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ABSTRACT
This paper contributes to the analysis, interpretation and the use of the principal
component analysis (PCA) in a multivariate time-correlated linear process. The ef-
fect of ignoring the autocorrelation structure of the vector process is investigated the-
oretically and empirically. The results show a spurious impact of the time-correlation
on the eigenvalues. To mitigate this impact, a pre-filtering procedure to whiten the
data is applied. The methodology is used to identify redundant particulate matter
(PM) measurements in a densely populated region in Brazil. Among the eight con-
sidered monitoring stations, it is found that three are needed to characterize the
dynamic of the pollutant in the region.

KEYWORDS
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1. Introduction

PCA is one of the most widely used multivariate techniques to reduce the dimension of
a data set while keeping most of the variability of the data. To clarify how important
this technique is, Richman (1986) has shown that between 1983 and 1985 over 60 PCA
applications, or similar techniques have appeared in the meteorological/climatological
journals. More recently, between 1999 and 2000, 53 of the 215 articles of the Inter-
national Journal of Climatology have applied PCA. This represents 25%, a rate not
achieved by any other statistical technique Jollife (2002, page 71).

The use of PCA goes beyond reducing the dimension of data. For example, Karar
and Gupta (2007) have used PCA as a grouping tool of pollution sources, and Romero
et al. (1999), White et al. (1991) and Cohen (1983) have applied PCA to identify
homogeneous sub-regions of climatic stations in a large geographical area. Besides the
use of PCA as a classification tool, several studies have used the technique to extenuate
the multicollinearity in a regression analysis context and to detect outliers, see e.g., Liu
(2009), Wang and Pham (2011a), Souza et al. (2014), Souza et al. (2018) and Reisen
et al. (2019). PCA has also been used as a step procedure in other multivariate tech-
niques such as factor analysis, canonical correlation analysis, and discriminant analysis,
see e.g., Jollife (2002, Chapter 9). For example, in the financial area, Matteson and



Tsay (2011) have proposed a PCA based approach to modeling the conditional mean
vector and conditional covariance matrix of a stationary multivariate autoregressive
and conditionally heteroscedastic time series. Hu and Tsay (2014) have extended the
idea of PCA to principal volatility component analysis with a focus on the dynamic
dependence of volatility.

In the statistical control process area, Vanhatalo and Kulahci (2016) have illus-
trated the impact of the autocorrelation on the descriptive ability of PCA and on the
monitoring process control. Vanhatalo et al. (2017) have proposed a driven method to
determine the maximum number of lags in dynamic PCA in multivariate time series
analysis and a method for determining the number of principal components (PCs) to
retain. In the high-dimension setting, Hellton and Thoresen (2014) have addressed the
problem of the impact of measurement error on PCA.

In the domain of air quality monitoring, the identification of pollution sources using
PCA has been considered by many authors. For example, in the network management
context, Pires et al. (2008a,b) have used PCA with monitored pollutant concentra-
tions to manage the monitoring network of the metropolitan area of Porto (Portugal)
to reduce costs. The authors have proposed to select only one station among those
belonging to a same cluster and having similar concentrations behaviours. They have
concluded that six stations instead of ten are sufficient to measure the level of con-
centration of sulphur dioxide (SO2), and no more than two stations are required for
monitoring the PM less than 10 µm in diameter (PM10). Lu et al. (2011) have eval-
uated the performance of PCA and cluster analysis for the management of the local
air quality monitoring network of Hong Kong (China) with the aim to identify city
areas with similar air pollution behaviours and to locate emission sources. They have
found that the monitoring stations could be grouped into different classes based on
air pollution behaviours.

One of the usual assumptions of PCA is that the data are independent in time.
Nevertheless, PCA has been widely used with time series which are time-correlated,
without justification. For example, the pollution data considered in the above cited
papers are time-dependent. Not taking into account the time-dependent structure of
the data may lead to misleading analysis and interpretations. It is essential to recognize
that neglecting the required data assumption when using standard statistical methods
like PCA may produce biased estimates and spurious results see e.g., Vanhatalo and
Kulahci (2016).

The effect of time-correlation on model estimation using PCA is also one of the
main contribution of Souza et al. (2018), where the multicollinearity issue when using
pollutants as covariates in the generalized additive model is solved using PCA, and
where it is suggested to use a multivariate time series model to remove the temporal
correlation of the covariates. Following similar lines, Melo (2015) and Melo et al. (to
appear) have considered PCA in a logistic regression model to quantify the association
between the pollutants and perceived annoyance. The methodologies proposed in these
three papers were mainly based on the theoretical results discussed in Zamprogno
(2013). Wang and Pham (2011b) have also considered PCA in the regression model
to quantify the relationship between morbidity and pollutants; however, the temporal
correlation of the variables was ignored by the authors.

The purpose of this paper is to generalize the use of PCA, mainly developed for
independent observations, to multivariate time series. The effect of different correlation
structures of multivariate stationary processes on the interpretation and inference of
the PCs is illustrated. The study is justified empirically and theoretically, and a real
data set of pollutant concentrations is considered as an example of application. Due
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to the serial correlation in the data, the PCs are shown to be autocorrelated and
cross-correlated. Thus, this paper suggests to pre-whiten the data with a linear model
to attenuate the time-correlation before applying PCA. This whitening technique has
been considered by some authors in the econometric area, but without discussing the
consequence of neglecting the temporal correlation. For example, Matteson and Tsay
(2011) and Hu and Tsay (2014) applied vector autoregressive (VAR) models to remove
the serial correlation of time series of stock returns before carrying out PCA of the
residuals.

