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ABSTRACT Acousto-electric tomography (AET) involves three steps to retrieve the distribution of
conductivity in a domain of interest (DOI): measure the potential on the DOI boundary (usually with a
limited number of electrodes set there), compute the power density from this potential, use it to retrieve
the distribution sought after. Almost all developed algorithms for AET assume that the power density is
known, so their focus is mostly on the last step. A complete framework for AET is proposed herein to
connect the three steps, the complete electrode model (CEM) being used to simulate the voltages measured
on electrodes. The potential on the whole DOI boundary is reconstructed from such voltages. Then, the power
density is computed, and the conductivity distribution in the DOI retrieved. Amethod based on singular value
decomposition (SVD) is proposed. This method and the iterative Levenberg-Marquardt method are used for
numerical illustration. The SVD-based method yields the potential on the whole DOI boundary, and a gross
map of the conductivity distribution is also obtained, to serve as initial guess of the Levenberg-Marquardt
method to yield the conductivity contribution with higher accuracy.

INDEX TERMS Acousto-electric tomography, electrical impedance tomography, complete electrodemodel,
singular value decomposition, Levenberg-Marquardt method.

I. INTRODUCTION
Electrical impedance tomography (EIT) has attractive appli-
cations in medical imaging [1]–[3]. In the measurement,
a number of electrodes are placed at the boundary of the
domain of interest (DOI) and a given electrical current is
injected between a pair of electrodes. The potentials on the
other electrodes are then measured. It goes on likewise for
every pair, and the corresponding measurements then yield
a whole set of data which can be used to produce an image
of the electrical conductivity distribution within the DOI,
two-dimensional at least if proper symmetries or simplifica-
tions, three-dimensional at best. However, the total number of
measurements is still much smaller than the number of points
to reconstruct, thus EIT is an ill-posed inverse problem, and
the spatial resolution remains low compared to other medical
imaging methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ge Wang .

Some hybrid imaging methods [2] have been devel-
oped to overcome ill-posedness of electrical impedance
tomography (EIT) and to correspondingly improve the image
quality [3]. Other methods, e.g., learning structural spar-
sity via a Bayesian approach [4], [5] and some based on
multi-physics models [6], [7] exist as well. AET is applied
to determine the internal conductivity of a physical body
with better stability and resolution compared to the ill-posed
EIT. The main idea is to carry out a classical EIT mea-
surement while a known focused ultrasonic wave travels
through the DOI. The high intensity of the pressure pro-
duced by the acoustic wave creates a small local deformation
within the DOI, and this deformation locally changes the
electrical conductivity, hence the electrical current distribu-
tion which further changes the electric voltages measured
on the electrodes. The higher the electrical conductivity
in the acoustic wave focal zone, the larger the change.
This deformation also influences the resolution of the imag-
ing [1]. The resulting changes of the boundary potential can
be recorded with EIT measurements [8], which are then
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FIGURE 1. The three steps for AET and the complete framework for AET
proposed in this contribution.

used to compute the power density [1], [9] for conductivity
reconstruction.

There are three steps in AET to retrieve the conductivity
in the DOI as well-known: measure the potential on the DOI
boundary; compute the power density from this potential; use
it to reconstruct the distribution of conductivity in the DOI.
This is sketched in Fig. 1. In the second step, the reconstruc-
tion of the power density can be achieved from potentials on
the whole DOI boundary, following [1]. Yet a limited number
of electrodes is set in practice on the DOI boundary [9], and
only their voltages are measured. That is, the second step
cannot be achieved directly, since one needs to retrieve the
potential on the whole DOI boundary before computing the
power density.

In the existing literature, almost all applications of algo-
rithms for AET consider that the power density is known,
so focus is mostly on the third step of AET as investigated
earlier in [10]–[12]. In the present contribution, all three steps
are considered, CEM being used to simulate the measured
voltages on electrodes since it appears as the model that
provides simulated data best matching measured ones [9].

In a previous work [10], it was shown that the boundary
potential converges much faster compared to the convergence
rate of the conductivity in an iterative reconstruction process
for EIT or AET —mainly because the boundary voltages
measured on theDOI boundary are not sensitive to the interior
changes of conductivity, e.g., [8]. This enabled to acceler-
ate the convergence of the optimization procedure for the
AET based on CEM and the Levenberg-Marquardt algorithm,
a good performance being achieved.

