controller for swinging the pendulum upwards
from the stable equilibrium, and an inspiring project has been
proposed by the ETH Zürich team [4]–[6] that covers linear
control for the one-dimensional case and nonlinear control
for the three-dimensional balancing cube problem. However,
it should be noted that pendulum stabilization algorithms

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaolin Wang.

FIGURE 1. AnyWalker robot uses reaction wheels (shown in red) as an
auxiliary stabilization system, see [1].

typically implement a full-state control law that utilizes both
position and velocity measurements of the pendulum. Thus,
the velocity estimation becomes the critical element of the
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vertical stabilization control design. Note also that the tilt
angles [7] of the considered robot (Figure 1) are measured
with multiple accelerometers, and we rely on soft sensors for
velocity estimation.

One possible solution for velocity estimation is to design
a full-state observer, where a model of system dynamics
is used to estimate the state vector. For nonlinear systems,
state estimation can be performed based on linearization (or
linear time-varying representation) of the system dynamics
yielding a standard linear observer, e.g., Kalman-Bucy filter,
or a nonlinear observer can be proposed [8]; for discrete-time
nonlinear systems, a Newton observer can be utilized, see,
e.g., [9]. Notably, an exponential nonlinear velocity observer
for a class of mechanical systems has been recently proposed
in [10]. The drawback of the full-state observer design is
that it typically requires an accurate model and estimates
the coupled state vector of the whole system, which is not
reasonable in the considered robotic design with multiple
degrees of freedom.

Another approach that is widely used in engineering appli-
cations is to estimate velocity for each degree of freedom
separately. From the signal processing point of view, this
approach can be considered as numerical differentiation,
where velocity estimation is seen as online differentiation
of a measured position signal, e.g., a first-order difference
used in [3], sliding-mode exact differentiators first proposed
by Levant in [11], algebraic differentiators by Ushirobira
in [12], or high-gain differentiators as described by
Vasiljevic and Khalil in [13]. Whereas differentiator-based
velocity observers can be designedmodel-free as in [3], better
performance can be obtained when the observers use (at
least partially) available model knowledge as in [11]–[13].
Unfortunately, if the pendulum’s position measurements are
biased, then the bias propagates through the model and can
yield estimation errors. Particularly, for a legged robot, such
a bias arises due to imprecisions in sensor placement and
dependency of the center of mass point on the current robot’s
posture.

In this paper, we consider the homogeneous model-based
nonlinear differentiators (HOMD) proposed by
Perruquetti et al. [14]. We consider the scenario when posi-
tionmeasurements are biased, andwe estimate the bias simul-
taneously with the velocity estimation. A similar problem has
been addressed by Gajamohan et al. [4], where the authors
propose to use a low-pass filter for bias estimation. However,
to the best of the authors’ knowledge, the problem of bias
propagation in the nonlinear model-based differentiator [14]
has not been addressed before.

The contribution of this paper is twofold. First, we analyze
the bias propagation in the nonlinear model-based differen-
tiator and show that it yields a steady-state estimation error.
Second, we propose to combine the differentiator with a
reduced-order bias estimator. Our analysis shows that under
a proper choice of the observer gain, the augmented system is
locally asymptotically stable, and estimation errors converge
to zero with a certain domain of attraction. The choice of

the gain can be performed using matrix inequalities. The
proposed solution is illustrated in experimental studies and
compared with the low-pass bias observer [4].

The preliminary results of this research are reported in [15].
Extending that work, this manuscript contains i) stability
analysis of the low-pass bias observer, ii) stability con-
vergence analysis of the proposed nonlinear observer, and
iii) detailed and extended experimental studies.

The rest of the paper is organized as follows. In Section II
we present a model of the considered system and a
state-feedback controller capable of stabilizing the sys-
tem if all states (including velocities) are measured. Next,
in Section III we propose velocity observers based on homo-
geneous differentiators. We show that these observers ensure
accurate finite-time velocity estimation in the absence of
measurement bias, but the estimates are not accurate if the
measurements are biased. The proposed observers are exper-
imentally compared with a linearization-based Luenberger
observer. In Section IV we consider bias estimation based on
low-pass filtering and show the limitations of this approach.
A reduced-order bias observer augmenting the previously
designed control law is proposed and analyzed in Section V,
where experimental results and comparison with the low-pass
filtering are also given. Finally, possible further research
directions are discussed in the concluding Section VI.