The manuscript is structured as follows: Section 2 considers the time series model
and theoretical properties of PCA with autocorrelated data. Monte Carlo simulations
are addressed in Section 3. Section 4 discusses the real data application and Section 5
concludes the paper.

2. PCA with time series data

Let Xt = [X1t, . . . , Xkt]
′, t ∈ Z, be a k-dimensional linear process defined by

Xt = µ+

∞∑
j=0

Ψjεt−j , (1)

where µ ∈ Rk, εt = [ε1t, . . . , εkt]
′ is a vector white noise process such that E(εt) = 0

and

Γε(h) = Cov(εt, εt+h) = E(εtε
′
t+h) =

{
Σε if h = 0,

0 if h 6= 0,
(2)

Σε is a nonsingular matrix, and the Ψj ’s are k×k matrices of real coefficients satisfying
Ψ0 = I, I being the identity matrix, and

∑∞
j=0 tr(ΨjΣεΨ

′
j) <∞, where tr(A) denotes

the trace of a square matrix A. It follows from (1) and (2) that Xt is a second-order
stationary process with mean µ and covariance matrix

ΓX(h) = Cov(Xt, Xt+h) = E((Xt − µ)(Xt+h − µ)′) =

∞∑
j=0

ΨjΣεΨ
′
j+h, (3)

for all h ≥ 0. In the following, it is assumed without loss of generality that µ = 0.
In the analysis of a multivariate data set, PCA looks for linear combinations of the

components capturing the highest percentage of variation of the data. This technique
depends exclusively on the covariance or the correlation matrix of the data, see, e.g.,
Jollife (2002). PCA is well suited for time-independent observations since it explains
only the contemporaneous correlation of the data and does not take into account the
time-correlation. Specifically, PCA calculates the characteristic roots and vectors of
ΓX(0). Let λ1 ≥ . . . ≥ λk ≥ 0 be the non necessarily distinct eigenvalues of ΓX(0)
with corresponding orthonormal (with respect to the usual inner product) eigenvectors
p1, . . . , pk (p′ipi = 1 and p′ipj = 0 when i 6= j). Then ΓX(0)pi = λipi for i = 1, . . . , k,
and P ′ΓX(0)P = Λ where P is the k × k matrix whose ith column is pi and Λ is the
k × k diagonal matrix whose ith diagonal element is λi, i.e., Λ = diag(λ1, . . . , λk),
see e.g., Banerjee and Roy (2014, Theorem 11.27). Equivalently, ΓX(0) admits the
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so-called spectral decomposition

ΓX(0) = PΛP ′ =

k∑
i=1

λipip
′
i. (4)

The PC vector process is given by Yt = P ′Xt, i.e., Yt = [Y1t, . . . , Ykt]
′ where Yit =

p′iXt for i = 1, . . . , k. The following proposition summarizes some properties of the
covariance of Yt.

Proposition 2.1. Let Xt be defined by (1), λ1 ≥ . . . ≥ λk ≥ 0 be the eigenvalues of
ΓX(0) with corresponding orthonormal eigenvectors p1, . . . , pk, and Yit = p′iXt be the
ith PC for i = 1, . . . , k. Then,

a) Var(Yit) = p′iΓX(0)pi = λi,
b) Cov(Yit, Yjt) = p′iΓX(0)pj = 0 when i 6= j,
c) Cov(Yit, Yj(t+h)) = p′i Cov(Xt, X

′
t+h)pj = p′iΓX(h)pj for i, j = 1, . . . , k and h 6= 0.

Proof. a) and b) follow directly from (4), and c) results from Yit = p′iXt.

Remark 1. Propositions 2.1(a),(b) appear in Anderson (2003) and are the particular
cases of an uncorrelated process, i.e, when Xt = εt in (1). Proposition 2.1(c) shows that
the autocovariances (i = j) and the cross-covariances (i 6= j) of the PCs are non-zero.
This induces some issues discussed below in descriptive and inferential procedures of
PCA in the case of time series.

Remark 2. If some eigenvalues are equal, the corresponding eigenvectors and PCs are
not uniquely defined. Nevertheless, the vector space generated by these eigenvectors
is unique, see e.g., Harville (1997, pages 537–538).

Remark 3. The properties of PCs discussed here are based on the eigenvalues and
eigenvectors of the covariance matrix of Xt. These properties are still valid for the
eigenvalues and eigenvectors obtained from the autocorrelation matrix. It is quite
common in practice to compute PCA based on the autocorrelation matrix, especially
when the unities and the variances of the variables are different. However, this is not
the case in the application problem discussed in this paper. One of the advantages
of using sample PCs based on the covariance matrix is that the statistical inferences
for the population PCs are easier than those of the sample PCs obtained from the
correlation matrix. For a discussion of the advantages and disadvantages of using
sample PCA of the covariance matrix instead of the autocorrelation matrix, see Jollife
(2002, Chapter 2).