In the present contribution, this observation has led to a
method to reconstruct the boundary potential from an EIT
measurement (voltages on a limited number of electrodes),
which provides the necessary data to compute the power den-
sity for the retrieval of the conductivity in the DOI. In doing
so, the aforementioned second step is completed, and hence
a complete framework for AET follows.

To illustrate the feasibility of the proposed framework
for AET, the CEM is used to simulate the voltages on the
electrodes. A method based on singular value decomposi-
tion (SVD) is proposed and applied to obtain the boundary

potentials from the boundary voltages measured, a low-
accuracy conductivity distribution being also obtained dur-
ing this first step. The latter is taken as initial guess in the
next step, a Levenberg-Marquardt method as discussed in
[10], [13] yielding the conductivity distribution with high
accuracy from the power density.

The contribution is organized as follows. In section II,
the complete electrode model is introduced and a singular
value decomposition method for EIT is investigated. The
Levenberg-Marquardt method based on a continuum forward
model is also presented. In Section III, numerical experiments
are carried out. The proposed strategy is illustrated and val-
idated with the methods introduced in the previous section.
Conclusions and perspectives are in section IV.

II. RECONSTRUCTION ALGORITHMS
A DOI imaged by AET is modeled as a bounded Lipschitz
domain � ⊂ Rn, n ≥ 2. The changes caused by the
acoustic wave can be recorded with EITmeasurements on the
boundary ∂� [14], [15]. The power density in� is defined as

E(σ ) = σ |∇u(σ )|2, � ⊂ Rn. (1)

Here, σ is the conductivity distribution in domain�, and u(σ )
is the electrical potential produced by applying either voltage
or electric current on ∂�. Given noisy measurements Eδ(σ )
of the true power densities E(σ ), the problem is to find the
conductivity map σ by minimizing the functional

min
σ
||Eδ(σ )− E(σ )||L2(�). (2)

E(σ ) can be retrieved from the boundary measurements [1],
[16]. Yet the non-linear relationship between E(σ ) and σ
renders this problem nonlinear [17].

The proposed strategy for AET is sketched in Strategy 1.
Data Ul,ε and Ul are the measured voltages on the electrodes
el , l = 1, 2, . . . ,N , with and without the perturbation of
the focused ultrasonic wave, respectively. In this contribution,
those are simulated with the CEM model, as the most practi-
cal model for EIT, and able to simulate the electrical potential
with very good accuracy [18]. It is given with equations (3):

∇ · σ∇u = 0, in �, (3a)

σ
∂u
∂ν
= 0, on ∂�\

L⋃
l=1

el, (3b)∫
el
σ
∂u
∂ν
= Il, on el for l = 1, . . . ,N , (3c)

u+ zlσ
∂u
∂ν
= Ul, on el . (3d)

N electrodes are attached at the boundary ∂�. A known total
current Il is injected through the l-th electrode. Here, ν is
the outward unit normal vector to boundary ∂�, el the area
occupied by the l-th electrode, and ∂/∂ν indicates the direc-
tional derivative of u along ν, zl being the contact impedance
corresponding to the l-th electrode. To ensure existence and
uniqueness of the solution, this model must include the law of
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charge conservation:
∑N

l=1 Il = 0, and
∑N

l=1 Ul = 0 is also
required to uniquely determine the solution of (3). Replacing
the boundary conditions (3b)-(3d) in equations (3) yields the
continuum model.

It is assumed that the conductivity map σ ∈ Hs(�) for
s > n/2, where Hs(�) is the Sobolev space. It implies that
the Sobolev spaceHs(�) is a Banach algebra w.r.t point-wise
multiplication [19]. The ‘‘discontinuous’’ Robin-type bound-
ary conditions (3d) are such that the regularity of the CEM
solution u(σ ) is limited in H2−ε(�) [9] for ε > 0, so E(σ ) :
Hs(�) → H1−ε(�) with singularities at the edges of
the electrodes —those can be eliminated with a contact
impedance which exhibits smoothed value changes set at
edges of the electrodes.

As indicated already, this step is performed with SVD.
Potentials ub and ub,ε on the entire boundary of the DOI are
retrieved from Ul and Ul,ε , respectively, then the power den-
sity proceeds from ub and ub,ε by using themethod introduced
in [1].