II. MODEL DESCRIPTION AND STATE-FEEDBACK
CONTROL LAW
The hardware for the tests (shown in Figure 2) is assem-
bled from off-the-shelf components. A 70W Maxon EC
45 flat brushless DC motor is used to drive the reaction
wheel (a bicycle brake rotor). The motor is controlled using
Maxon EPOS2 50/5 controller running in torque mode; the
controller measures the current as well as the rotor angle.
A STM32F407 discovery board was chosen as the main com-
puting unit, where the board communicates with the motor
controller via CANopen protocol.

FIGURE 2. 1D pendulum hardware and corresponding notation.

A. MODEL DESCRIPTION
In our model the main variables are θ and θr , where θ is the
angle between the pendulum and the vertical, and θr is the
angle of the reaction wheel with respect to the pendulum.
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TABLE 1. Parameters of the experimental setup.

It is worth noting that the notation follows [2] with one
exception: we measure θr with respect to the pendulum body
and not with respect to the vertical. Refer to Figure 2 for an
illustration; Table 1 provides all parameters and notation used
in the paper. The values of the parameters were obtained by
direct measurements.

We use Lagrange’s approach to derive the equations of
motion. The Lagrangian is given by

L = Tp + Tr − P =
1
2
J θ̇2 +

1
2
Jr (θ̇r + θ̇ )2 − mlg cos θ,

where ml := mplp + mr lr , J := Jp + mpl2p + mr l
2
r , and

Tp =
1
2
(mpl2p + Jp)θ̇

2,

Tr =
1
2
mr l2r θ̇

2
+

1
2
Jr (θ̇r + θ̇ )2,

P = (mplp + mr lr )g cos θ,

are the kinetic energy of the pendulum, the kinetic energy of
the reaction wheel, and the potential energy, respectively; all
the symbols are as defined in Table 1.

Neglecting the friction, we derive the equations of motion:

Jr θ̈r + Jr θ̈ = kI ,

(J + Jr )θ̈ + Jr θ̈r = mlg sin θ, (1)

where the symbols are as defined in Table 1, and I is the
current in the motor windings. Assuming an internal fast-
time-scale current loop, we consider I as our input control
signal.

The model (1) can be rewritten for each degree of freedom
as

θ̈ = −
k
J
I +

mlg
J

sin(θ ) (2)

and

θ̈r =
(J + Jr )k

JJr
I −

mlg
J

sin(θ ). (3)

The control goal is to locally stabilize the pendulum in the
upper equilibrium, that is to drive the variables θ , θ̇ , and
θ̇r to zero, while θr ∈ R. Let us further denote the upper
equilibrium as the set

�0 :=
{
θ = θ̇ = θ̇r = 0, θr ∈ R

}
⊂ R4,

which is an invariant set of the system (1).

Definition 1: We say that a control law (locally) stabilizes
the system (1) if under this control law the set �0 is (locally)
attractive.

To simplify presentation, we note that the angle θr does not
affect the pendulum dynamics and define the state variable
vector

x :=
[
θ θ̇ θ̇r

]>
.

Then the control goal is to construct the control input I such
that the state x locally converges to the origin.

B. STATE-FEEDBACK CONTROL LAW
To achieve the goal, the model (1) is linearized around the
equilibrium xeq :=

[
0 0 0

]> yielding the linearized model

ẋ = Ax + BI , θ = Cx, (4)

where θ is the measured output and

A :=


0 1 0
mlg
J

0 0

−
mlg
J

0 0

 , B :=


0

−
k
J

k
J
+

k
Jr

 , C :=
10
0

>.
To stabilize the pendulum, the state-feedback control law

is proposed in the form

u = −Kx, (5)

whereK :=
[
k1 k2 k3

]
is the gain vector such that thematrix

A − BK is Hurwitz, i.e., all its eigenvalues have negative
real parts. Particularly, the gain vector K can be found as
a solution of the optimal linear quadratic regulation (LQR)
problem.

