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ABSTRACT
A popular regularized (shrinkage) covariance estimator is the
shrinkage sample covariance matrix (SCM) which shares the
same set of eigenvectors as the SCM but shrinks its eigen-
values toward its grand mean. In this paper, a more general
approach is considered in which the SCM is replaced by an
M-estimator of scatter matrix and a fully automatic data adap-
tive method to compute the optimal shrinkage parameter with
minimum mean squared error is proposed. Our approach per-
mits the use of any weight function such as Gaussian, Hu-
ber’s, or t weight functions, all of which are commonly used
in M-estimation framework. Our simulation examples illus-
trate that shrinkage M-estimators based on the proposed opti-
mal tuning combined with robust weight function do not loose
in performance to shrinkage SCM estimator when the data
is Gaussian, but provide significantly improved performance
when the data is sampled from a heavy-tailed distribution.

Index Terms— M-estimators, sample covariance matrix,
shrinkage, regularization, elliptical distributions

1. INTRODUCTION

Consider a sample of p-dimensional vectors {xi}ni=1 sam-
pled from a distribution of a random vector x with E[x] = 0.
One of the first tasks in the analysis of high-dimensional
data is to estimate the covariance matrix. The most com-
monly used estimator is the sample covariance matrix (SCM),
S = 1

n

∑n
i=1 xix

>
i , but its main drawbacks are its loss of ef-

ficiency when sampling from distributions which have longer
tails than the multivariate normal (MVN) distribution and its
sensitivity to outliers. Although being unbiased estimator
of the covariance matrix cov(x) = E[xx>] for any sample
length n ≥ 1, it is well-known that the eigenvalues are poorly
estimated when n is not orders of magnitude larger than p. In
such cases, one commonly uses a regularized SCM (RSCM)
with a linear shrinkage towards a scaled identity matrix,

Sβ = βS + (1− β)
tr(S)

p
I, (1)

where β ∈ (0, 1] is the regularization parameter. The RSCM
Sβ shares the same set of eigenvectors as the SCM S, but

its eigenvalues are shrinked towards the grand mean of the
eigenvalues. That is, if d1, . . . , dp denote the eigenvalues of
S, then βdj + (1 − β)d̄ are the eigenvalues of Sβ , where
d̄ = p−1

∑
j dj . Optimal computation of β such that Sβ has

minimum mean squared error (MMSE) has been developed
for example in [1, 2].

The estimator in (1) remains sensitive to outliers and non-
Gaussianity. M-estimators of scatter [3] are popular robust
alternatives to SCM. We consider the situation where n > p
and hence a conventional M-estimator of scatter Σ̂ exists and
can be used in place of the SCM S in (1). We then propose a
fully automatic data adaptive method to compute the optimal
shrinkage parameter β. First, we derive an approximation for
parameter β that attains the minimum MMSE and then pro-
pose a data adaptive method for its computation. The ben-
efit of our approach is that it can be easily applied to any
M-estimator using any weight function u(t). Our simula-
tion examples illustrate that a shrinkage M-estimator using
the proposed tuning and a robust loss function does not loose
in performance to optimal shrinkage SCM estimator when the
data is Gaussian, but is able to provide significantly improved
performance in the case of heavy-tailed data.

Relations to prior work: Earlier work, [4, 5, 6, 7, 8, 9],
proposed regularized M-estimators of scatter matrix either
by adding a penalty function to M-estimation objective func-
tion or a diagonal loading term to the respective first-order
solution (M-estimating equation). We consider a simpler
approach that uses conventional M-estimator and shrinks its
eigenvalues to grand mean of the eigenvalues. Our approach
permits computation of the optimal shrinkage parameter for
any M-estimation weight function.

The paper is structured as follows. Section 2 introduces
the proposed shrinkage M-estimator framework. Section 3
discusses automatic computation of the optimal shrinkage pa-
rameter under the assumption of sampling from unspecified
elliptical distribution. Section 4 contains simulation studies.

2. SHRINKAGE M-ESTIMATORS OF SCATTER

In this paper, we assume that n > p and consider an M-
estimator of scatter matrix [3] that solves an estimating equa-
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tion

Σ̂ =
1

n

n∑
i=1

u(x>i Σ̂
−1

xi)xix
>
i , (2)

where u : [0,∞) → [0,∞) is a non-increasing weight func-
tion. An M-estimator is a sort of adaptively weighted sample
covariance matrix with weights determined by function u(·).
To guarantee existence of the solution, it is required that the
data verifies the condition stated in [10]. An M-estimator of
scatter which shrinks the eigenvalues towards the grand mean
of the eigenvalues is then defined as:

Σ̂β = βΣ̂ + (1− β)
tr(Σ̂)

p
I. (3)

For example, the RSCM Sβ is obtained when one uses the
Gaussian weight function u(t) = 1 ∀t since then Σ̂ = S.
Other popular choices are Huber’s weight function

uH(t; c) = max(−c2,min(t, c2))/b, (4)

where c > 0 is a tuning constant, chosen by the user, and
b is a scaling factor used to obtain Fisher consistency at the
multivariate normal (MVN) distribution Np(0,Σ):

b = Fχ2
p+2

(c2) + c2(1− Fχ2
p
(c2))/p.