Strategy 1: Proposed strategy for the retrieval of the
conductivity distribution in the DOI from boundary mea-
surements with a limited number of electrodes.
Data:Measured Ul and Ul,ε on electrodes el .
Result: The conductivity distribution σr in DOI.

1 determine ub and σ0 from Ul based on EIT;
2 determine ub,ε and σ0,ε from Uε,l based on EIT;
3 determine E(σ ) from ub and ub,ε ;
4 determine σr from E(σ ) with σ0 as initial guess.

A. RETRIEVAL OF ub AND E(σ )
With the electrodes configuration as in (3), the space

V� = span{χ1, χ2, . . . , χl} ∩ L2
�(∂�) ⊂ L2

�(∂�) (4)

is introduced, letting l = 1, . . . ,N . Here χl is the indicator
function of the l-th electrode and L2

�(∂�) = {f ∈ L2(∂�) :∫
∂�
f = 0}. The weak formulation of the CEM reads [18]

a((u,U ), (v,V )) =
∫
∂�

IV , (5)

where

a((u,U ), (v,V )) :=
∫
�

σ∇u∇vdx +
1
z

∫
e
(u− U )(v− V )

(6)

is a bilinear form a((u,U ), (v,V )) : U⊕V� ×U⊕V�→ R
with u, v ∈ U. It is assumed U = H1(�) herein. As CEM
only provides N (N − 1)/2 independent measurements, con-
ductivities can only be recovered to a degree-of-freedom less
than the number of independent measurements. The forward
CEM can be represented with current-to-voltage map

T : B(S+Tσ ,V�)→ (UTu ,V�) ,T (σ, I ) = (u,U ) (7)

with I ,U ∈ V�. Let S+ = {σ ∈ S : σ ≥ c0, c0 > 0},
with σ = σ0+ h, h ∈ L∞(�) being a small perturbation, and

σ0 ∈ S+ as background conductivity in the DOI. Linearizing
around σ0 yields

T (σ0 + h, I ) = T (σ0, I )+ T ′(σ0, I )[h]+ o(h), (8)

which enables to predict the influence of h. Here, T ′(σ, I )[h]
is the Fréchet derivative of T (σ, I ) along the direction
h. Due to the symmetry of T (σ0, I ), easily validated by
〈T (σ0, I ), J〉L2� = 〈J ,T (σ0, I )〉L2� with (5), the map T (σ, I )
is represented with a symmetric matrix in the order of dimen-
sion N − 1, written as

[Tσ ]i,j = 〈T (σ, Ii), Ij〉, (9)

where Ii and Ij are the ith and jth column vectors of an
orthonormal basis I ofV�. The Fréchet derivative T ′(σ0, I )[h]
is thus represented in matrix form [20] as

T ′(σ0, I )[h] = −
∫
�

h∇u(Ii)∇u(Ij)dx, (10)

u(Ii) as unique solution of (5) w.r.t. the electrode current Ii.
In numerical settings, � can be described via a triangula-

tion T , so as (10) is approximated by

T ′(σ0, I )[h] ≈ −
∑
t∈T

ht

∫
t
∇u(Ii)∇u(Ij)dx (11)

with the assumption that h is a constant in triangle t . If T
triangles in the mesh T, (11) is written in a (N − 1)2 × T
matrix form with[

T′
]
k,t = −

∫
t
∇u(Ii)∇u(Ij)dx, k = i(N − 1)+ j. (12)

With (9) and (12), (8) can be written into a linear system

T′h = b (13)

with h = {h1, h2, . . . , hT }, and b a vector obtained via
reshaping the matrix Tσ0+h − Tσ0 . S

+

Tσ = {σ ∈ ST : σ ≥
c0, c0 > 0}.