Note that if the zero reading of the sensor does not coincide
with the equilibrium position and the angle θ is measured
with a certain constant offset, then the state-feedback control
law does not achieve the control goal. This problem is well-
known, see e.g., [2], [4]. Denote the constant offset as d and
let the measured signal be

y = θ + d . (6)

Using y in place of the real value θ in (5) yields

u = −K
[
y θ̇ θ̇r

]>
= −Kx − K

[
d 0 0

]>
,

and the equilibrium of the linearized system (4) under this
control law can be found as

xeq,d = (A− BK )−1BK

d0
0

 =
 0

0

−d
k1
k3

 . (7)

It means that under the measurements bias, the pendulum is
stabilized at the upper position but the reactionwheel does not
stop and θ̇r converges to a non-zero constant value, i.e., the
system is not stabilized in the sense of Definition 1.
Remark 1: It is worth noting that the problem of velocity

estimation under biased measurement can be generalized,
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e.g., instead of the model (2) with biased measurements (6)
one can consider a more general class of systems

ÿ = β(t)+ γ (y− d),

where the scalar signal y is measured, d is a constant bias,
the functions β : R+ → R and γ : R → R are known,
the function γ is differentiable, the approximation γ (y−d) ≈
γ (y) − γ ′(y)d can be used for sufficiently small d, and the
goal is to estimate the derivative ẏ. However, the research
problem of this paper has been motivated by a particular
mechatronic system; thus, to keep the paper concise and
illustrative, we present the results for the specific system (1).

III. FINITE TIME VELOCITY OBSERVER
Let us put aside for a while the problem of biased measure-
ments; under the control law (5), the upper equilibrium of
the pendulum is locally asymptotically stable with a domain
of attraction depending on the design parameters. However,
to implement the law (5), measurements of the velocities
θ̇ and θ̇r are required. If these variables are not measured
directly, then a velocity observer should be used to generate
the estimates ˆ̇θ and ˆ̇θr , and the law (5) takes the form

u = −K
[
θ ˆ̇θ ˆ̇θr

]>
. (8)

One simple and convenient approach is to construct a
Luenberger observer for the linearized system. To this end,
instead of the reduced system (4) which does not include the
angle θr , we have to consider the full state vector that yields
the observer

d
dt


θ̂
ˆ̇θ

θ̂r
ˆ̇θr

 =


0 1 0 0
mlg
J

0 0 0

0 0 0 1

−
mlg
J

0 0 0



θ̂
ˆ̇θ

θ̂r
ˆ̇θr

+


0

−
k
J
0

k
J
+

k
Jr

 u

+L
([
θ

θr

]
−

[
θ̂

θ̂r

])
, (9)

where the gain vector L ∈ R4×2 is such that the estima-
tion error dynamic matrix is Hurwitz. The drawback of this
approach is that it is based on the linearization of the system,
and therefore it is not valid when the angle θ is not close to the
desired position and the approximation sin(θ) ≈ θ does not
hold. This drawback can be alleviated using linear observers
with time-varying gains, e.g., with gains scheduling, or using
nonlinear state observers for mechanical systems, see [10]
and the references therein. However, such solutions are typi-
cally harder to design and implement.

Another approach to velocity estimation is based on differ-
entiation [12], [14], [16]. Under this approach, the problem
of velocity estimation is considered as the problem of online
differentiation of a measured signal (angular position); there-
fore, each degree of freedom is considered separately and one
observer is constructed to estimate θ̇ , while another observer
estimates θ̇r . In what follows, we use this approach and

design nonlinear velocity observers based on homogeneous
differentiators [14] to obtain velocity estimates with the finite
time convergence.
Remark 2: To simplify and streamline the presentation,

we omit here formal definitions of the homogeneity property
and finite-time stability, which can be found in [14], [17].

A. PENDULUM VELOCITY OBSERVER
Let x̂p ∈ R2 be an estimate of the vector xp :=

[
θ θ̇

]> and
define the estimation error as ep := x̂p − xp, where we recall
that ep,1 = θ̂ − θ is measured. Denote for any real numbers
x and α > 0

dxcα := |x|α sgn(x),

where sgn(·) is the sign function.
Recalling (2) and following [17], we construct the homo-

geneous velocity observer as a model-based differentiator
of xp,1:

˙̂xp,1 = x̂p,2 − kp,1dep,1cαp ,

˙̂xp,2 = −
k
J
I +

mlg
J

sin(θ )− kp,2dep,1c2αp−1,

ˆ̇θ = x̂p,2, (10)

where αp, kp,1, kp,2 are the design parameters. Then the error
dynamics is given by

