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Interpolating Control with Periodic Invariant Sets

Sheila Scialanga1, Sorin Olaru2, Konstantinos Ampountolas1

Abstract— This paper presents a novel low-complexity inter-
polating control scheme involving periodic invariance or vertex
reachability of target sets for the constrained control of LTI
systems. Periodic invariance relaxes the strict one-step positively
invariant set notion, by allowing the state trajectory to leave
the set temporarily but return into the set in a finite number
of steps. To reduce the complexity of the representation of the
required controllable invariant set, a periodic invariant set is
employed. This set should be defined within the controllable
stabilising region, which is considered unknown during the
design process. Since periodic invariant sets are not traditional
invariant sets, a reachability problem can be solved off-line for
each vertex of the outer set to provide an admissible control
sequence that steers the system state back into the original
target set after a finite number of steps. This work develops
a periodic interpolating control (pIC) scheme between such
periodic invariant sets and a maximal admissible inner set by
means of an inexpensive linear programming problem, solved
on-line at the beginning of each periodic control sequence.
Proofs of recursive feasibility and asymptotic stability of the pIC
are given. A numerical example demonstrates that pIC provides
similar performance compared to more expensive optimization-
based schemes previously proposed in the literature, though it
employs a naive representation of the controllable invariant set.

I. INTRODUCTION

Interpolating control (IC) has been proposed as a controller
synthesis methodology for constrained dynamical systems in
[1], [2]. The roots and the principles of IC can be found
in the so-called vertex control, proposed in [3] for linear
time-invariant discrete-time systems with polytopic state and
control constraints, and later extended to uncertain plants in
[4]. Vertex control builds on the existence of an admissible
control action at each vertex of a controlled invariant set
that pushes the state away from the boundary of the set as
far as possible in a contractive sense. The vertex control
uses the homogeneity of the dynamics and scale down the
vertex control whenever the current state is in the interior
or the original controlled invariant set. The limitation of
this technique resides in the fact that the control action
exploits the full control authority only on the border of the
controllable invariant set and the convergence to the origin
would be slower than a time-optimal control action [2]. To
overcome this limitation, a switching control action has been
proposed that applies a high gain stabilising state feedback
controller when the state approaches the origin [5].
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IC emerges from the need to achieve a smooth transi-
tion from a low-gain/vertex-control that guarantees a large
stabilizing set towards a high-gain feedback controller. The
interpolation allows for the smooth transition between the
two controllers and faster convergence to the origin of
the state space [2]. The explicit version of the resulting
controller has been characterized together with the geomet-
rical properties [6] and extended to several interpolation
factors and robustness [7]. A similar design philosophy was
adopted in works dedicated to control sharing and merging
[8] as well as in extensions to different classes of control
Lyapunov functions [9], [10]. Recently, applications have
been reported in automotive industry [11], transportation
[12], and interconnected systems [13] .

The aforementioned IC schemes rely on the availability of
“large” (ideally, maximal) controllable invariant sets. How-
ever, the approximation of the maximal controllable set is a
tedious task both from the construction and from the repre-
sentation point of view (complex half-space representation).
The present paper aims to tackle this challenge by proposing
a novel IC scheme that relaxes the one-step controlled
invariance of the region which approximates the maximal
controllable set. In place of the strict controlled invariant set
within the interpolation scheme, the proposed periodic IC
(pIC) employs a sequence of periodic sets starting from a pre-
specified (and simple) initial set and given initial conditions.
Periodic invariance guarantees that the system trajectories
can be steered back in a finite number of steps by applying
a sequence of apriori computed control actions. This notion
can be resumed in terms of periodic invariance. Note that
periodic invariant sets (PIS) have been used also in MPC
to enlarge the stabilizing region and allow the state to leave
the set and return after a finite number of steps [14], [15].
Similarly, pIC considers PIS to reduce the complexity of the
representation of the invariant sets and avoid the computation
of the expensive controllable invariant set.

This work also illustrates the simplicity of the represen-
tation of the feasible region that is obtained by solving a
reachability problem on the vertices of the outer set for
the constrained discrete-time system. Reachability of state-
space regions or target sets for constrained discrete-time
systems has been investigated in the past decades [16], [17],
and it is currently a mature topic of research in control
theory, thanks to advances in computational geometry [18],
[19], [20]. Since for a particular outer set (e.g., rectangle or
hyperbox) the vertices are known beforehand, the constrained
reachability problem determines for each vertex of the outer
set a sequence of admissible controls that steers the state
of the system back into the original target set after a finite



number of time steps. The computational complexity of
pIC is concentrated in the off-line characterization of the
reachable sets. For the interpolation, an inexpensive LP
problem is developed and solved at the beginning of each
periodic cycle. Proofs of recursive feasibility and stability of
the proposed pIC scheme are given.