We choose c2 as qth upper quantile of χ2
p: c2 = F−1χ2

p
(q).

Another popular choice is t-MLE weight function

uT(t; ν) =
p+ ν

ν + t
(5)

in which case the corresponding M-estimator Σ̂ is also the
maximum likelihood estimate (MLE) of the scatter matrix pa-
rameter of a p-variate t-distribution with ν > 0 degrees of
freedom.

An M-estimator is a consistent estimator of the M-
functional of scatter matrix, defined as

Σ0 = E
[
u(x>Σ−10 x)xx>

]
. (6)

If the population M-functional Σ0 is known, then by defining
a 1-step estimator

C =
1

n

n∑
i=1

u(x>i Σ−10 xi)xix
>
i (7)

we can compute

Cβ = βC + (1− β)[tr(C)/p]I (8)

as a proxy for Σ̂β . Naturally, such an estimator is fictional, as
the initial value Σ0 is unknown. The 1-step estimator C is an
unbiased estimator of Σ0, i.e., E[C] = Σ0.

Ideally we would like to find the value of β ∈ [0, 1] for
which the corresponding estimator Σ̂β attains the minimum
MSE, that is,

βo = arg min
β

{
MSE(Σ̂β) = E

[∥∥Σ̂β −Σ0‖2F
]}
, (9)

where ‖ · ‖F denotes the Frobenius matrix norm (‖A‖2F =
tr(A>A)). Since solving (9) is not doable due to the implicit
form of M-estimators, we look for an approximation:

βapp
o = arg min

β

{
MSE(Cβ) = E

[∥∥Cβ −Σ0

∥∥2
F

]}
. (10)

Such approach was also used in [11] in deriving an optimal
parameter for shrinkage Tyler’s M-estimator of scatter.

Before stating the expression for βapp
o we introduce a

sphericity measure of scatter:

γ =
p tr(Σ2

0)

tr(Σ0)2
. (11)

Sphericity γ measures how close Σ0 is to a scaled identity
matrix: γ ∈ [1, p] where γ = 1 if and only if Σ0 ∝ I and
γ = p if Σ0 has rank equal to 1.

Theorem 1. Suppose x1, . . . ,xn is an i.i.d. random sample
from any p-variate distribution (not necessarily elliptical dis-
tribution), and u is a weight function for which the expecta-
tion E[tr(C2)] exists. The oracle parameter βapp

o in (10) is

βapp
o =

‖Σ0 − ηoI‖2F
E
[∥∥C− (tr(C)/p)I

∥∥2
F

] (12)

=
p(γ − 1)η2o

E[tr(C2)]− p−1E[tr(C)2]
(13)

where ηo = tr(Σ0)/p and γ is defined in (11). Note that
βapp
o ∈ [0, 1) and the value of the MSE at the optimum is

MSE(Cβapp
o

) =
E[tr(C)2]− tr(Σ0)2

p
+(1−βapp

o )
∥∥Σ0−ηo

∥∥2
F
.

(14)

Proof. Write L(β) = MSE(Cβ) = E[‖Cβ − Σ0‖2F]. Then
note that

L(β) = E
[∥∥βC + (1− β)p−1 tr(C)I−Σ0

∥∥2
F

]
= E

[∥∥β(C−Σ0) + (1− β)
(
p−1 tr(C)I−Σ0

)∥∥2
F

]
= β2a1 + (1− β)2a2 + 2β(1− β)a3,

where a1 = E
[∥∥C−Σ0

∥∥2
F

]
= E

[
tr(C2)

]
− tr(Σ2

0), and

a2 = E
[∥∥p−1 tr(C)I−Σ0

∥∥2
F

]
= a3 + tr(Σ2

0)− pη2o = a3 + p(γ − 1)η2o

a3 = p−1E
[

tr(C) tr(C−Σ0)
]

= p−1E
[

tr(C)2
]
− η2op.

Note that L(β) is a convex quadratic function in β with a
unique minimum given by

βapp
o =

a2 − a3
(a1 − a3) + (a2 − a3)

.

Substituting the expressions for constants a1, a2 and a3 into
βapp
o yields the stated result.

Next we derive a more explicit form of βapp
o by assuming

that the data is generated from unspecified elliptically sym-
metric distribution.