ėp,1 = ep,2 − kp,1dep,1cαp ,

ėp,2 = −kp,2dep,1c2αp−1. (11)

Note that ep = 0 is the unique equilibrium of the system (11).
Proposition 1: Consider the system (11), where αp ∈(
1
2 , 1

)
and kp,1, kp,2 are chosen such that the polynomial

s2 + kp,1s + kp,2 is Hurwitz. Let ep(t) be the solution with
the initial conditions ep(0) ∈ R2

\ {0}. Then the origin is
finite-time stable, i.e., there exists T = T (ep(0)) > 0 such
that ep(t) is defined and unique on [0,T ), bounded, and
limt→T ep(t) = 0. T is called the settling-time function of
the system (11). Note that ep(t) ≡ 0 is the unique solution
starting from ep(0) = 0, and the settling-time function can be
extended at the origin by T (0) = 0.
The proof of Proposition 1 follows applying

Theorem 10 from [14] to the system (11).

B. REACTION WHEEL VELOCITY OBSERVER
Let x̂r ∈ R2 be an estimate of the vector xr :=

[
θr θ̇r

]> and
define the estimation error as er := x̂r − xr , where er,1 is
measured. Recalling (3) and similarly to (10), we construct
the homogeneous velocity observer as

˙̂xr,1 = x̂r,2 − kr,1der,1cαr ,

˙̂xr,2 =
(J + Jr )k

JJr
I −

mlg
J

sin(θ )− kr,2der,1c2αr−1,

ˆ̇θr = x̂r,2, (12)
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where αr , kr,1, kr,2 are the design parameters. Then the error
dynamics is given by

ėr,1 = er,2 − kr,1der,1cαr ,

ėr,2 = −kr,2der,1c2αr−1. (13)

The system (13) is similar to (11) and the finite-time sta-
bility of the equilibrium er = 0 follows from Proposition 1
choosing 1

2 < αr < 1 and kr,1, kr,2 such that the polynomial
s2 + kr,1s+ kr,2 is Hurwitz.

C. CLOSED-LOOP SYSTEM BEHAVIOR UNDER
BIASED MEASUREMENTS
It can be shown that the control law (8) with the finite-time
observers (10) and (12) locally stabilizes the system (1).
Indeed, for the observers (10) and (12) there exists the com-
mon settling time Tcom = T (ep(0), er (0)), such that the
control laws (5) and (8) are equivalent for t ≥ Tcom. Since
the control law (5) is stabilizing for the linearized system (4),
it is locally stabilizing for the nonlinear system (1) in a neigh-
borhood of the desired equilibrium; define this neighborhood
as�α . Since the trajectories x̂p and x̂r are bounded, there exist
constants ēp > 0, ēr > 0, and a set �β ⊂ �α , such that for
all initial conditions satisfying x(0) ∈ �β , ‖ep(0)‖ < ēp,
‖er (0)‖ < ēr trajectories x(t) stay in �α for t ∈ [0,Tcom].
Then starting from t = Tcom we can consider the system (1)
under the control law (8), (10), (12) as the system (1) under
the control law (5) with the initial condition x(Tcom) ∈ �α
ensuring x(t) → 0. It is worth noting that given ep(0) = 0
and er (0) = 0 we have Tcom = 0 and the sets �β and �α
coincide.

Consider now behavior of the velocity observers (10), (12)
under biased measurements, where we impose the following
assumption.
Assumption 1: The sensor offset d is sufficiently small and

sin(d) ≈ d, cos(d) ≈ 1.
Using y as a measurement of θ in (10) and noting that

θ̂ − y = ep,1 − d , the error dynamics (11) takes the form

ėp,1 = ep,2 − kp,1dep,1 − dcαp ,

ėp,2 = a1 cos(θ)d−kp,2dep,1 − dc2αp−1, (14)

where we define a1 :=
mlg
J . Obviously, ep = 0 is not an

equilibrium of this system. Considering the pendulum in the
upper half-plane where cos(θ) > 0, the equilibrium of the
system (14) corresponds to the (steady-state for constant θ )
velocity estimation error

e0p,2 := kp,1

(
a1 cos(θ )
kp,2

|d |
) αp

2αp−1

sgn(d). (15)

Analyzing the error dynamics of the reaction wheel
observer, it can be shown that the steady-state (for constant θ )
velocity estimation error is

e0r,2 = −e
0
p,2.