The conductivity distribution can be obtained with an
iterative algorithm [21] or singular value decomposition,
as herein. In vector form, the reconstructed perturbation hr is

hr =
N∑
i=1

〈b,ui〉
si

vi. (14)

Here, si are singular values of T′, ui and vi the corresponding
singular vectors, N the number of singular values used. With
hr , the boundary potential ub can be obtained by solving (5)
with σr = σ0 + hr .
With the perturbation ε introduced by the focused ultra-

sonic wave, the boundary potential ub,ε can be retrieved as
the one for ub. According to [1], the power density can in
principle be obtained from ub and ub,ε with

E(σ ) =
(∫

ω

(ν(x)− 1)2

ν(x)+ 1
dx
)−1 ∫

∂�

(ub,ε − ub)φI , (15)

where ν(x) is the ratio between perturbed and original vol-
umes, andwhereφI is the current distribution on the boundary
of the DOI, both of them being known functions.
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B. RETRIEVAL OF σ FROM E(σ )
An iterative method based on the Levenberg-Marquardt algo-
rithm (LMA) [22]–[24], as a well-known solution method for
non-linear least-square problems, can yield the distribution
of σ from E(σ ). LMA locates the minimum of a function
expressed as the sum of squares of errors between function
and measured data through iterative updating. For a general
operator equation F(σ ) = E(σ )δ , where F : X → Y and
X , Y are Hilbert spaces. E(σ )δ is the measured noisy data of
E(σ ). More practical, one could instead minimize [25]

σk+1 = min
σ

∥∥E(σ )δ − F(σk )− F ′(σk )δσ∥∥2Y + αk ‖δσ‖2X ,
(16)

letting αk be the Tikhonov regularization parameter, and
δσ = σ − σk . This minimization problem regarding to (16)
is equivalent to the linearized one

σk+1=σk(F ′(σk )∗F ′(σk )+αk )−1F ′(σk )∗(E(σ )δ−F(σk )),
(17)

lettingF ′(σk )∗ be the adjoint ofF ′(σk ). In [13] and [24], It has
been proven that, with properly chosen parameter αk and
an initial guess σ0 sufficiently close to the desired solution,
the LMA converges to a solution σ δ of F(σ δ) = E(σ )δ .
The LMA based on (17) can be seen as a combination

of steepest descent and Gauss-Newton method. When the
current solution is far from the correct one, a large value is
given to αk , and it behaves like a steepest-descent method
which converges slowly but well. When the current solution
is close to the correct solution, a small αk is used, and it
behaves like a Gauss-Newton method, which is faster than
the steepest descent. This method is used here for our fourth
step in Strategy 1. The Fréchet derivative and adjoint operator
needed in (17) are computed with a method proposed in [13],
as follows. It is assumed that σ is positive, and σ ∈ Hl(�)
for l > n/2. For f ∈ Hl+ 1

2 (�), then (3) has a unique solution
u(σ ) ∈ Hl+1(�), which indicates that the operators E(σ ),
E ′(σ ) and E ′(σ )∗ are all maps from Hs(�) toHs(�) [13].
If u′(σ ) is the Fréchet derivative of u(σ ) in �,

u(σ + τ ) = u(σ )+ u′(σ )τ + o(τ ) (18)

is established for τ → 0, o(τ ) as the remainder. Define
Lσ (u) = u→ ∇ · (σ∇u). According to (3a) and (18),

Lσu′(σ )τ +∇ · (τ∇u(σ )) = 0. (19)

The boundary conditions for u′(σ )τ can also be derived from
(3a) by using (18). If ξ = u′(σ )τ , then ξ satisfies

∇ · σ∇ξ +∇ · (τ∇u(σ )) = 0, in �, (20a)

ξ = 0, on el . (20b)

Here, it is assumed that τ vanishes in a domain �ε = {x ∈
�̄|d(x, ∂�) < ε} for a sufficiently small ε. So, all terms
associated to τ in the boundary conditions disappear. It is
well-known that the solution of equations (20) uniquely exists

in the weak sense. u′(σ ) as defined in (20) is the Fréchet
derivative of u(σ ).
The directional derivative of E(σ ) is given as

E ′(σ )τ ≈ E(σ + τ )− E(σ ) ≈ τ |∇u(σ )|2 + 2σ∇u(σ )∇ξ,

(21)

terms of the order of ‖τ‖2 being neglected. E ′(σ )τ is actually
the Fréchet derivative of E(σ ).
Let us take � ⊂ R2 for simplicity, and consider the

noise effect. The latter cannot be assumed differentiable, then
E(σ ) : H2(�) → L2(�). Since E ′(σ ) : H2(�) → L2(�) is
a bounded operator, its Hilbert adjoint E ′(σ )∗ : L2(�) →
H2(�) is bounded [26]. Upon introduction of the embedding
operator B : H2(�)→ L2(�), E ′(σ )∗ can be written as