The rest of the paper is structured as follows. Section
II introduces the problem under study and outlines some
required definitions from invariant set theory. Section III
presents the main results of this work including the proposed
pIC scheme with constrained vertex reachability of target
sets, and required proofs of recursive feasibility and stability.
Section IV demonstrates the efficiency of pIC via a numerical
example. Section V concludes the paper.

II. PRELIMINARIES

A. System Dynamics and Constraints

Consider the discrete-time linear system,

x(k + 1) = Ax(k) +Bu(k), (1)

where x ∈ Rn and u ∈ Rm are the state and control
vectors, respectively; and A ∈ Rn×n, B ∈ Rn×m are known
matrices. The state and control vectors of (1) are subject to
polyhedral constraints:{

x(k) ∈ X , X = {x ∈ Rn : Fxx ≤ gx},
u(k) ∈ U , U = {u ∈ Rm : Fuu ≤ gu},

(2)

∀ k ≥ 0, where X and U are described via half-space
representation with Fx, Fu constant matrices and gx, gu
constant vectors of appropriate dimension and with positive
elements. The inequalities are considered component-wise
and, consequently, the sets X and U are endowed with
convexity and compactness properties and contain the origin
as an interior point.

Assume that the pair (A,B) in (1) is controllable and
thus a state-feedback controller u(k) = Kx(k) exists, where
K ∈ Rm×n is a gain matrix. A state-feedback controller
can be designed for unconstrained stabilisation with some
user-desired performance specifications.

B. Set Invariance and Periodic Invariance

This section provides some definitions on the set invari-
ance and periodic invariance [14], [21], [22], [23] that will
be used in the rest of the paper.

Definition 2.1 (Constraint-admissible Invariant Set): The
set Ω ⊆ X is a positively constraint-admissible invariant set
with respect to x(k + 1) = Acx(k), where Ac = A + BK
is a closed-loop state matrix related to (1), subject to the
local constraints (2), if ∀x(k) ∈ Ω, the system evolution
satisfies x(k + 1) ∈ Ω and Kx(k) ∈ U , ∀ k ≥ 0.

The largest positively invariant set for the system (1) in
closed-loop with a static feedback control u(k) = Kx(k)
that respects constraints (2) is called maximal admissible set
(MAS) [24]. Under stability and mild structural assumptions
on the topology of the constraints (2) [3], [22], [18], MAS

exists, it is finitely determined and can be defined in poly-
hedral form as,

Ω = {x ∈ Rn : FΩx ≤ gΩ},

where FΩ is a constant matrix and gΩ is a constant vector
of appropriate dimensions.

Definition 2.2 (Controllable Invariant Set): Given the
system (1) and the constraints (2), the set Ψ ⊆ X
is controllable invariant, if ∀x(k) ∈ Ψ, there exists
an admissible control sequence u(k) ∈ U such that
x(k + 1) ∈ Ψ, ∀ k ≥ 0.

The maximal controllable invariant set Ψ might not be
finitely determined within the class of polyhedral sets [21].
However, in the sequel, a polyhedral approximation will be
considered with the half-space representation given by,

Ψ = {x ∈ Rn : FΨx ≤ gΨ}

where FΨ is a constant matrix and gΨ is a constant vector
of appropriate dimensions.

For any scaling factor λ > 0, λS is understood as λS :=
{λx |x ∈ S} for any set S ⊂ Rn. Set invariance is a limit
case of λ-contractiveness as indicated by the next definition.

Definition 2.3 (Controllable λ-contractive Set): Given a
scalar λ ∈ (0, 1], a set Ψ ⊆ X containing the origin is called
controllable λ-contractive for (1) with respect to (2), if for
any x(0) ∈ Ψ there exists u ∈ U such that x(k + 1) ∈ λΨ,
for all k > 0.

For the special case of a contractive set with contraction
factor λ = 1 is also called controllable invariant, see
Definition 2.2. For a given λ, the maximal λ-contractive set,
i.e., the union of all λ-contractive sets for (1) with respect
to (2), is denoted by Ψλ

max.
Definition 2.4 (Controllable Periodic Invariant Set [14]):

For a given λ ∈ R[0,1) the set S ⊂ Rn containing the origin
is called controllable periodic λ-contractive with respect to
the system (1) and constraints (2) if there exists a positive
number p ∈ Z+ such that for any x(k) ∈ S there exists an
admissible control sequence u(k+ i) ∈ U , i = 0, . . . , p− 1,
such that x(k + p) ∈ λS holds. If λ = 1 the set is called
controllable periodic invariant.