Applying these results to the control law (8), the closed-loop
equilibrium is given by

xeq,d = (A− BK )−1BK

 d
e0p,2
e0r,2



=

 0
0

e0p,2
k3 − k2
k3

− d
k1
k3

 . (16)

Thus, it follows that under biased measurements, the velocity
estimates are not accurate and do not converge to the real val-
ues. The state-feedback control law with velocity observers
drives the pendulum to the upper equilibrium but does not
stabilize the system in the sense of Definition 1.
Remark 3: It is worth noting that if the reaction wheel

position θr is measured with a constant bias dr while the
pendulum position θ is measured without a distortion, then
the error dynamics of the observer (12) becomes

ėr,1 = er,2 − kr,1der,1 − drcαr ,

ėr,2 = −kr,2der,1 − drc2αr−1.

Then at the equilibrium we have er,2 = 0, i.e., a bias of the
reaction wheel sensor does not lead to a steady-state bias of
the estimate x̂r,2 of the reaction wheel velocity.

D. EXPERIMENTAL STUDIES
To illustrate the applicability of the proposed differentiator-
based observer, we present here experimental results on sta-
bilization for the hardware described in Section II. In this
Section we consider the case when the optical encoder is
perfectly adjusted, i.e., d ≈ 0, and compare performance
of the homogeneous velocity observers (10) and (12) with
the linear observer (9). Both observers are used with the
feedback control law (8), and we consider the problem of
the upright pendulum stabilization, where the initial position
is in a neighborhood of the equilibrium. Controller gain
parameters and the parameters of the homogeneous velocity
observers (10) and (12) used in the experiment are given
in Table 2. The gain matrix L of the observer (9) is chosen
such that the observers have approximately equal rise time.

TABLE 2. Controller parameters used in experiments.

Experimental results are depicted in Fig. 3, where the
initial position was set as θ (0) ≈ 0.1. It can be seen
that for both types of observers the initial transients are
close; however, the homogeneous differentiators provide
faster stabilization with less position variations. Moreover,
it was found that if the initial position is increased to
θ (0) ≈ 0.15, the linearization-based observer does not
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FIGURE 3. Closed-loop pendulum stabilization using observers (10), (12)
and (9).

FIGURE 4. Control (8), (10), and (12) for = −0.08.

provide system stabilization, and the pendulum falls, but the
differentiator-based observer stabilizes the system.

Let us now show that the same control law (8), (10),
and (12) cannot stabilize the pendulum for d 6= 0. As it is
shown in (7), for d = −0.08 the pendulum arrives to the
upper position, but the reaction wheel does not stop andmain-
tains a nonzero constant velocity. The experimental results are
depicted in Fig. 4. Here the measured angle y converges to a
nonzero value, such that y ≈ d , and the physical angle θ ≈ 0.
Velocity estimates x̂p,2 and x̂r,2 converge to nonzero values,
where the value x̂p,2 = e0p,2 ≈ −1.43 is predicted by (15).
The physical velocities converge to θ̇ ≈ 0 and θ̇r ≈ 138
radians per second that corresponds to (16).

IV. LOW-PASS FILTER BIAS ESTIMATION
As it is shown in the previous sections, presence of a bias
in the measurements precludes system stabilization, and one
approach to cope with this is to design a bias observer. A com-
mon solution is based on low-pass filtering of the measure-
ments as proposed in [4]. The key idea comes from the
observation that in the closed loop (7), the output y tends to
d as x1 tends to 0. Thus, one can estimate d observing the

steady-state value of y. However, such a procedure involves
some decision making (to identify the end of transients) and
switching behavior. To avoid stability issues, estimation of
d can be performed in a slower time scale than stabilization
implementing a low-pass linear filter [4]:

d
dt
d̂(t) = γd

(
y(t)− d̂(t)

)
, (17)

where γd > 0. Next, the measurement y is replaced with y−d̂
and the control law

u = −K
[
y− d̂ x2 x3

]
(18)

is applied.
The drawback of this approach is that the gain γd should be

chosen sufficiently small, otherwise the closed-loop system
may become unstable. This restriction is formulated in the
following proposition.
Proposition 2: Consider system (4) with the biased mea-

surement (6), bias observer (17), and the control law (18),
where the gain vector K is such that the matrix A − BK is
Hurwitz. Then there exists γ̄d > 0 such that the closed-loops
system is stable for γd ∈ (0, γ̄d ) and not stable otherwise.