E ′(σ )∗ : L2(�) → H2(�), (22)

E ′(σ )∗z = B∗Ẽ ′(σ )∗z. (23)

Ẽ ′(σ )∗ is the L2(�)-adjoint of E ′(σ ). z ∈ L2(�), and
Ẽ ′(σ )∗z = |∇u(σ )|2z + 2∇u∇Vz. The map V : H2(�) →
H2(�) is linear and defined by

LσVz = −∇ · (zσ∇u(σ )) in �, (24a)

Vz = 0 on ∂�. (24b)

If multiple measurements are performed, Ẽ ′H (σ )∗z in (23) is
replaced with Ẽ ′(σ ) defined as

Ẽ ′(σ )∗z = B∗
M∑
i=1

(|∇ui(σ )|2zi + 2∇ui∇Vzi). (25)

To calculate B∗ : L2(�)→ H2(�), one allows

σ ∈ H2
0 (�) =

{
x ∈ H2(�) :

∂x
∂ν
= 0

}
(26)

with its inner product given as

〈x, y〉H2(�) = 〈x, y〉L2(�) + β
2
〈1x,1y〉L2(�). (27)

β is a regularization parameter. Upon integration by parts,
B∗ζ is the solution of the Neumann problem

(Id + β211)B∗ς = ς, (28a)
∂1B∗ς
∂ν

= 0, on ∂� (28b)

∂B∗ς
∂ν
= 0, on ∂� (28c)

with ς ∈ L2(�). Refer to [13] for more detail. This
fourth-order partial differential equation is not practical, but
it can be written into an equivalent form:

B∗ς + β21χ = ς, (29a)

χ −1B∗ς = 0, (29b)
∂χ

∂ν
= 0, on ∂�, (29c)

∂B∗ς
∂ν
= 0, on ∂�. (29d)
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According to the Levenberg-Marquardt iteration in (17),
the formula for calculating the k-th updating step τk for the
problem at hand is given as

(E ′(σk )∗E ′(σk )+ αk Id)τk = E ′(σk )∗(Eδ − E(σk )), (30)

where Eδ represents themeasured power density derived from
ub and ub,ε in the last section. For the left hand side of (30),
E ′(σk )∗E ′(σk )τ = B∗Mτ with

Mτ = |∇u|2(τ |∇u|2 + 2σ∇u∇u′(σ )τ )+ 2∇u∇V (τ |∇u|2)

+ 4∇u∇V (σ∇u∇u′(σ )τ ). (31)

Here,Mτ is easily obtained with (21), (23). After computing
τk from (30), the conductivity map σk obtained at the k-th
iteration is updated by σk+1 = σk + τk for a new iteration.
To calculate B∗Mτ , equation (29) has to be solved with ς =
Mτ , which requires first solving (20) and (24). Since all these
PDE systems are coupled to one another via τ , they need to be
collected into one PDE system and solved in one variational
form.

This yields the following system

φ + αkτk = y, in �, (32a)

1φ − χ = 0, on ∂�, (32b)

β21χ + φ − γ = 0, on ∂�, (32c)

∂φ/∂ν = 0, on ∂� (32d)

∂χ/∂ν = 0, on ∂� (32e)

γ −Mτ = 0, in �, (32f)

∇ · (σ + τ )∇ξ +∇ · (τ∇u(σ )) = 0, in �, (32g)

ξ = 0, on ∂�, (32h)

Lσρ +∇ · (8ε(τ |∇u|2)σ∇u(σ )) = 0, in �, (32i)

ρ = 0, on ∂� (32j)

Lσ κ +∇ · (8ε(σ∇u∇ξ )σ∇u(σ )) = 0, in �, (32k)

κ = 0, on ∂�. (32l)

with y = E ′(σk )∗(Eδ − E(σk )), φ = B∗Mτ , ρ = V (τ |∇u|2),
and κ = V (σ∇u∇u′(σ )τ ). If the number of measurements
N > 1, y = E(σk )∗(Eδ − E(σk )) and γ =

∑N
n Mnτ with

Mnτ = |∇un|2(τ |∇un|2 + 2σ∇un∇ξn)

+ 2∇un∇ζn + 4∇un∇κn. (33)

Equations (32g)-(32l) must be solved for each measure-
ment, so one additional measurement will require to solve in
addition three partial differential equations. The smoothness
requirement on σ can be achieved by a so-called mollification
operation. To solve the above system, E ′(σk )∗(Eδ − E(σk )) is
needed first. Let g = Eδ − E(σk ), then E ′(σk )∗g = B∗z with
z = |∇u|28εg + 2∇u∇w and h = V8εg. Thus, w can be
calculated with (24), and x = B∗z is the solution of (29).