Definition 2.5 (One-step Reachable Set): Given the sys-
tem (1) with inputs, the set Reach(S) is called one-step
reachable set from set S and contains the states that are
reachable from S in one step with control action u ∈ U ,

Reach(S) = {x ∈ Rn : ∃x(0) ∈ S, ∃u(0) ∈ U
s.t. x = Ax(0) +Bu(0)}.

C. Interpolating Control (IC) with Vertex Representation
IC relies on the (smooth) interpolation between a vertex

controller and a conservative high-gain feedback controller.
Fig. 1 depicts the idea behind the interpolating control
technique. The set Ψ depicted in yellow is the outer set, e.g.
controlled invariant set, and the MAS Ω is the inner set and
it is depicted in red. The convex (polyhedral) outer and inner
set are to be understood by the relationship Ω ⊆ Ψ ⊆ X .
Any x(k) ∈ Ψ can be decomposed as follows,

x(k) = s(k)xv(k) + (1− s(k)) x0(k), (3)



Fig. 1. The current state x can be decomposed as a convex combination
of xv ∈ ∂Ψ and x0 ∈ ∂Ω.

where xv(k) ∈ Ψ and x0(k) ∈ Ω, and s(k) ∈ [0, 1] is the
interpolating coefficient.

At each sampling instant, given the interpolation coeffi-
cient s(k), one can obtain the control as follows,

u(k) = s(k)uv(k) + (1− s(k))u0(k), (4)

where u0(k) = K x0(k) is an inner stabilising controller
associated with the MAS and uv(k) is the vertex control
applied to xv(k). The control (4) provides a smooth transition
between the two controllers and a fast convergence to the
origin of the state space.

Consider the change of variables r0 = (1−s)x0 and rv =
sxv , where r0, rv are vectors of appropriate dimensions.
It follows that r0 ∈ (1 − s) Ω and rv ∈ sΨ. The state
decomposition (3) can be rewritten as r0 = x − rv . To
solve the interpolation problem, an optimisation problem is
formulated. The minimising problem is the following LP
problem (index k is omitted for clarify):

min
s,rv

s subject to:


sgΩ − FΩrv ≤ gΩ − FΩx,

−sgΨ + FΨrv ≤ 0,

0 ≤ s ≤ 1,
(5)

where the zero in the second inequality is a vector of
zeros with length equal to the length of the vector gΨ. The
solution of the LP problem is the interpolating coefficient s∗

and the variable previously defined vector r∗v . The original
state variables can be recovered from r∗0 = x − r∗v with
change of variables introduced previously. The solution of
the optimization (5) leads to an admissible control action
(4) at each time step that stabilises the constrained system
[2]. Moreover, once the state enters the MAS – Ω, the
interpolation control is equivalent to the stabilising high-gain
feedback controller u0(k) = K x0(k).

III. PERIODIC INTERPOLATING CONTROL

The IC presented in Section II-C relies on the availability
of controllable invariant sets whereby the outer vertex con-
troller is defined to enlarge the stabilising set. Moreover the
complexity of vertex control might be high for high-order
systems, which limits the applicability of the approach.

Fig. 2. Periodic invariant sets for the closed-loop equation x(k + 1) =
(A + BK1)x, where u = K1 x is the low-gain state feedback control
input. The rectangle B is the starting set and the evolution of the state
returns into the target set after 11 steps.

This section presents the main results of this paper. To
overcome the complexity of the vertex control we employ
periodic invariant sets as an ingredient for the interpolation
procedure. The idea is to provide a simple alternative in
case that controllable invariant sets cannot be determined
or are unknown during the design process. It can also be
seen as a possible enlargement of the stabilising region in
the case when the state/input constraints can be relaxed to
hold periodically.

A. Periodic Invariance

Consider a set with convenient representation (e.g. rectan-
gle, hexagon). The set has to be defined in the controllable
area of the constrained system (1)-(2) and needs to contain
the MAS. Although the set is defined in the controllable area,
it cannot guarantee its invariance with respect to the evolution
of the state, since it is not an invariant set per se. In order
to guarantee that the state will evolve towards the origin, we
initially consider the constrained system (1)-(2) associated
with a low-gain state-feedback controller u(k) = K1x(k),
where K1 ∈ Rm×n is a gain matrix, which asymptotically
stabilises the system.

