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ABSTRACT. In this work we study the transport properties of triple-cation halide perovskite 

thin films and their evolution when exposed to air or vacuum, and after light-soaking. 

Transport parameters were investigated by steady state dark and photocurrent methods as well 

as by the steady state photocarrier grating experiment (SSPG) from which the ambipolar 

diffusion length of thin film materials is estimated. Combined with other characterization 

measurements, such as photoluminescence and Fourier transform photocurrent spectroscopy, 

these techniques demonstrate that air plays an important role in the passivation of the surface 

trap states of the perovskite films. The competition between passivation and degradation of 

the films under light-soaking was also deeply investigated. Moreover, we show that the 
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degradation of the transport parameters upon light-soaking could be linked mainly to a 

degradation of the carrier mobility instead of their lifetime. 

 

1. INTRODUCTION 

Among the material candidates to produce low-cost photovoltaic devices, hybrid 

inorganic-organic perovskite absorbers have emerged as one of the most promising 

technology.1-3 In just a decade, perovskite solar cells (PSCs) efficiency has rapidly increased 

from 3.8%4 to a remarkable value over 25%5 that is already comparable with that of 

commercial c-Si solar cells. These impressive achievements also opened new applications 

into other fields such as light-emitting diodes,6 lasers,7, 8 and photo-detectors.9, 10  

Beyond high conversion efficiency of PSCs, their stability under outdoor conditions is 

still an issue and can be a barrier for long term applications, even though it was demonstrated 

that PSCs are stable for thousands of hours in laboratory tests.11 Generally speaking, 

environmental factors coming from atmosphere, light, moisture, and thermal effects, have 

been proved to be detrimental to the stability of organic devices.12, 13 The same factors can be 

also critical for inorganic-organic perovskites (PVK).14, 15 For example, degradation can be 

caused by fast oxygen diffusion into perovskite films.16 However, there is no clear 

interpretation of the observed degradation and the relevant mechanisms remain unclear. 

Indeed, in some experiments, the atmosphere has been pointed out as being beneficial to 

transport properties, where it could play a role in passivation of perovskite traps, leading to an 

enhancement of the photoluminescence (PL).17, 18 This behavior was explained by the 

formation of superoxide species (O2
-) at iodide vacancies while the films are exposed to 

atmosphere under light illumination.19 Another interpretation also mentioned a similar 

mechanism of passivation of deep/ shallow traps through oxygen diffusion.20 However, to our 

knowledge, there is still no relevant proof and direct observation of it, especially on 
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perovskite films containing double (methylammonium: MA and formamidinium: FA) or 

triple-cation (MA, FA, and Cs). In this study we have concentrated on triple-cation PVK 

because it is known as state of the art absorber with enhanced stability and performances.21  

Here, we report systematic in-situ studies on perovskite films containing triple-cation 

(MA, FA, and Cs) in order to investigate the dynamic changes of their transport properties 

and potential passivation, combining aging tests under different environment conditions (air 

and vacuum). For this purpose, we have combined optical characterization techniques, i.e. 

photoluminescence excited by continuous wave lasers and Fourier transform photocurrent 

spectroscopy (FTPS),22, 23 and electronic characterization techniques, i.e. steady state 

photoconductivity (SSPC) and steady state photocarrier grating (SSPG).24 Moreover, the 

photoluminescence experiments were performed under two different laser wavelengths (470 

nm and 670 nm) in order to extract information from different excitation depths in perovskite 

film, from near surface to whole bulk. With this procedure, we were able to distinguish 

between the surface and the bulk contribution to the PL signal. As far as the electronic 

properties are concerned, the SSPG technique provides a direct access to the ambipolar 

diffusion length (Ld). In most of the techniques found in the literature, the diffusion length is 

determined by collecting mobility and lifetime results in two different experiments. However, 

the final results may be altered by the fact that the studied material may be not in the same 

state in each experiment or is not under a steady state illumination, as underlined by Hodes 

and Kamat.25 Besides, combination of different methods, e. g. photoluminescence lifetime and 

time of flight, does not provide a fast and systematic means of measurement of the diffusion 

length as shown in Ref. [26]. In contrast, the SSPG method proposed first by Ritter et al. for 

studying Ld in photoconductive insulators,24 provides a fast, direct, and accurate experiment to 

study the carrier ambipolar diffusion length. Moreover, it has been proved to be suitable for 

many materials (for a review see Ref. [27]), and it was also shown that it could be applied to 
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hybrid perovskites.28 This technique was recently upgraded into an automated experiment 

including a cryostat allowing study of materials under different conditions, in air and under 

vacuum at different temperatures.29 In addition, it was developed so that the samples can be 

studied under the same illumination as the SSPC measurements. In this communication, we 

point out that atmosphere can play an important role for improving Ld and photoconductivity 

of perovskite films. Furthermore, we also carry out a direct proof of the observation of a 

competitive relationship between passivation and light-induced degradation.  