Remark 4. Let Xt be defined by (1). It follows from (3) that

tr(ΓX(0)) = tr(Σε) + tr(

∞∑
j=1

ΨjΣεΨ
′
j). (5)
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Let An =
∑n

j=1 ΨjΣεΨ
′
j , and Aijn be the (i, j)th element of An for 1 ≤ i, j ≤ k. Then,

tr( lim
n→∞

An) =

k∑
i=1

( lim
n→∞

Aiin) = lim
n→∞

k∑
i=1

Aiin = lim
n→∞

tr(An). (6)

Since An is a nonnegative definite matrix, tr(An) ≥ 0. Then, limn→∞ tr(An) ≥ 0, and
we deduce from (5) and (6) that tr(ΓX(0)) ≥ tr(Σε). Now,

tr(ΓX(0)) = tr(PΛP ′) = tr(Λ) = tr(ΓY (0)) =

k∑
i=1

λi.

Therefore, the PCs of Xt present more variability than the ones of εt. This can lead
to a wrong use of PCA technique if the time-correlation of Xt is ignored.

A parametric class of models satisfying (1) is the k-dimensional vector seasonal
autoregressive moving average (VSARMA) process with non-seasonal orders p and q,
seasonal orders P and Q, and season s ∈ N − {0}. This process is defined by the
difference equation

φ(B)Φ(Bs)Xt = θ(B)Θ(Bs)εt, (7)

where εt is a vector white noise with E(εt) = 0 and Γε(h) given by (2), and B is the
backward operator, i.e., BXt = Xt−1 for any process Xt. The matrix-valued polyno-
mials φ(·), θ(·), Φ(·) and Θ(·) given by

φ(z) = I − φ1z − · · · − φpzp,
θ(z) = I + θ1z + · · ·+ θqz

q,

Φ(z) = I − Φ1z − · · · − ΦP z
P ,

Θ(z) = I + Θ1z + · · ·+ ΘQz
Q,

satisfy that det(φ(z)Φ(zs)) 6= 0 and det(θ(z)Θ(zs)) 6= 0 for all z ∈ C such that
|z| ≤ 1. These two conditions are known as the causality and invertibility properties,
respectively. Additional conditions have to be imposed in order to obtain an identifiable
model, see e.g. Brockwell and Davis (1991, page 431) and Reinsel (1997, section 2.3).
In (7), the matrix parameters φi’s, θi’s, Φi’s and Θi’s are unknown and have to be
estimated from the observed data X1, . . . , Xn.

The VSARMA process has a short-memory correlation structure in the sense that
the sequence of matrices ΓX(h) for h ∈ Z is summable. The vector seasonal autoregres-
sive fractionally integrated moving average (VSARFIMA) process is a linear process
defined by an extension of the difference equation (7). This process has a long-memory
behaviour in the sense that the matrices ΓX(h) are only square summable, see Chung
(2012). A VSARFIMA model is used in Section 4.

As mentioned in Remark 4, when Xt is time-correlated, the PCs of Xt have larger
variances than the ones of εt. One way to mitigate this effect is to apply to Xt a
multivariate linear filter, such as the VSARMA filter before applying PCA. In this
context, PCA is applied to εt in place of Xt in (7).

The VAR(1) model is the particular case of (7) where Xt satisfies the difference
equation Xt = ΦXt−1 + εt with Φ a matrix parameter. This model is widely used in
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modelling multivariate time series. Proposition 2.2 illustrates the effect of temporal
correlation on the PCs Yt when Xt is a VAR(1) process. This result can be extended
to more general processes. For example, this is well-known that the VAR(p) model
can be written as a VAR(1) process see e.g., Lutkepohl (2005, page 15) and Hamilton
(1994, page 259).

Proposition 2.2. Let Xt be a stationary VAR(1) process. Then ΓX(h) = ΓX(0)(Φh)′

and ΓY (h) = ΛP ′(Φh)′P for all h ≥ 0.

Proof. It follows from Brockwell and Davis (1991, Example 11.3.1) that Ψj = Φj

in (1). Then (3) implies that ΓX(h) = ΓX(0)(Φh)′ for all h ≥ 0. Since Yt = P ′Xt,
ΓY (h) = P ′ΓX(h)P = P ′ΓX(0)(Φh)′P = P ′PΛP ′(Φh)′P = ΛP ′(Φh)′P for all h ≥
0.

Remark 5. Consider the particular VAR(1) process where Φ = diag(φ1, . . . , φk) with
|φi| < 1 for i = 1, . . . , k. Then, it results from (3) that the (i, j)th element of ΓX(h),

ΓijX(h), is given by

ΓijX(h) =

∞∑
l=0

φli Σij
ε φ

l+h
j = φhj /(1− φiφj)Σij

ε , (8)

for all h ≥ 0. Therefore,

tr(ΓY (0)) = tr(ΓX(0)) = tr(Σε) +

k∑
i=1

φ2
i /(1− φ2

i )Σ
ii
ε . (9)

It follows from (9) that the variability of the PCs of Xt increases as |φi| increases,
and may be much larger than the one of the PCs of εt. Furthermore, since ΓY (h) =

ΛP ′(Φh)′P , its (i, j)th element, ΓijY (h), is given by

ΓijY (h) = λi

k∑
l=1

φhl pli plj , (10)

for all h ≥ 0, where pi = [p1i, . . . , pki]
′.