The iterative construction method based on the above sys-
tem is named as LM-CM, refer to Algorithm 2 for a sin-
gle measurement. Since ν(x) is not known for the current
numerical study, the data of Eδ are simulated by solving (3a)
with Dirichlet boundary condition u = ub in the present

contribution. The relative error η is defined as η = ‖σt −
σr‖L2/‖σt‖L2 . Index t indicates the true value, and r means
retrieved value. The parameter αk should be updated accord-
ing to the value of τk . If σk + τk leads to a reduction of
the relative error in σk , αk is decreased and τk is accepted.
Otherwise, τk is discarded and αk is increased. Since η cannot
be determined in practice, a relatively large value can be given
to α0, and αk slowly decreased to ensure convergence. The
iteration is stopped if ‖τk‖L2 is smaller than the expected error
or if the maximum number of iterations is reached.

Algorithm 2: LM-SCEM Algorithm for Retrieving the
Conductivity Map of a Domain � From a Single Mea-
surement of Power Density

Data:Measured power density Eδ and initial guess σ0
Result: Retrieved conductivity map σr with relative

error η
1 N : maximum number of iterations;
2 σk ← σ0;
3 αk ← α0;
4 num← 1;
5 norm← 1;
6 while norm > δ and num < N do
7 Update uk from σk with CEM;
8 Compute E(σk ) from uk ;
9 Compute y = E ′(σk )∗(Eδ − E(σk )) with (24) and

(29);
10 Compute τk with the linear system defined by (32);
11 σk ← σk + τk ;
12 norm← ‖τk‖L2 ;
13 num← num+ 1;
14 Update αk ;
15 end

III. NUMERICAL INVESTIGATION
A. THE PHANTOM USED IN THE SIMULATION
The numerical experiments are carried out with a lung-heart
model depicted in Fig. 2a. Three tissues are considered: heart
(red, σ = 0.7 S/m), lung (cyan, σ = 0.26 S/m), and
soft-tissues (blue, σ = 0.33 S/m). The model is in a circular
region with background material (white, σ = 0.20 S/m) and
radius r = 23 cm. So, the conductivity distribution of the
phantom is piecewise. The boundaries between two regions
with different conductivities are smoothed via a convolution
between conductivity distribution and mollification equation

ηε(x, y) = C exp
(

ε2

(x2 + y2)− ε2

)
, (34)

which reduces interpolation errors at the boundaries. The
mollified conductivity distribution of the model is displayed
in Fig. 2b,, and it is referred to as σ0. All electrodes are
uniformly distributed on the boundary of the DOI, indicated
as the red squares in Fig. 2a.

98512 VOLUME 8, 2020



C. Li et al.: Complete Framework for AET With Numerical Examples

FIGURE 2. The model used in numerical investigations: (a) Heart-lung
model. (b) Conductivity σ0 without perturbation.

FIGURE 3. (a) The perturbation introduced into the heart-lung model.
(b) Conductivity distribution of perturbed model.

A perturbation h, refer to Fig. 3(a), is introduced in the
model. The perturbation value in the red circular domain is
given as 0.2 S/m, and the values in other parts are all zero.
The conductivity distribution of the perturbedmodel is shown
in Fig. 3(b), which is simple σ0 + h. The relative error of
the reconstruction is defined ccording to the L2 norm, δ =
‖ht−hr‖L2
‖ht‖L2

. ht and hr are the true and retrieved distributions of
perturbation function h. Simulations are all carried out with
32 electrodes.