Fig. 2 shows an initial rectangle B that verifies the state
constraints (in white) and the sequence of sets that starts from
B and re-enters the target set in p = 11 steps. The sequence
of sets is plotted to show the periodic invariance idea and
how the period length is determined. Periodic invariant sets
computed as reachable sets with low-gain controller (see Def.
2.5) do not verify the state constraints necessarily. Periodic
invariance allows for the state vector to leave the invariant
set temporarily but return into the set in a finite number of
time steps, i.e., to leave the set for k < p, where p is the
length of the period, and converge to the MAS at k = p.

Next section presents an interpolating control approach
based on reachability enhancement. To this end, a con-
strained vertex reachability of target sets problem offers an
admissible control sequence that steers the state of the system
back into the original target set after a finite number of steps.

B. Periodic Invariance and Constrained Vertex Reachability

The proposed scheme with constrained vertex reachability
of target sets involves off-line and on-line procedures. The



off-line procedure involves an easy representation of the
outer controllable invariant set (e.g., a rectangle or hexagon
or octagon), and the solution of a constrained reachability
problem for each vertex of the outer set. Since for a particular
outer set (rectangle or hexagon or octagon) the vertices are
known beforehand, the reachability problem determines for
each vertex of the outer set a sequence of admissible controls
that steer the state of the system back into the original target
set after a finite number of time steps. The on-line procedure
involves the interpolation between the MAS Ω and the simple
outer set via the solution of an inexpensive LP problem.

1) Offline p-step Reachability Problem: Consider the lin-
ear time invariant system (1) subject to state and control
constraints (2). Assume that a state feedback controller
u(k) = Kx(k) exists, which satisfies some user-desired
performance specifications, and computes the maximal ad-
missible set Ω associated to it. Ω plays the role of inner
set in the proposed interpolating control scheme. Assume
an outer set B ⊆ X with n parallel edges (e.g. in R2 for
a rectangle n = 2, hexagon n = 3, octagon n = 4, etc.).
Let vi, i = 1, . . . , 2n be the vertices of the relevant outer
set. The objective of the reachability problem is to compute
a sequence of admissible controls uvi for each vertex vi
that steers the state of the system back into the target set B
after a finite number of pi steps. The constrained reachability
problem allows us to satisfy the constraints, since the outer
set representation (e.g. rectangle) is not an invariant set (see
Fig. 2). In other words, it is not guaranteed that the state will
remain inside the outer set at each time step without solving
the constrained reachability problem. However, the periodic
invariance property guarantees that the state trajectory will
return into the target set at the end of the periodic sequence.

With a slight abuse of notation, denote uvi =
{uvi(0), . . . , uvi(pi − 1)} to be the pi admissible control
sequence for each vertex vi, i = 1, . . . , 2n. The controls
uvi are obtained by the solution of the following constrained
reachability problem for each vertex vi:

λ∗ (uvi(0), . . . , uvi(pi − 1)) = min
uvi

,λi

λi

subject to:

Avi +Buvi(0) ∈ X ,
A2vi +ABuvi(0) +Buvi(1) ∈ X ,
...
Api−1 vi +Api−2Buvi(0) + · · ·+Buvi(pi − 2) ∈ X
Api vi +Api−1Buvi(0) + · · ·+Buvi(pi − 1) ∈ λiB
uvi(k) ∈ U , k = 0, . . . , pi − 1,

0 ≤ λi < 1.
(6)

The solution of the reachability problem for each vertex
vi, i = 1, . . . , 2n of the target set B is a sequence of
admissible controls that steers the vertex vi into the target
set in a contractive way, i.e., with a scaling factors λi (see
Definition 2.3). The first pi inequalites in (6) guarantee
that the evolution of the state verifies the state constraints.
The second to last inequalities guarantee that the controls

Fig. 3. Interpolating control concept with inner set Ω (red) and outer set
the rectangle B (blue): x0 ∈ ∂Ω and xv ∈ ∂B . The state constraints are
the yellow rectangle.

{uvi(0), . . . , uvi(pi − 1)} verify the control constraints, i.e.
uvi(k) ∈ U , k = 0, . . . , pi − 1 . Finally, the last inequality
steers the vertex vi inside the target set B.

The period length pi, i = 1, . . . , 2n, is defined for each
vertex such that the reachability problem (6) has an admissi-
ble solution. A common period length for the constrained
system (1)–(2) can be then defined as the least common
multiple between all pi, i = 1, . . . , 2n:

p = l.c.m. pi i = 1, . . . , 2n. (7)

Any point xv in the boundary of the outer set B can be
defined as a convex combination of its vertices vi. Then,
there exists a sequence of p admissible control actions
that steer the state of the system back into the target set
in p steps. Note that the sequence of admissible controls
{uvi(0), . . . , uvi(pi − 1)}, i = 1, . . . , 2n is stored in order
to be accessed later on to steer the initial state x ∈ B back
into the target set B via periodic interpolation.