Proof: Define the bias estimation error d̃ := d − d̂
and note that y − d̂ = x1 + d̃ . To study the stability of the
closed-loop system,we note that from (17) the error dynamics
is given by

˙̃d = −γd d̃ − γdx1.

The control law (18) can be written as

u = −K
[
y− d̂ x2 x3

]
= −Kx − k1d̃,

and the closed-loop system is thus given by[
ẋ
˙̃d

]
=

[
A− BK −k1B

−γd 0 0 −γd

] [
x
d̃

]
=: F

[
x
d̃

]
.

Therefore, the closed-loop system is stable if and only if
the matrix F is Hurwitz. Next we find the admissible range
of γd that guarantees this condition. Obviously, if γd = 0 then
the matrix F have the same (stable) eigenvalues as A − BK
and one zero eigenvalue related to d̃ .

To proceed, we first consider the characteristic polynomial
of the matrix A− BK given by

det (sI − (A− BK )) = s3 + m1s2 + m2s+ m3,

where

m1 =
kk3
Jr
+
kk3
J
−
kk2
J
,

m2 = −
kk1
J
−
gml
J
, m3 = −

gkk3 ml
JJr

.

Since the matrix A − BK is Hurwitz, the Routh’s criterion
states that

m1 > 0, m2 > 0, m3 > 0, m1m2 > m3. (19)

It implies, particularly, that the matrix A−BK is Hurwitz only
if k1 < 0 and k2 < k3 < 0.
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On the other hand, the characteristic polynomial of the
matrix F can be found as

det (sI − F) = (γd + s) det (sI − (A− BK ))+
kk1
J
γd s

= s4 + b1 s3 + b2 s2 + b3 s+ b4,

where

b1 := γd + m1, b2 := γdm1 + m2,

b3 := γdm2 + m3 +
kk1
J
γd , b4 = γdm3.

Routh’s criterion states that the system is stable if and only
if all coefficients b1, i = 1, . . . , 4, are positive, and

b1 b2 − b3 > 0, (b1 b2 − b3) b3 − b21 b4 > 0.

Due to (19), the inequality b4 > 0 implies the positivity
of γd , whereas b3 > 0 implies γd < −

kk3
Jr =: γ̄d,1. Note

that γ̄d,1 > 0 since k3 < 0 due to the positivity of m3. The
inequality b1b2−b3 > 0 is always satisfied for positive values
of γd , since all the coefficients of the corresponding quadratic
(in γd ) polynomial are positive.
The inequality (b1 b2 − b3) b3− b21 b4 > 0 corresponds to

the positiveness of a cubic polynomial of γd . It is straight-
forward to verify that the highest order coefficient of this
polynomial is negative, while the free coefficient is positive,
and thus this cubic polynomial has at least one real positive
root. Denote the smallest positive real root of the polynomial
as γ̄d,2. Then the cubic inequality is obviously satisfied for
all 0 < γ < γ̄d,2.
Finally, define γ̄d := min{γ̄d,1, γ̄d,2}. Then the matrix F is

Hurwitz if and only if γd ∈ (0, γ̄d ).
From Proposition 2, one can conclude that the drawback

of the bias observer (17) is that if γd is small enough, then
the stabilization goal is achieved with a long transient time;
however, it is not possible to increase the value γd beyond the
limit γ̄d to accelerate the transients without compromising the
closed-loop stability.

V. REDUCED-ORDER BIAS OBSERVER
In this section, we present a novel solution for bias estimation.
More precisely, we show that a reduced-order observer can
be combined with the nonlinear differentiators proposed in
Section III, and that the resulting nonlinear observer ensures
convergence of the estimates under certain conditions.

A. REDUCED-ORDER OBSERVER DESIGN
Define the state vector

z :=
[
x> d

]>
=
[
θ θ̇ d

]>
.

Then the measured signal is given by y =
[
1 0 1

]
z. Let ẑ

be an estimate of z and define e := ẑ − z. Then e3 is the
bias estimation error. Noting that z1 = y − z3 and recalling
Assumption 1, the following approximation holds:

sin(z1) ≈ sin(y)− cos(y)z3
= sin(y)− cos(y)ẑ3 + cos(y)e3.