B. RECONSTRUCTION OF ub AND E(σ ) WITH
SVD-BASED METHOD
Following the steps in Strategy 1, the SVD-based method
introduced in section III provides the perturbation h from the
measured voltage on the electrodes as attached on the bound-
ary. The DOI given in Fig. 2a is meshed with 14163 triangular
elements, yielding a matrix T′ of dimensions 961 × 14163
since 32 electrodes. The current pattern used in the example
is set as

Inl =


M cos(nθl), n = 1, . . . , L2 − 1
M cos(π l), n = L/2
M sin((n− L/2)θl), n = L/2+ 1, . . . ,L − 1,

(35)

where M is the (maximum) current amplitude. The vector
In is a current pattern, which is a discrete approximation to
M cos(nθ ) for 1 < n < L/2 or M sin(nθ ) for L/2− 1 ≤ n ≤
L−1. The vectors In are orthonormalized to form a complete
set of bases for the space V�. After computing the matrices
Tσ0+h, Tσ0 and T′ from the data obtained with the complete
electrode model, the vector h can be computed from (14).

FIGURE 4. The T′ matrix: distribution of its singular values.

FIGURE 5. (a) Reconstructed distribution of h. (b) Reconstructed
perturbed distribution of σ .

The singular values of the matrix T′ are ordered from large
to small and shown in Fig. 4. Generally, the singular vectors
associated to the large ones give more information about the
region close to the DOI boundary, and those assocoated to the
smaller ones give more information about the interior region.
However, if the singular value si is too small, a very large
influence will be put on hr since si is at the denominator
of (14). Thus, only a limited number of singular values is used
to reconstruct hr .

The variation of the relative error δ with the number of sin-
gular values employed in the reconstruction is shown in Fig.6.
The best results are obtained by using the first 175 largest
singular values with relative error δ = 0.6141. The retrieved
h in the DOI is shown in Fig. 5a. Obviously, position and
profile of the perturbation can be suitably retrieved with the
SVD-based method, but the relative error is not good enough
for a good reconstruction of hr . This is mainly caused by
the Robin-type boundary condition applied in the CEM. This
leads to the computed potential existing in H2−ε when σ ∈
H2, thus the computed power density E(σk ) is in H1−ε for
any ε > 0. In particular they are not in H ε with ε > n/2
even in one dimension [27], [28]. Yet, it will be shown below
that the value obained is good enough for determination of
the boundary potential ub.
To verify that the measured boundary potential in EIT is

not very sensitive to the changes of the interior conductiv-
ity, the boundary potentials for the perturbed conductivity
map σp,t and the retrieved one σp,r are computed using

VOLUME 8, 2020 98513



C. Li et al.: Complete Framework for AET With Numerical Examples

FIGURE 6. Variation of the relative error with the number of singular
values in the SVD-based reconstruction method.

FIGURE 7. Boundary potential for different current patterns.

the complete electrode model with different current patterns
applied on the electrodes. ub,t and ub,r are the boundary
potentials computed with σp,t and σp,r , respectively. The
relative error is defined as δb =

|ub,t−ub,r |
|ub,t |

.
The variation of ub,t with central angle of the observation

point on the boundary is shown in Fig. 7, and the difference
|ub,t − ub,r | is in Fig. 8. It is seen that the difference between
boundary potentials with σp,t and σp,r is very small. Specifi-
cally, the relative error δb is shown in Fig.9. It is close to zero
save in the range where ub,t is approximately zero. Indeed,
|ub,t | is the denominator in the definition of δb; when |ub,t | is
about zero, a very small error in |ub,t − ub,r | leads to a large
value in δb.
According to (15), i.e., the relation between E(σ ) and

ub,ε − ub, the noise level in E(σ ) is decided by the noise in
ub,ε − ub. So, as long as the error in ub,ε − ub is reasonable,

FIGURE 8. Difference between ub,t and ub,r .

FIGURE 9. Relative error δb for boundary potentials computed with I6.

the power density E(σ ) can be computed to retrieve the
conductivity distribution with methods well developed in the
literature.

C. RETRIEVAL OF σ FROM E(σ ) WITH ITERATIVE METHOD
The Levenberg-Marquardt algorithm (LMA) can be used to
get the conductivity distribution σ from the obtained power
density E(σ ), which is the 4th step in the strategy 1. To com-
pute the power density from equation (15) calls for the knowl-
edge of ν(x), which cannot be obtained here. Therefore, E(σ )
is computed directly from its definition σ |∇u|2, where u is
obtained with the complete electrode model introduced in
section II. The DOI is represented by 15690 triangles for the
forward computation and 14301 triangles for the inversion.
The complete electrode model and current patterns I1 and
I16 are used to compute potentials u1 and u16 from the σr
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FIGURE 10. Relative error δb for the boundary potentials computed
with I6.

retrieved by the SVD-based method. The boundary values of
u1 and u16 are then used as boundary conditions in the LMA
based on the continuum model.