2) Online pIC with Constant Interpolating Coefficient:
Consider the initial state x(0) that is defined inside the
outer set B (and target set of periodic control). A scaling
factor λ∗1 ∈ [0, 1] can be computed such that the initial
state is contained in the contractive rectangle λ∗1B. λ∗1 can
be considered as the smallest contractive factor such that
x(0) ∈ λ∗1B, and can be obtained by solving the LP problem:

λ∗1 = min
λ

λ

subject to:{
FB x ≤ λ gB,

0 ≤ λ ≤ 1,

(8)

where FB and gB are the matrix and the vector that defines
the half-space representation of B. Then, λ∗1B can be set as
the target set for our periodic control sequence.

The state x(0) can be decomposed as x(0) = s(0)xv(0)+
(1 − s(0))x0(0) by solving the LP problem (5) with Ψ =
B. The states xv and x0 lie on the border of B and Ω,
respectively (see Fig. 3). Then, xv(0) can be written as a



convex combination of the vertices of the outer set B, i.e.,

xv(0) =

2n∑
i=1

αi(0) vi, αi ≥ 0,

2n∑
i=1

αi = 1, (9)

where αi, i = 1, . . . , 2n are convexity coefficients in the unit
simplex. The control action at k = 0 is a convex combination
of the state feedback control applied to the state x0(0) and
the combination of the controls applied to the vertices vi, as
in the decomposition (9), i.e.,

u(0) = s(0)

2n∑
i=1

αi(0)uvi(0) + (1− s(0))Kx0(0),

where uvi(0) is the first element of the control sequence (6)
applied to the vertex vi. For the next p − 1 steps, consider
the p-sequence of interpolating controls, which are available
from the reachability problem (6), to obtain the control,

u(k) = s(0)

2n∑
i=1

αi(0)uvi(k)+(1−s(0))K(A+BK)kx0(0),

(10)
for k = 0, . . . , p−1. The control action (10) is applied to (1)
for p steps or until the state reaches one of its target sets, i.e.,
either the contractive rectangle λ1B or the admissible set Ω.
The control action (10) guarantees that the initial state x(0)
enters the contractive rectangle λ1B in p steps maximum.
After the state returns into the rectangle, a new periodic
sequence is computed. Note that in (10), the interpolating
coefficient s and the coefficients αi, i = 1, . . . , 2n, in the
convex combination (9) are kept constant, i.e. s(k) = s(0)
and αi(k) = αi(0), k = 1, . . . , p, i = 1, . . . , 2n.

The contractive factor λ associated to the target set B is
updated for the new state x(k̄) by solving the LP problem
(8), where k̄ is the first time step of the periodic sequence.
The current state would be inside λ2B, λ2 < λ1, where B is
the outer set of the periodic IC. After a new λ is obtained,
a new interpolating decomposition (s(k̄), xv(k̄), x0(k̄)) is
computed between the outer set B and the inner set Ω with
(5). The outer state is defined as convex combination of the
vertices of the rectangle as in (9) with coefficients αi(k̄),
i = 1, . . . , 2n. Similar to the control (10) applied to the
initial state, a sequence of pIC associated to the new state is
applied to the system, i.e.,

u(k̄ + k) = s(k̄)

2n∑
i=1

αi(k̄)uvi(k̄ + k)

+ (1− s(k̄))K(A+BK)kx0(k̄),

(11)

for k = 0, . . . , p − 1, where s(k̄) is the new interpolating
coefficient to be kept constant in the new periodic sequence.

Algorithm 1 summarises the overall algorithmic scheme to
determine the pIC using the constrained reachability problem
outlined in this section. At the beginning of a periodic
sequence, the contractive factor λ is computed and a state
decomposition (3) is obtained as solution of the optimisation
problem (5). The periodic interpolating control action (11)
is then applied to the state for p steps (see (7)) or until

Algorithm 1: pIC: Periodic interpolating control
using constrained vertex reachability

input : System matrices A, B; High-gain feedback
matrix K; Sets X , U ; Outer/target set B
(rectangle or hexagon or octagon); Number
of steps N .

output: State evolution x; Applied control u;
Interpolating coefficient s.