Suppose that φi = φ for i = 1, . . . , k. Then, ΓX(h) = φhΓX(0) = φh/(1− φ2)Σε for
all h ≥ 0. The eigenvectors of ΓX(h) and Σε are the same, while the eigenvalues of
ΓX(h) are the ones of Σε multiplied by φh/(1 − φ2). We have ΓY (h) = ΛP ′(Φh)′P =
φhΛ . Then, when Σε is not diagonal, the components of Xt are cross-correlated,
while the components of the PCs are not, for all h ≥ 0. Observe, using (10), that the
components of the PCs are generally cross-correlated when the parameters φi’s are
not all equal.

The VMA(1) model is the particular case of (7) where Xt satisfies the difference
equation Xt = εt + Θεt−1 with Θ a matrix parameter. Proposition 2.3 gives the
expressions of ΓX(h) and ΓY (h) when Xt is a VMA(1) process. As for the VAR(1)
model, this result can be extended to more complicated processes.

Proposition 2.3. Let Xt be a VMA(1) process where all the eigenvalues of Θ are
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less than one in modulus. Then

ΓX(h) =


Σε + ΘΣεΘ

′ if h = 0,

ΣεΘ
′ if h = 1,

0 if h > 1,

and ΓY (h) =


Λ if h = 0,

P ′ΣεΘ
′P if h = 1,

0 if h > 1.

Proof. The expression of ΓX(h) follows from the difference equation Xt = εt+Θεt−1.
On the other hand, ΓY (h) = P ′ΓX(h)P for h ∈ Z.

Remark 6. Consider the particular VMA(1) process where Θ = diag(θ1, . . . , θk) with
|θi| < 1 for i = 1, . . . , k. We deduce from Proposition 2.3 that

ΓijX(h) =


(1 + θiθj)Σ

ij
ε if h = 0,

θjΣ
ij
ε if h = 1,

0 if h > 1.

Therefore,

tr(ΓY (0)) = tr(ΓX(0)) = tr(Σε) +

k∑
i=1

θ2
i Σ

ii
ε . (11)

It follows from (11) that tr(Σε) ≤ tr(ΓY (0)) ≤ 2 tr(Σε).
If, θi = θ for i = 1, . . . , k, Σε, ΓX(0) and ΓX(1) have the same eigenvectors, while

the eigenvalues of ΓX(0) and ΓX(1) are the ones of Σε multiplied by 1 + θ2 and θ,
respectively. Furthermore, in this case, we deduce from Proposition 2.3 that ΓY (1) =
θP ′ΣεP = θ/(1 + θ2)P ′ΓX(0)P = θ/(1 + θ2)Λ. Then, the components of the PCs are
not cross-correlated for all h ≥ 0.

In practice, ΓX(0) is unknown and must be estimated from a set of observations
X1, . . . , Xn of Xt. The sample estimate of ΓX(0) is

Γ̂X(0) =
1

n

n∑
t=1

XtX
′
t, (12)

Γ̂X(0) is symmetric and non-negative definite with spectral decomposition

Γ̂X(0) = BLB′, (13)

where L = diag(l1, . . . , lk), l1 ≥ . . . ≥ lk ≥ 0 are the eigenvalues of Γ̂X(0), and B is
an orthonormal matrix whose ith column bi is an eigenvector associated to li for i =
1, . . . , k. Each eigenvalue li is an estimate of λi. Suppose that the eigenvalues of ΓX(0)
are distinct, i.e., λ1 > . . . > λk. In this case, P is unique in (4). Let D =

√
n(L − Λ)

and G =
√
n(B−P ). Under additional assumptions, Taniguchi and Krishnaiah (1987,

Theorem 1) have shown that for model (1), the joint distribution of D and G converges
as n tends to infinity. If Xt is Gaussian, then the limiting joint distribution of D and G
is normal with D and G independent and the diagonal elements of D are independent.

A major concern about using PCA is how many PCs should be selected. Several cri-
teria have been proposed in the literature such as the eigenvalues plot of Jollife (2002)
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and the mean eigenvalue test of Perez-Neto et al. (2005). Assume that the random
variables Xt are mutually independent and identically distributed with finite moments
and λ1 > . . . > λk > 0. Fujikoshi (1980, Theorem 1) has generalized Anderson (2003,
Theorem 13.5.1) to non Gaussian data and has shown that

√
n(li−λi) has the limiting

normal distribution N(0, 2λ2
i + κi4), where κi4 is the fourth-order cumulant of the ith

component Xit of Xt for all i = 1, . . . , k. Therefore, an asymptotic confidence interval
(ACI) of significance level α for λi is given by

li −
√

2l2i + κ̂i4
n

zα
2
≤ λi ≤ li +

√
2l2i + κ̂i4

n
zα

2
, (14)

where κ̂i4 is the sample estimate of κi4, F (zα
2
) = 1 − α

2 and F is the cumulative

distribution function of the N(0, 1) random variable. Now, let τm = (λ1+· · ·+λm)/(λ1+
· · ·+λk) be the fraction of the variance explained by the first m PCs, where 1 ≤ m < k,
and Rm = (l1+· · ·+lm)/(l1+· · ·+lk) be an estimate of τm. Fujikoshi (1980, Theorem 3)

implies that
√
n(Rm−τm) has the limiting normal distribution N(0,

∑k
i=1 T

2
i (2λ2

i+κ
i
4)),

where Ti = (ci − τm)/(λ1 + · · · + λk), and ci = 1 for i = 1, . . . ,m, ci = 0 for i =
m+ 1, . . . , k. Therefore, an ACI of significance level α for τm is