Then the dynamics of z can be written as

ż =

 z2

−
k
J
I + a1 sin(z1)

0


=

 z2
a1 cos(y)e3

0

+
 0
βz
0

 , (20)

where the signal βz is available,

βz := −
k
J
I + a1 sin(y)− a1 cos(y)ẑ3.

If the velocity z2 is measured, then the reduced-order
Luenberger-like linear observer of d can be constructed as

v̇ = βz,

ẑ3 = L0(v− z2),

d̂ = ẑ3, (21)

where L0 is the scalar design parameter. Then

ė3 = −L0a1 cos(y)e3. (22)

As we consider the pendulum around the upper equilib-
rium, it is reasonable to impose the following assumption.
Assumption 2: For trajectories of the system there exists

c0 > 0 such that

min (cos(θ + d), cos(θ)) ≥ c0

along these trajectories.
Under Assumption 2, it is obvious that choosing L0 > 0

in (22) yields to exponential convergence of e3 to zero. With
the estimator (21), the stabilizing control law (8) can be
rewritten as

u = −K
[
y− d̂ ˆ̇θ ˆ̇θr

]>
. (23)

B. CLOSED-LOOP CONVERGENCE
Let us now consider what happens when the reduced-order
bias observer is in the loop with the homogeneous velocity
observers proposed in Section III, where the state z2 in (21)
is not measured directly but generated by the observer (10).
At the same time, the estimate ẑ3 is used to compensate the
bias, and we substitute y− ẑ3 in place of θ in (10). The joint
observers dynamics is now given by

˙̂z1 = ẑ2 − kp,1dẑ1 + ẑ3 − ycαp ,
˙̂z2 = βz − kp,2dẑ1 + ẑ3 − yc2αp−1,

v̇ = βz,

ẑ3 = L0(v− ẑ2). (24)

To proceed with the dynamics analysis, note that ẑ1+ ẑ3−
y = e1 + e3. Denote s :=

[
e1 + e3 e2 e3

]>. Then the error
dynamics of the observer yields

ṡ1 = s2−kp,1ds1cαp + L0kp,2ds1c2αp−1,

ṡ2 = −a1 cos(z1)s3 − kp,2ds1c2αp−1,

ṡ3 = L0kp,2ds1c2αp−1. (25)
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Since cos(z1) ≥ c0, the only equilibrium of (25) is the
origin s = e = 0. However, the error dynamics (25) is not
homogeneous for αp < 1 and thus it does not enjoy the
finite-time stability property. An important observation is that
for αp = 1 the system (25) becomes a linear time-varying
(due to cos(z1)) system, for which stability analysis can be
carried out using the standard arguments. In what follows,
we study the behavior of the error dynamics for αp close to 1
and show that local asymptotic convergence can be analyzed
using matrix inequalities, which also illustrate a trade-off
between the domain of attraction and the convergence rate,
see Remark 4 below.

Denote 1α := 1 − αp ≥ 0. Then the first-order series
expansion around αp = 1 yields

ṡ =
(
A0(z1)− A1 ln

(
s21
)
1α

)
s (26)

where

A0(z1) :=

−kp,1 + L0kp,2 1 0
−kp,2 0 −a1 cos(z1)
L0kp,2 0 0

 ,
A1 :=

L0kp,2 − 1
2kp,1 0 0

−kp,2 0 0
L0kp,2 0 0

 .
Note also that

lim
s1→0

ln
(
s21
)
s1 = 0.

Define Am and AM as the values of A0(z1) for cos(z1) = c0
and cos(z1) = 1, respectively, where c0 is defined in
Assumption 2.

Suppose there exists P = P> > 0 satisfying the following
matrix inequalities for some γ > 0 and µ ∈ R:

Q := −
(
PA1 + A>1 P

)
≥ 0,

PAm + A>mP+ µQ+ γP ≤ 0,

PAM + A>MP+ µQ+ γP ≤ 0. (27)

If the inequalities (27) hold then for all z1 such that
c0 ≤ cos(z1) ≤ 1 we have

PA0(z1)+ A>0 (z1)P ≤ −µQ− γP.

Then for the function V = s>Ps we obtain

V̇ ≤ −γ s>Ps−
(
µ− ln

(
s21
)
1α

)
s>Qs.

Define

sM := exp
(
µ

21α

)
, (28)

then it holds

s21 < s2M ⇔ µ− ln
(
s21
)
1α > 0.