1 Solve the reachability problem (6) for each vertex vi,
i = 1, . . . , 2n:
• Store the control actions uvi ;
• Determine a common period p for the overall system

as l.c.m.(pvi);
2 Define the initial state x(0) that belongs to B;
3 Define x← x(0), l← 0, k̄ ← 0, λx ← 1;
4 for i = 1 to N do
5 if x /∈ Ω then

if (l = p) or (x ∈ λxB) then
Compute the scaling factor λx = minλ,
λ ∈ [0, 1], such that x ∈ λxB;
Compute (s, xv, x0) solving the LP
problem (5);
Set k̄ ← k̄ + l;
Apply the control u (11) with k = 0;
Set l← 1;

end
else

Apply the control u (11) with k = l;
Set l← l + 1;

end
end
else

Apply the control u = Kx;
Set s← 0;

end
Update x = Ax+Bu

end

it reaches one of its target sets, i.e., either λjB, where j
is the prevailing periodic sequence, or the admissible set
Ω paired to a stabilising feedback controller. If the state
enters the scaled target set, a new periodic sequence starts
afterwards. On the other side, if the state enters the MAS
in less than p steps, the control action becomes the state-
feedback controller u = Kx (i.e., s = 0).

Remark 3.1: Periodic interpolating control is introduced
in order to provide an easy half-space representation of the
controllable invariant set and reduce the computational com-
plexity of the online conmputations. Section III-B.2 assumes
polyhedron with parallel edges. However, this approach can
be applied to any convex polytope. One request might be
that contains a set of initial points of interest.

C. Recursive Feasibility and Asymptotic Stability

This section provides the necessary proofs of recursive
feasibility and asymptotic stability of the proposed periodic



interpolating control in Section III-B.1 and III-B.2 with
constrained vertex reachability for the linear system (1)-(2).

1) p-step feasibility: For p-step feasibility of the pIC,
we need to prove that u(k) ∈ U and that if the state
x(k) is feasible at time k, it will be also feasible at time
k + p. In other words there exists an admissible control
sequence u(k) ∈ U that steers the state in the feasible
set in p steps. Let uvi be the vector of admissible control
sequence {uvi(0), . . . , uvi(p− 1)} that steers each vertex
vi, i = 1, . . . , 2n into the rectangle as solution of the
reachability problem (6), and let p be the number of time
steps required to bring the states contained in the outer set
B back into the target set. The next theorem provides a proof
of the p-step reachability problem presented in Section III-B.

Theorem 3.1: The periodic interpolating control (3), (4),
(5), (11) is p-step feasible for the linear time invariant system
(1) with state and control constraints (2) and for all states
inside the feasible region B. That is, the state will return
inside the feasible set after p steps, i.e.,

∀x(k) ∈ B =⇒ x(k + p) ∈ B, k ≥ 0.

Proof: We want to prove that u(k) ∈ U for all k ≥
0. The control actions needs to verify Fuu(k) ≤ gu, with
u(k) = s(k)uv(k) + (1− s(k)) u0(k), ∀k ≥ 0. Firstly, we
prove that the outer control uv verifies the control constraints
(the index k is omitted for clarity):

uv =

2n∑
i=1

αi uvi , αi ≥ 0,

2n∑
i=1

αi = 1 (12)

Fu uv = Fu

2n∑
i=1

αi uvi

=

2n∑
i=1

αiFu uvi ≤
2n∑
i=1

αi gu = gu. (13)

The last inequality in (13) holds because uvi is one of the
control actions and solutions of the reachability problem (6).
We now prove that the control action (11) is admissible:

Fuu(k) = Fu (s(k)uv(k) + (1− s(k)) u0(k))

= s(k)Fuuv(k) + (1− s(k))Fuu0(k)

≤ s(k)gu + (1− s(k)) gu

= gu,

(14)

where the last inequality hold from (13), where u0 is control
action within the MAS Ω.

Now we go back to prove that the set B is p-step feasible
set, that is, for all x(k̄) ∈ B, then x(k̄ + p) ∈ B. Consider
the state decomposition,

x(k̄) = s(k̄)xv(k̄) +
(
1− s(k̄)

)
x0(k̄),

obtained from the solution of the LP problem (5). The
inner state x0 ∈ Ω evolves with the stabilising high-gain
feedback controller as the closed-loop system x0(k̄ + 1) =
(A+BK)x0(k̄), while the outer state xv ∈ B is contained
in the boundary of the set B and evolves with the outer con-
troller uv . During the p-step periodic sequence, xv evolves

according to: xv(k̄+k) = Axv(k̄+k−1)+B uv(k̄+k−1)
for k = 1, . . . , p. After p steps, the state xv(k) returns into
the target set B because of the construction of the periodic
invariant set sequence, i.e., xv(k̄ + p) ∈ B. The inner state
evolves according to: x0(k̄ + k) = (A + BK)k x0(k) for
k = 1, . . . , p. Since Ω is computed as the MAS of the system
with control u = Kx, after p steps the state x0(k̄) is inside
the MAS, i.e. x0(k̄ + p) ∈ Ω.