Rm −

√∑k
i=1 T̂

2
i (2l2i + κ̂i4)

n
zα

2
≤ τm ≤ Rm +

√∑k
i=1 T̂

2
i (2l2i + κ̂i4)

n
zα

2
, (15)

where T̂i = (ci −Rm)/(l1 + · · ·+ lk).

3. Numerical experiments

This section presents finite sample size studies to illustrate the effect of time-correlation
on the eigenvalues of ΓX(0) and on the interpretation of PCA. For this purpose,
we consider VAR(1) processes with different correlation structures. The calculus and
simulations were coded with R Core Team (2019, Version 3.6.2) and are available upon
request.

Let Xt = ΦXt−1 + εt, where matrix Σε is given by

Σε =


10 0 0 0
0 5 0 0
0 0 3 0
0 0 0 1

 (16)

and the matrix parameters Φ are displayed in Table 1. The correlation structures of
Xt depend on Φ. The white noise model Xt = εt is denoted by Model 1. Since the
matrices of the parameters of Models 2 and 3 are diagonal and Σε is also diagonal,
it follows from (8) that the covariance matrices of these models are also diagonal and
have the same eigenvectors which correspond to the natural basis of R4. Since all φi’s
are equal in Model 2, the eigenvalues of ΓX(0) in Models 1 and 2 are proportional,
which is not the case in Models 1 and 3.

Contrarily to the three first models, Models 4 and 5 present cross-correlations
between the components of Xt at different lags h. According to Proposition 2.2,
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ΓX(h) = ΓX(0)(Φh)′ for all h ≥ 0. Therefore, if the entries of ΓX(0) are nonnega-
tive, large positive entries of Φ implies large positive cross-covariances. In this sense,
Model 5 presents stronger cross-covariances than Model 4. These correlation struc-
tures may seriously affect the analysis and interpretation of the PCA. In particular, a
significant impact occurs when using Models 4 and 5, which have large positive degrees
of the correlations. These issues are discussed as follows.

The covariance matrices ΓX(0) of the VAR(1) Models 2 to 5 are displayed in Table 2.
As expected, Model 5 displays the largest covariances. For each model, it can be seen
that tr(ΓX(0)) ≥ tr(Σε), as mentioned in Remark 4.

Table 1.: Matrix parameters Φ of VAR(1) in Models 2 to 5.

Model 2 Model 3
0.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Model 4 Model 5
0.3 0.0 0.1 0.1 0.3 0.5 0.7 0.4
0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
0.2 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.1 0.0 0.3 0.8 0.6 0.0 0.3

Table 2.: Covariance matrices ΓX(0) of the VAR(1) Models 2 to 5.

Model 2 Model 3
10.99 0.00 0.00 0.00 27.78 0.00 0.00 0.00
0.00 5.49 0.00 0.00 0.00 6.67 0.00 0.00
0.00 0.00 3.30 0.00 0.00 0.00 3.30 0.00
0.00 0.00 0.00 1.10 0.00 0.00 0.00 1.01

Model 4 Model 5
11.11 0.01 0.88 0.04 29.29 1.09 0.79 25.43
0.01 5.49 0.00 0.18 1.09 5.49 0.00 1.37
0.88 0.00 3.90 0.00 0.79 0.00 3.30 0.21
0.04 0.18 0.00 1.17 25.43 1.37 0.21 38.98

Table 3 shows, for each VAR(1) model, the eigenvalues λi’s of ΓX(0) with their
respective percentage of variability λi/(λ1 + · · · + λ4). As expected, Models 1 and 2
display the same percentages since the λi’s are proportional. Model 3 presents more
variability than Models 1 and 2 because λ1 is much larger than the other eigenvalues.
Since the parameters Φ of Models 2 and 4 are close, the associated eigenvalues of ΓX(0)
and their percentages of variability are similar. A very distorted case of the percentages
is observed between Model 2 and Model 5. The large positive cross-covariance in
Model 5 drastically increases the variability of the eigenvalues of ΓX(0), and the first
PC captures almost all the variability. This is a problem of high practical relevance,
for example in the context of reducing the data dimension.

Now, more general VAR(1) models are considered in the study. The matrix Σε
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Table 3.: Eigenvalues of ΓX(0) of the VAR(1) Models 1 to 5 with their percentages of
variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

1 10.00 5.00 3.00 1.00 52.63 26.32 15.79 5.26
2 10.00 5.49 3.30 1.10 52.63 26.32 15.79 5.26
3 27.78 6.67 3.30 1.01 71.68 17.20 8.51 2.61
4 11.21 5.50 3.79 1.16 51.73 25.39 17.51 5.37
5 60.09 8.29 5.44 3.24 77.98 10.75 7.06 4.21

becomes

Σε =


127 30 47 62
30 58 33 70
47 33 64 58
62 70 58 172

 ,
and the white noise model Xt = εt is denoted by Model 6. The matrix parameters
Φ are displayed in Table 4. Note that some autoregressive parameters are negative,
which implies that the models may produce negative autocorrelations. These negative
correlations may lead to different impacts on the inferential analysis compared to the
previous cases. The covariance matrices ΓX(0) of the VAR(1) Models 7 to 10 are

Table 4.: Matrix parameters Φ of VAR(1) Models 7 to 10.