Since Q ≥ 0 due to (27), it follows that for s21 ≤ s
2
M we have

γP+
(
µ− ln

(
s21
)
1α

)
Q > 0 (29)

and V̇ < 0 for s 6= 0.

FIGURE 5. The control (10), (12), and (23) with the low-pass bias
observer (17) for d = −0.08.

Let C > 0 be the largest value such that

s>Ps < C ⇒ s21 < s2M .

Then the origin of (26) is asymptotically stable with the
domain of attraction

� := {s : s>Ps < C}.

Indeed, V̇ is negative definite on � and for any initial con-
dition s(0) ∈ � we have V (s(0)) < C and V̇ < 0; hence,
the trajectory s(t) remains in the set � for all t . Recalling the
Invariance-like theorem [18], we conclude that V̇ → 0. Since
for s ∈ � the inequality (29) holds, the convergence V̇ → 0
implies s(t)→ 0.

The set � is attractive for the first-order expansion sys-
tem (26). By continuity, if 1α is small enough, then there
exists a set �α ⊂ � that is attractive for the system (25).
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FIGURE 6. The control (10), (12), and (23) with the reduced order bias
observer (21) for d = −0.08.

These results are summarized in the following proposition,
whose proof follows from the derivations above.
Proposition 3: Consider the observer (24) for the sys-

tem (20) under Assumption 2. Choose parameters such that
the LMIs (27) are feasible. Then there exist εα > 0 and a
compact set �α , such that for α ∈ (1 − εα, 1] and all initial
conditions s(0) ∈ �α it holds s→ 0 and limt→∞ |ẑ− z| = 0.
Remark 4: The matrix inequalities (27) are linear for fixed

γ > 0 and µ ∈ R, thus they can be efficiently solved with the
standard LMI tools, e.g., YALMIP [19].

C. EXPERIMENTAL RESULTS UNDER BIASED
MEASUREMENTS
In our experiments, we consider the same hardware as in
Section III-D with the parameters listed in Table 1. As it
is shown in Section III, if the optical encoder is perfectly
adjusted and d = 0 in (6), then the control law (8), (10),
and (12) achieves the goal and stabilizes the pendulum; how-
ever, if the measurements are biased then the system does not
converge to the desired equilibrium, see Fig. 4.
In this section, we present experimental results for the

case when the differentiators-based observers (10), (12)
are empowered with bias estimation. We compare both
the low-pass bias observer (17) and the reduced-order
observer (21); the control signal is computed as (23). The
parameters of the differentiators and the state-feedback gains

are taken the same as in Section III-D, see Table 2, and
parameters of the bias observers are given below. As in
Section III-D, we consider the problem of the upright pen-
dulum stabilization, where the initial position is in a neigh-
borhood of the equilibrium and the sensor offset d in (6) is
d = −0.08.

Results of the experiments with the velocity
observers (10), (12), bias observer (17), and control law (23)
are depicted in Figure 5 for γd = 0.5 and γd = 0.05 and
illustrate the trade-off between the transient time and the
closed-loop stability: for γd = 0.05 the system is stabilized
in approximately 60 seconds, and for γd = 0.5 transients are
faster but closed-loop oscillations appear.

Finally, we perform an experiment with the reduced-order
bias observer (21). For this experiment, the gain L in (21) is
chosen as L = 0.01. It can be numerically verified that for
this value of L the matrix inequalities (27) are feasible for
µ ≤ −0.2 and γ = 0.62 yielding sM ≈ 0.36. Results of the
experiment are shown in Figure 6 and illustrate stabilization
of the pendulum with fast transients.

VI. CONCLUSION
Motivated by the vertical stabilization of a walking robot,
we have studied the bias propagation in a nonlinear
model-based differentiator applied to the reaction-wheel
inverted pendulum. It has been shown that the bias leads to
velocity estimation errors that compromises the stabilization.

To this end, we have proposed to combine the differen-
tiator with a reduced-order bias observer. For the coupled
bias and velocity observer, the local (in initial estimation
errors) asymptotic convergence has been shown. The theo-
retical results of the paper are supported with the results of
experimental studies.

One possible direction of further research is to address
the robustness of the proposed approach with respect to
time-varying parameters and model uncertainties, which are
typical for advanced control applications, e.g., for walking
robot stabilization.
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