From the state decomposition (3) and the interpolating
coefficient s(k̄) computed for x(k̄), we obtain that the outer
state evolves according to:{
s(k̄)xv(k̄ + k) = s(k̄)(Axv(k̄ + k − 1)B uv(k̄ + k − 1))

s(k̄)xv(k + p) ∈ s(k̄)B,
(15)

for k = 1, . . . , p − 1, while the inner state x0(k) evolves
according to:{

(1− s(k̄))x0(k̄ + k) = (1− s(k̄)) (A+BK)
k
x0(k̄),(

1− s(k̄)
)
x0(k̄ + p) ∈ Ω.

(16)
for k = 1, . . . , p − 1. The initial state x(k̄) after p steps is
decomposed as,

x(k̄ + p) = s(k̄)xv(k̄ + p) + (1− s(k̄))x0(k̄ + p),

where s(k̄)xv(k̄+ p) ∈ s(k̄)B and (1− s(k̄))x0(k̄+ p) ∈ Ω.
Since Ω ⊆ B, it follows that (1− s(k̄))Ω ⊆ (1− s(k̄))B and
x(k̄+p) is convex combination of points in B, i.e. x(k̄+p) ∈
B, which concludes the proof.

2) Asymptotic stability: The following theorem provides
a proof of asymptotic stability.

Theorem 3.2: The periodic interpolating control (3), (4),
(5), (11) guarantees asymptotic stability of the linear time
invariant system (1) with state and control constraints (2) for
any initial point x(0) ∈ B. Proof: We want to prove
that for each initial state in the feasible set, x converges to Ω
in finite time. Consider V (x(k)) = s∗(x(k)), ∀x ∈ B \Ω as
candidate Lyapunov function. After solving the LP problem
(5) for the state x(k) and applying the control (11) for p
steps, one obtains,

x(k + p) = s∗(x(k))xv(k + p) + (1− s∗(x(k)))x0(k + p),

where xv(k + p) ∈ B is the outer state obtained after
applying the outer controller for p steps and x0(k + p) =
(A+BK)p x0(k) ∈ Ω. Hence, s∗(x(k)) is feasible solution
of the LP problem (5) at time k + p. Solving the LP
(5) again, one gets s∗(x(k + p)) and state decomposition
x(k + p) = s∗(x(k + p))x∗v(k + p) + (1 − s∗(x(k +
p)))x∗0(k + p) with x∗v(k + p) ∈ B and x∗0(k + p) ∈ Ω.
Since s∗(x(k + p)) ≤ s∗(x(k)), the candidate Lyapunov
function V (x) is non-increasing. Furthermore, since the outer
controller uv is contractive, it guarantees convergence to Ω
in finite time. Inside Ω, the interpolating coefficient s(x) is
null and the control action is the stabilising state feedback
control u = Kx. Finally, since the local feedback controller
is contractive, asymptotic stability is guaranteed for all x ∈ B
with control action (11).



IV. NUMERICAL EXAMPLE

Consider the discrete-time linear system with two state and
one control variables in [25]. The state and control matrices
are as follows

A =

[
1 0.1
0 0.99

]
, B =

[
0

0.0787

]
. (17)

State and control variables are subject to constraints,

|xi| ≤ 1 with x = [x1 x2]
T
, i = 1, 2 and |u| ≤ 2. (18)

Our goal is to compute with the proposed periodic interpo-
lating control (pIC) using constrained vertex reachability of
target sets presented in Section III a control action that satisfy
the state and control constraints (18) at each time step.

System (17) is controllable and a state feedback controller
that stabilise the system can be defined as u = K x with,

K = −
[
30.3781 9.6139

]
. (19)

The closed-loop system A + BK has complex eigenvalues
λ1,2 = 0.6167±0.3036ı with module 0.6874 < 1. Given that
the module of the eigenvalues is smaller than the unit, the
system is stable and Ω is the maximal admissible set that
verifies the system constraints (18) with a high-gain state
feedback matrix (19). Fig. 4(e) depicts in red the set Ω with
half-space representation Ω =

{
x ∈ R2 : FΩ x ≤ gΩ

}
.