Model 7 Model 8
0.2 0.0 0.0 0.0 -0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 -0.5 0.0 0.0 0.0 -0.1 0.0
0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.9

Model 9 Model 10
0.4 0.1 0.3 0.1 0.6 0.3 0.6 0.03
0.0 0.8 0.4 0.0 -0.1 0.2 -0.1 0.2
0.2 0.0 0.3 0.0 0.1 -0.8 0.4 0.5
0.0 0.0 0.6 -0.4 0.2 0.0 0.1 -0.5

presented in Table 5. For each model, we have tr(ΓX(0)) ≥ tr(Σε) in agreement with
Remark 4. The trace of ΓX(0) represents the total variability of the PCs of Xt and
increases from Model 6 to Model 10.

Table 6 shows the eigenvalues λi’s of the matrices ΓX(0) for each VAR(1) model and
their respective percentage of variability λi/(λ1 + · · ·+ λ4). Comparing with Table 3,
it can be seen that the cross-covariances in Models 7 to 10 do not have drastic effects
in the interpretation of PCA compared to Model 6. On the contrary, the percentages
of variability are very stable across different correlation structures.

Samples of size n = 1000 of Models 6, 8, 9 and 10 with Gaussian innovations, were
generated and the sample autocorrelation and cross-correlation functions (ACF and
CCF) of the PCs were computed. The number of replications was 500. The mean of
some of these quantities are displayed in Figures 1 and 2 for Models 6 and 8 and
Models 9 and 10, respectively.
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Table 5.: Covariance matrices ΓX(0) of the VAR(1) Models 7 to 10.

Model 7 Model 8
132.29 30.00 42.73 54.39 169.33 24.00 49.47 44.29
30.00 58.00 33.00 70.00 24.00 77.33 31.43 116.67
42.73 33.00 85.33 89.23 49.47 31.43 64.65 53.70
54.39 70.00 89.23 337.25 44.29 116.67 53.70 477.78

Model 9 Model 10
240.04 193.95 104.52 81.18 575.20 44.82 183.86 120.35
193.95 399.10 110.20 101.54 44.82 74.72 43.80 46.26
104.52 110.20 94.66 72.40 183.86 43.80 175.62 42.00
81.18 101.54 72.40 203.96 120.35 46.26 42.00 234.47

Table 6.: Eigenvalues of ΓX(0) of the VAR(1) Models 6 to 10 with their percentages
of variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

6 276.42 87.71 34.22 22.65 65.66 20.83 8.13 5.38
7 402.11 125.27 50.32 35.17 65.61 20.44 8.21 5.74
8 525.90 177.62 54.26 31.32 66.65 22.51 6.88 3.97
9 626.19 164.90 112.36 34.31 66.78 17.58 11.98 3.66
10 690.65 204.24 115.34 49.78 65.16 19.27 10.88 4.70

Figure 1a) shows that the PCs are neither autocorrelated nor cross-correlated in
the case of a white noise. Figure 1b) shows that the PCs may be autocorrelated and
cross-correlated when the matrix parameter Φ is diagonal but the diagonal elements
are not all equal. These features become more clear for Models 9 and 10. Indeed,
Figure 2 shows that the full correlation structure of the data is transferred to the PCs
in the case of general matrices Φ and Σε. These empirical evidences corroborate and
illustrate Proposition 2.1.

The numerical experiments discussed in this section confirm that time-correlations
in the vector Xt have impacts on PCA. Therefore, it is necessary to introduce proce-
dures that allow the use of PCA with multivariate time-correlated data. This paper
suggest to pre-processing the data with a multivariate linear filter in order to whiten
the data before applying PCA. This is explored in the application Section. Note that
transforming the data with linear filters to attenuate the temporal structure in mul-
tivariate techniques has been also addressed in the recent work of Jaimungal and Ng
(2007), Greenaway-McGrevy et al. (2012) and Hu and Tsay (2014).

4. Application to PM10 data

PCA is used here to identify cities areas with similar PM10 concentrations, without
ignoring the time dependence of the data. We investigate whether or not the temporal
correlation of the variables affects PCA and its interpretation. In general, this issue is
not addressed in applied works, see e.g., Pires et al. (2008a,b). All the results in this
section were also obtained with R Core Team (2019, Version 3.6.2).

The data set was collected at the automatic air quality monitoring network

11
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Figure 1.: ACF and CCF plots of some sample PCs of Models 6 and 8.
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Figure 2.: ACF and CCF plots of some sample PCs of Models 9 and 10.