LMA is implemented according to algorithm 2. The rel-

ative error is δ =
‖σp,t−σp,r‖L2
‖σp,t‖L2

. One stops when δ < 10−3

or the number of iterations is larger than 30. Parameter αk
for the k-th iteration is αk = α0/ak with α0 = 50.0 and
a = 1.5. The value of β is set as 10−2, but it could be greater
or smaller whether needed. A large value of β can provide a
better noise tolerance of the Levenberg-Marquardt method.
The result shown in Fig. 5b obtained via the SVD-based
method is taken as initial guess in the iteration.

Noise is appraised with signal-to-noise ratio (SNR)

SNR = 20 log10
‖Ep‖L2
‖N‖L2

, (36)

where N is a Gaussian white noise distribution.
Numerical examples involve different levels of noise in the

data E(σ ). Fig. 11a gives the results with SNR =∞, i.e., no
noise in the data E(σ ). Results are much better that those with
the SVD-based method. But, in practice, noise is faced with.
So, the noise tolerance of the Levenberg-Marquardt approach
is a key factor. It is investigated by adding to the data E(σ )
different levels of noise.

SNR = 40, 20, and 10 dB are considered. The variation
of the relative error δ is given in Fig. 10. With 40 dB, LMA
provides a good convergence, and the relative error decreases
as fast as without noise, and quickly achieved at δ = 0.028
at iteration step 12, see Fig. 11b. Afterwards, a divergence is
observed, and its reason is given in the previous section.

But when the noise is increased to 10 dB, the performance
of LMA worsens. However, it is observed from Fig. 11c for
20 dB that the result is still much better than the one obtained
with the SVD-based method.

When SNR= 10 dB, in effect the method does not produce
convergent results anymore, see Fig. 10, noticing that more
than 30% of noise is added to the data E(σ ). In this case,
a better noise tolerance is required. The value of β is increased
from 1× 10−2 to 0.1, and a good convergence is observed
from the dash-dotted curve in Fig. 10, the best result obtained

FIGURE 11. Retrieved results with Levenberg-Marquardt algorithm for
different levels of noise in data E(σ ): (a) noise free case; (b) with SNR =

40 dB (1% of noise); (c) 20 dB (10% of noise); (d) 10 dB (more than 30%
of noise).

at step 12 being given in Fig. 11d, which is much better than
with the SVD-based method.

In brief, the large value of β ensures proper noise tolerance,
yet this value cannot be too large to make the algorithm
converge well or to avoid over-smoothed results.

These numerical simulations show that the Levenberg-
Marquardt approach provides the conductivity distribution
of a closed domain with high accuracy, and has good noise
tolerance. With high noise level, the conductivity can still be
well mapped if proper value of β.

IV. CONCLUSION
An hybrid strategy has been proposed for acousto-electric
tomography in order to retrieve the conductivity distribution
of the DOI from voltages measured on electrodes attached
at its boundary. How to implement this strategy has been
detailed, and illustrated by comprehensive numerical simu-
lations.

An SVD-based method is used as boundary potential
reconstruction method to compute the electrical potential on
the whole boundary, and it is shown that, with a low quality
reconstruction of the interior perturbation of the conductivity
in the DOI, the boundary potential can be computed with
good accuracy. Meanwhile, good noise tolerance for achiev-
ing high-quality conductivity distribution from the power
density is critical for the final result.

The iterative Levenberg-Marquardt method is used to
retrieve the conductivity from the computed power density.
Strong noise tolerance is observed and the quality of the final
conductivity map much improves, e.g, a good retrieval with
relative error less than 3% is achieved in a dozen of iterations
for low-level noise, and good results are still obtained with
higher-level noise.
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The work summarized herein can be seen as within a
continuum of investigations of AET as illustrated by the com-
panion contribution [10]. Next, one should on the one hand
focus onto higher accuracy potential reconstruction methods,
and on the other hand onto comprehensive validations from
experimental data in laboratory-controlled environments.
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