In order to apply the pIC strategy, consider a rectangle
with edges parallel to the axis B = {x : FBx ≤ gB} with,

FB =


1 0
0 1
−1 0
0 −1

 and gB =


0.6
0.6
0.6
0.6

 , (20)

that contains the maximal admissible set Ω. B is depicted
in blue colour in Fig. 4(e) and plays the role of outer set in
the computation of periodic interpolating control. Note that
the choice of the rectangle is arbitrary but it has to verify
the state constraints and has to contain the inner stabilisable
set Ω, i.e. Ω ⊆ B ⊆ X . The maximal controllable set
Ψ =

{
x ∈ R2 : FΨ x ≤ gΨ

}
is depicted in yellow and will

be used to implement the IC approach in [26]. Note that Ψ
is considered unknown for the proposed pIC in Section III.

The set B is not controllable invariant. It is chosen as a
subset of the maximal controllable set Ψ, and thus for every
state x ∈ B a control action can be computed that verifies the
control constraints u ∈ U while the evolution of the state may
not be within the rectangle B. However, convergence into the
target rectangle is guaranteed in a finite number of steps with
a sequence of admissible controls that can be obtained using
the reachability problem (6).

As first step in order to implement the pIC for the
constrained system (17)–(18), four reachability problems (6)
for the four vertices of the rectangle B are solved. The four
vertices of B read: v1 = [0.6 0.6]

T, v2 = [−0.6 0.6]
T,

v3 = [−0.6 − 0.6]
T, and v4 = [0.6 − 0.6]

T. From the
solution of the reachability problem (6) for the four vertices
vi, i = 1, . . . , 4, we obtain the periodicity of each vertex with

p1 = p3 = 9 steps and p2 = p4 = 1 steps. Thus the least
common period length equals to p = 9 of the LTI system.

Figs 4(a)–4(c) show the state and control trajectories for
the initial state x(0) = [0.55 0.55]

T under pIC and traditional
IC [26] (where Ψ is used). As can be seen, both approaches
exhibit similar state trajectories, albeit with different control
actions and different interpolating coefficients (see Fig. 4(d)).
The scaling factors λ are λpIC = {0.9167, 0.8560}. The
control effort of the two approaches is: ‖upIC‖2 = 7.1749
and ‖uIC‖2 = 6.3172 for pIC and IC, respectively. Obvi-
ously the pIC needs more effort to stabilise the system due
to periodic invariance but is less computational expensive and
employs as outer set Ψ a simple rectangular representation.

Fig. 4(d) depicts the interpolating coefficients for the two
methods. As can be seen, the interpolating coefficient of
pIC takes the value s = 0.9 and remains constant over
p = 9 steps. Then, it decreases to s = 0.8 for the new
periodic sequence with p = 5 steps. Finally, it takes the value
s(15) = 0 at k = 15 because the system state has entered
the MAS, and thus the high-gain state-feedback controller
is applied. On the other hand, the interpolating coefficient
for IC is decreasing at every time step until reaches s = 0,
that is, the state x is in the MAS. In both approaches, the
interpolating coefficient plays the role of Lyapunov function
that guarantees convergence. It should be noted that the two
approaches converge to the MAS at k = 15, see Fig. 4(d)
(i.e., their interpolating coefficients s(15) = 0 at k = 15).
Fig. 4(f) shows the evolution of system state in the R2-
space under the two methods for the initial point x(0) =
[0.55 0.55]T.

V. CONCLUSIONS

This work presented a novel low-complexity interpolating
control scheme with periodic invariance and constrained
vertex reachability of target sets for linear systems with state
and control constraints. It relies on an easy representation
of the outer controllable invariant set (e.g., a rectangle or
hexagon or octagon), and then solves a reachability problem
for each vertex of the outer set for the constrained discrete-
time system under study. Since for a particular outer set (e.g.
rectangle) the vertices are known beforehand, the constrained
reachability problem determines for each vertex of the outer
set a sequence of admissible controls that steer the state
of the system back into the original target set after a finite
number of time steps. For the interpolation, an inexpensive
LP problem is solved at the beginning of each periodic cycle.

Proofs of p-step recursive feasibility and asymptotic stabil-
ity of the periodic IC scheme are given. The numerical exam-
ple demonstrated that the proposed approach, although em-
ployed a naive rectangular representation of the controllable
invariant set Ψ, provided similar performance to the more
expensive traditional IC while it guaranteed convergence and
satisfaction of the state and control constraints. Results in
this work were demonstrated in the R2-space, though their
extension to high-dimensional spaces is straightforward (e.g.,
a box or cube can be used in R3-space instead of a rectangle).
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Fig. 4. (a), (b), (c): state and control trajectories for the initial state [0.55, 0.55]T; (d): interpolating coefficient; (e) Invariant sets; (f) State
evolution for the initial state [0.55, 0.55]T. pIC is marked with blue stars and standard IC with black circles.
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