(AAQMN) in the Greater Vitória Region (GVR) in Brazil. The eight monitoring sta-
tions are located at urban sites of four cities in the GVR. Additionally to PM10 con-
centrations, the AAQMN monitors the total suspended particles (TSP), ozone (O3),
nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) and meteorologi-
cal variables. The PM10 concentrations (µg/m3) were measured in eight stations, from
January 2005 to December 2009. The daily averages at the eight stations constitute
the time series Xt which are plotted in Figure 3.

The sample ACF of each component of Xt are plotted in Figure 4. This figure
shows a strong weekly seasonal behaviour which is expected with daily pollution data.
In addition, the sample autocorrelations are positive and decrease slowly, which is
typical of a long memory seasonal time series.
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Figure 3.: Plots of the daily averages of the PM10 concentrations of the AAQMN.

We fit a VSARFIMA model with season s = 7 to Xt. The estimator suggested by
Reisen et al. (2014) is used to estimate the fractional parameters at the lung-run (d)
and at the seasonal period s=7 (D) with the bandwidth m = n0.5. The estimates

(d̂, D̂) and their standard deviation (σ̂(d̂), σ̂(D̂)) are displayed in Table 7. We see that
these fractional parameters are significant for each station.

Table 7.: Fractional parameters estimates for PM10 data.

Station d̂ σ̂(d̂) D̂ σ̂(D̂)
Laranjeiras 0.2588 0.0019 0.1170 0.0093
Carapina 0.2792 0.0022 0.1787 0.0107
Camburi 0.2377 0.0079 0.2282 0.0393
Sua 0.2339 0.0048 0.0694 0.0240
VixCentro 0.2194 0.0027 0.1052 0.0132
Ibes 0.2801 0.0022 0.0512 0.0112
VVCentro 0.2832 0.0029 0.1270 0.0144
Cariacica 0.1992 0.0026 0.0844 0.0128

For each i = 1, . . . , 8, we build the series Ẑit = (1−B)d̂i(1−Bs)D̂iXit and we fit a

VSARMA model (7) to Ẑt. Following the standard methodology, we choose the orders
(p, q, P,Q) with an information criterion, namely the bias-corrected Akaike information
criterion (AICC), see Brockwell and Davis (1991, Section 9.2). This criterion selects a
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Figure 4.: Sample ACF of the daily average of the PM10 concentrations.

simple VAR(1) model with the following matrix parameter

Φ̂ =



0.27 −0.13 0.17 −0.06 −0.03 0.13 −0.01 0.02
0.02 −0.05 0.10 0.01 −0.05 −0.01 0.08 0.12
0.08 −0.05 0.07 −0.04 0.07 0.07 −0.05 0.09
0.18 −0.07 0.04 0.06 0.01 0.02 0.01 0.06
0.09 −0.01 0.04 0.01 0.04 −0.03 0.07 0.09
0.08 −0.01 0.09 −0.02 −0.06 0.09 0.00 0.08
0.06 0.02 0.02 −0.05 0.02 −0.03 0.09 0.06
0.04 0.00 0.06 0.00 −0.08 0.06 0.05 0.06


.

Apart from the first diagonal element, all the coefficients of Φ̂ are quite small, which
indicates that the fractional filtering giving Ẑt extracts almost all the temporal cor-
relation of Xt. Figure 5 plots the sample ACF of each component of the residual
ε̂t = Ẑt− Φ̂Ẑt−1 and clearly shows that these components are white noises. Note that,
even if the nondiagonal autoregressive parameters are very small, they should not be
ignored in the use of PCA.

Now, we investigate the temporal correlation effect in the analysis and interpretation
of PCA applied to PM10 data. The sample estimate Γ̂X(0) of ΓX(0) is given by (12)

and its spectral decomposition is (13). Let Γ̂ε̂(0) = (1/n)
∑n

t=1 ε̂tε̂
′
t with the spectral

decomposition Γ̂ε̂(0) = CMC ′, where M = diag(m1, . . . ,mk), m1 ≥ . . . ≥ mk ≥ 0 are

the eigenvalues of Γ̂ε̂(0), and C is an orthonormal matrix whose ith column ci is an
eigenvector associated to mi for i = 1, . . . , k.

As addressed in Remark 3, in practice, it is more common to compute the PCs based
on the eigenvectors and eigenvalues derived from standardized variables, i.e, from the
correlation matrix. This is the cases when the components of the vector Xt have dis-
tinct units and very different variances. The PM10 concentrations are measured with
the same unit and have similar standard deviations; the minimum and maximum stan-
dard deviations are 7.4µg/m3 (Cariacica) and 13.12µg/m3 (Laranjeiras). In addition,
the percentages of cumulative variation explained by the PCs obtained from the auto-
correlation and autocovariance matrices are very close. For example, the cumulative
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Figure 5.: Sample ACF of the residuals of the fitted VSARFIMA model to PM10

concentrations.

percentages for the first three PCs are 60.40, 72.24, 82.94, and 61.21 70.89 78.75 in
the first and second cases, respectively. Thus, there do not seem to be any notice-
able differences between the PCs from the sample correlation and the autocovariance
matrices.