3. SHRINKAGE PARAMETER COMPUTATION

Maronna [3] developed M-estimators of scatter matrices orig-
inally within the framework of elliptically symmetric distri-
butions [12, 13]. The probability density function (p.d.f.) of
centered (zero mean) elliptically distributed random vector
x ∼ Ep(0,Σ, g) is

f(x) = Cp,g|Σ|−1/2g
(
x>Σ−1x

)
,

where Σ is the positive definite symmetric matrix parameter,
called the scatter matrix, g : [0,∞) → [0,∞) is the density
generator, which is a fixed function that is independent of
x and Σ, and Cp,g is a normalizing constant ensuring that
f(x) integrates to 1. The density generator g determines the
elliptical distribution. For example, the MVN distribution is
obtained when g(t) = exp(−t/2) and the t-distribution with
ν d.o.f., denoted x ∼ tν(0,Σ, g), is obtained when g(t) =
(1 + t/ν)−(p+ν)/2. Then the weight function for the MLE of
scatter corresponds to the case that u(t) ∝ −g′(t)/g(t). This
yields (5) as the weight function for the MLE of scatter when
x ∼ tν(0,Σ, g). If the second moments of x exists, then g
can be defined so that Σ represents the covariance matrix of
x, i.e., Σ = cov(x); see [13] for details.

When x ∼ Ep(0,Σ, g), then the M-functional Σ0 in (6)
is related to underlying scatter matrix parameter Σ via the
relationship

Σ0 = σΣ,

where σ > 0 is a solution to an equation

E
[
ψ

(
x>Σ−1x

σ

)]
= p, (15)

where ψ(t) = u(t)t. Often σ needs to be solved numerically
from (15) but in some cases an analytic expression can be
derived. If x ∼ Ep(0,Σ, g) and the used weight function
matches with the data distribution, so u(t) ∝ −g′(t)/g(t),
then σ = 1.

Next we derive expressions for E[tr(C)2] and E[tr(C2)]
appearing in the denominator of βapp

o in (13). They depend on
a constant ψ1 (which depend on weight function u via ψ(t) =
u(t)t) as follows:

ψ1 =
1

p(p+ 2)
E
[
ψ

(
x>Σ−1x

σ

)2]
, (16)

where the expectation is w.r.t. x ∼ Ep(0,Σ, g).

Lemma 1. Suppose x1, . . . ,xn is an i.i.d. random sample
from Ep(0,Σ, g). Then

E
[

tr
(
C2
)]

=

(
1 +

2ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)2,

E[tr(C)2] =
2ψ1

n
tr(Σ2

0) +
(

1 +
ψ1 − 1

n

)
tr(Σ0)2,

given that expectation (16) exists.

Proof. Omitted due to lack of space.

Theorem 2. Let x1, . . . ,xn denote an i.i.d. random sample
from an elliptical distribution Ep(0,Σ, g). Then the oracle
parameter βapp

o that minimizes the MSE in Theorem 1 is

βapp
o =

γ − 1

(γ − 1)(1− 1/n) + ψ1(1− 1/p)(2γ + p)/n
(17)

where γ is the sphericity measure defined in (11).

Proof. Follows from Theorem 1 after substituting the values
for E

[
tr
(
C2
)]

and E[tr(C)2] derived in Lemma 1 in the de-
nominator of βapp

o in (13).

If one uses Gaussian loss function u(t) ≡ 1, then one
needs to assume that the 4th-order moments exists and one
may assume w.l.o.g. that the scatter matrix parameter equals
the covariance matrix [13], i.e., Σ = cov(x) , so Σ0 = Σ and
σ = 1. Furthermore, it holds that Σ̂ = S and Cβ = Sβ and
hence βo = βapp

o . Finally, we may relate ψ1 with an elliptical
kurtosis [14] parameter κ, defined as

κ =
E[‖Σ−1/2x‖4]

p(p+ 2)
− 1. (18)

Elliptical kurtosis vanishes, i.e., κ = 0, when x ∼ Np(0,Σ).

Corollary 1. Let x1, . . . ,xn denote an i.i.d. random sample
from an elliptical distribution Ep(0,Σ, g) with finite 4th or-
der moments and covariance matrix Σ = cov(x). Then the
optimal tuning parameter of the shrinkage SCM estimator Sβ
in (1) is

βo = arg min
β

E
[∥∥Sβ −Σ‖2F

]
=

γ − 1

γ − 1 + a
, (19)

where

a =
κ(2γ(1− 1/p) + p− 1)

n
+
γ(1− 2/p) + p

n
.

Proof. The result follows from Theorem 2 since Cβ = Sβ
and the M-functional for Gaussian loss is Σ0 = cov(x) = Σ.
Since for Gaussian loss, ψ(t) = t, we notice from (16) that
ψ1 = 1 + κ. Plugging ψ1 = 1 + κ into (17) yields the stated
expression.