In Table 8, the four columns corresponding to the PCA of Γ̂X(0) display the eigen-
vectors bi’s, the eigenvalues li’s, the proportions li/(l1 + · · ·+ l8)’s and the cumulative
proportions (l1+· · ·+li)/(l1+· · ·+l8)’s for i = 1, . . . , 4. The four columns corresponding

to the PCA of Γ̂ε̂(0) display the eigenvectors ci’s, the eigenvalues mi’s, the proportions
mi/(m1 + · · ·+m8)’s and the cumulative proportions (m1 + · · ·+mi)/(m1 + · · ·+m8)’s
for i = 1, . . . , 4. For both PCA, the main part of the variability is captured by the first
PC, namely 61% for the PCA of Γ̂X(0) and 57% for the PCA of Γ̂ε̂(0). The proportions
for the other PCs are quite similar for both PCA. To group the monitoring stations in
classes, we select for each PC the stations with the highest factor loading in absolute
value. The coefficients in bold are larger than 0.37 in absolute value. Selecting these
coefficients, we retain the class CL1 : VixCentro, Ibes and Cariacica for the 1st PC of
Γ̂X(0), the class CL2 : Laranjeiras and Carapina for the 2nd PC of Γ̂X(0), the class

CL3 : VVCentro for the 3rd PC of Γ̂X(0), the class CL4 : Camburi and Sua for the

4th PC of Γ̂X(0), and the class CL1 : Sua, VixCentro and Ibes for the 1st PC of Γ̂ε̂(0),

the class CL2 : Laranjeiras, Carapina and Cariacica for the 2nd PC of Γ̂ε̂(0), and the

classes CL3 : CL4 : Camburi and VVCentro for the 3rd and the 4th PC of Γ̂ε̂(0),

respectively. Note that four PCs are necessary in the PCA of Γ̂X(0) to encompass the

eight stations, while three PCs are enough in the PCA of Γ̂ε̂(0).
Figure 6 shows the average daily profile of daily average PM10 concentrations at the

monitoring stations, grouped by the correspondent PC/CL category. Similar profiles
of PM10 concentrations are observed in all sites belonging to the same PC/CL cate-

gory. However, it is clear that the associations PC/CL obtained with Γ̂ε̂(0) are better
balanced and discriminate the data more clearly.

Following the same approach as Pires et al. (2008a,b), the number of monitoring
stations that should be maintained among the eight corresponds to the maximum
number of selected PCs. Based on the PCs of Γ̂X(0), the four stations Ibes, Laranjeiras,

VVCentro and Camburi are maintained, while the analysis of the PCs of Γ̂ε̂(0) leads
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Table 8.: PCA of original and filtered PM10 concentrations.

Station
PCA of Γ̂X(0) PCA of Γ̂ε̂(0)

1 2 3 4 1 2 3 4

Laranjeiras -0.3002 0.7193 -0.1756 0.1460 -0.3067 0.7090 -0.0529 0.1606
Carapina -0.3554 -0.4004 0.2628 0.1750 -0.3536 -0.5233 0.0368 0.0669
Camburi -0.3472 0.1700 0.0502 0.7019 -0.3166 0.0560 0.7079 0.5055
Sua -0.3632 0.2163 0.0406 -0.6118 -0.3722 0.2283 -0.3546 -0.1360
VixCentro -0.3864 -0.2265 -0.1026 -0.1629 -0.3856 -0.0222 -0.2168 -0.2125
Ibes -0.3869 0.1787 0.2359 -0.2271 -0.3935 0.0625 -0.1563 0.1426
VVCentro -0.3055 -0.2942 -0.8391 0.0141 -0.3222 -0.0087 -0.4764 -0.7571
Cariacica -0.3721 -0.2766 0.3542 0.0507 -0.3669 -0.4044 -0.2652 0.2383
Eigenvalue 4.8971 0.7744 0.6282 0.4973 4.5586 0.7462 0.6412 0.6050
Proportion 61.22 9.68 7.85 6.22 56.98 9.32 8.01 7.56
Cumulative 61.22 70.90 78.75 84.97 56.98 66.30 74.31 81.87
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Figure 6.: Average daily profile of PM10 concentrations grouped by the PC/CL cate-
gory.

to retain only the three stations, Ibes, Laranjeiras and Camburi. The equipment of
the others stations may be moved to alternative areas of interest to cover a larger area
of the GVR.

Figure 7 plots the sample ACF of the PCs of original and filtered PM10 concentra-
tions. Figure 7a) shows that the PCs are autocorrelated in the case of a correlated time
series. Since the filtered time series ε̂t is almost a white noise, the autocorrelations in
Figure 7b) are very small.

5. Conclusion

This paper has investigated the effect of time-correlation on the PCA technique. It
was shown that the PCs are generally cross-correlated and present more variability
compared to the case of time uncorrelated data. Explicit calculations have illustrated
the effect of time-correlation on the PCs when the data follow a VAR(1) and a VMA(1)
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Figure 7.: Sample ACF of the PCs of original and filtered PM10 concentrations.

model. The theoretical results were illustrated empirically through Monte Carlo sim-
ulations. It was found that large positive cross-covariance radically increases the vari-
ability of the PCs, and the first PC captures almost all the variability. Therefore, when
the data are strongly time-correlated, it is recommended to apply a linear filter for
whitening the data before PCA. The proposed methodology was applied to PM10 con-
centrations to identify redundant air quality measurements. The PCA of the filtered
data is more parsimonious and leads to retaining fewer monitoring stations.
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