4. SIMULATION STUDIES

We compute different shrinkage M-estimators Σ̂β detailed
below. We use acronym Huber to refer to the shrinkage M-
estimator Σ̂β that uses Huber’s weight u(·) = uH(·; c) with
threshold c2 corresponding to q = 0.7 quantile. Shrinkage
parameter is computed as β = βapp

o (γ̂, ψ̂1). As an estima-
tor γ̂ of γ we use the same estimate as in [9, 2] and ψ̂1 is an
estimate of ψ1, computed as

ψ̂1 =
1

n

n∑
i=1

[tiu(ti)]
2

p(p+ 2)
, (20)



where ti = x>i Σ̂
−1

xi and Σ̂ is the corresponding Huber’s
M-estimator. Huber’s weight function is standardized to be
Fisher consistent for Gaussian samples, meaning that (15)
holds with σ = 1 when x ∼ Np(0,Σ). Since (20) ignores
estimation of σ, some loss in accuracy of this estimate of ψ1

is expected for non-Gaussian data.

Acronym t-MLE refers to the shrinkage M-estimator of
scatter using weight function u(·) = uT(·; ν), where d.o.f. pa-
rameter ν is estimated from the data. This means that σ = 1
can be assumed since the scaling factor σ equals one for an
MLE of the scatter matrix parameter. The shrinkage param-
eter is computed as β = βapp

o (γ̂, ψ̂1), where γ̂ is as earlier
and ψ̂1 is computed as in (20) but using u(·) = uT(·; ν) and
Σ̂ being the corresponding M-estimator.

Acronym Gauss refers to the shrinkage M-estimator of
scatter using Gaussian weight function u(t) = 1, i.e., Σ̂β =
Sβ . The shrinkage parameter is computed as β = βo(κ̂, γ̂)
with βo given by (19) and κ̂ is an estimate of elliptical kur-
tosis κ proposed in [2]. Finally, acronym LW refers to esti-
mator proposed by Ledoit and Wold [1]. LW estimator also
uses RSCM Sβ , where parameter β is computed in a different
manner than for Gauss estimator.

We generated the data from an elliptical distribution
Ep(0,Σ, g), where the scatter matrix Σ has an AR(1) struc-
ture, (Σ)ij = η%|i−j|, where % ∈ (0, 1) and scale parameter
η = tr(Σ)/p = 10. When % ↓ 0, then Σ is close to an
identity matrix scaled by η, and when % ↑ 1, Σ tends to a
singular matrix of rank 1. Parameter % is set to % = 0.6. The
dimension is p = 40 and n varies from 60 to 280.

In our first study, samples are drawn from a MVN distri-
bution and the normalized MSE ‖Σ̂β − Σ0‖2F/‖Σ0‖2F as a
function of sample length n is depicted in Figure 1. Results
are averages over 2000 Monte-Carlo trials. All estimators are
performing well; Gauss and t-MLE are performing slightly
better than LW or Huber but differences are marginal.

Figure 2 shows the NMSE figures in the case that sam-
ples are from t5- and t3-distribution, respectively. In the latter
case, the non-robust Gauss and LW estimator provided large
NMSE and are therefore not shown in the plot. This was ex-
pected as t3-distribution is heavy-tailed with non-finite kurto-
sis. As can be seen, the robust Huber and t-MLE shrinkage
estimators provide significantly improved performance when
the data is sampled from a heavy-tailed t5 or t3-distribution.
We can also notice that t-MLE estimator that adaptively es-
timates the d.o.f. ν from the data is able to outperform the
Huber’s M-estimator due to the data adaptivity.

Figure 3 depicts the (average) shrinkage parameter β as a
function of n in the case that samples are from a p-variate t5
distribution. As can be seen the robust shrinkage estimators
(Huber and t-MLE) use larger shrinkage parameter value β
than Gauss and LW.
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Fig. 1. NMSE of the estimators a function of n when samples are
drawn from MVN distribution with an AR(1) covariance structure
withs % = 0.6 and p = 40.
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Fig. 2. NMSE of the estimators as a function of n when
samples are draw from a p-variate t5 (left panel) and t3 (right
panel) distribution with an AR(1) covariance structure; % =
0.6 and p = 40.
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Fig. 3. Shrinkage parameter β as a function of n when sam-
ples are drawn from a p-variate t5-distribution with an AR(1)
covariance structure; % = 0.6 and p = 40.

5. CONCLUSIONS AND PERSPECTIVES

This work proposed an original and fully automatic approach
to compute an optimal shrinkage parameter in the context of
heavy-tailed distributions and/or in presence of outliers. It
has been shown that the performance of the method is similar
to the optimal one when the data is Gaussian while it out-
performs shrinkage Gaussian-based methods when the data
distribution turns out to be non-Gaussian. This paper opens
several ways, notably considering the case when p > n.
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