 

2. RESULTS  

In this study we investigate state-of-the-art triple-cation mixed-halide perovskite thin 

films (Csx(MA0.17FA0.83)1-xPb(Br0.17I0.83)3) The preparation and deposition of these films, as 

well as the characterization techniques we have used, are detailed in the experimental section. 

2.1 Optical Properties  

 2.1.a Influence of air or vacuum 

The triple-cation perovskite samples were initially maintained inside a dynamically 

pumped cryostat under a high vacuum level (10-5 mBar) for a few hours. Then, the vacuum 

was broken and the PL spectra, either excited by a laser wavelength of 470 nm or 670 nm, 

were recorded at different time intervals as shown in Figures 1(a) and 1(c) respectively. To 

limit possible light-soaking effects during the spectra acquisition, the measurements were 

performed by using a shutter so that the film was illuminated only for few seconds. We shall 

call this experiment the ON/OFF PL in the following. A large increase of the PL emission 

intensity can be observed once the perovskite thin film is exposed to air. After 20 min of air 

exposure, the PL maximum is increased by a factor of  3 and starts to saturate after 3 min 

when illuminated with the blue laser. The same trend is observed when illuminated with the 

red laser, although we do not observe the same saturation of the PL intensity. This behavior 



5 

suggests that air is not systematically harmful to the PVK properties and can even be helpful 

as also observed by Brenes and coworkers.20 To further investigate the environment influence, 

after exposing the PVK films for 20 min under air, we pumped the cryostat again to observe 

the PL variation within 20 min under vacuum as shown in Figure 1(b) and 1(d) for the 470 

and 670 nm lasers, respectively. Interestingly, the PL results show a fully reversible variation 

while switching between air and vacuum conditions, the intensity being reduced by a factor  

1/3 after 20 min under vacuum, in both illumination conditions tested.  

 

 
 

Figure 1. Photoluminescence of PVK films obtained with different laser wavelengths in 

different environments. In (a) and (b), a 470 nm wavelength laser illuminates PVK films 

under air and vacuum, respectively. In (c) and (d), a 670 nm wavelength laser was used for 

PVK films PL excitation under air and vacuum, respectively. 
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Figs. 1(a) and (c) show that the PL enhancement rate using a 470 nm excitation is faster 

than with a 670 nm excitation. To point out the kinetics of the PL evolution, the PL maximum 

value (PLmax) has been drawn as a function of exposure time to air or to vacuum. Fig. 2 shows 

that, with an illumination at 470 nm, PLmax rapidly increases and reaches saturation within 2-3 

min after exposure to atmosphere, whereas, with an illumination at 670 nm PLmax requires a 

longer air exposure time, even up to 20 min, to reach saturation. However, when switching 

from air to vacuum condition, the decay rates of both types of excitation look quite similar. 

 
Figure 2. Maximum PL peak values measured with two laser wavelengths (470nm and 

670nm) and regularly recorded from vacuum to air (full symbols) and then from air to 

vacuum (open symbols). The data are normalized to the maximum values of PLmax. The full 

lines represent the fits of the raise and decay of PLmax with exponential curves.  

 

The raise and decay of PLmax have been fitted with exponential curves to extract the time 

constants of these evolutions. Full lines in Fig. 2 display the fits of the PLmax data (symbols). 

It can be seen that the raising time constant under air (index a) with a 670 nm excitation 

(index r) is ar ≈ 3.0 min, a value more than two times larger than ab ≈1.3 min obtained under 

air with a 470 nm laser excitation (index b). In contrast, when the films are set back under 

vacuum (index v) the decay time constants, vr ≈ vb ≈ 2.2 min, are equal. The main 
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improving/passivating the perovskite films as evidenced from the PL enhancement, ii/ the PL 

intensity evolution takes place within a time scale of a few minutes, and iii/ this phenomenon 

is reversible.  

The same type of experiment was performed with a continuous illumination of the film 

by the lasers light. The results, shown in the supporting information (Figs. S1, S2 and Table 

S1), are slightly different from the ones presented above during the ON/OFF PL experiment. 

The two main differences are a red-shift in the position of the PL maximum intensity when 

the experiment is performed under air and in the kinetics of the peak intensity evolution. 

Indeed, the energy position of the PL maximum decreases with time from  1.62 eV to 1.57 

eV when the sample is set under air. When the sample is set back under vacuum, PLmax energy 

positions slightly increase but without recovering the original value. In the case of steady 

illumination, the time constants of the rise of PLmax under air are higher than the ones 

observed for short illumination, reaching values of the order of 8 min for both wavelengths.  

2.1.b Influence of light-soaking 

The influence of light-soaking on the optoelectronic properties of halide perovskite was 

then investigated. We light-soaked the samples under air for a long time, up to 21 h, under a 

white light (high power white LED with a incident power of 44 mWcm-2, see Fig. S3). We 

observed an increase of the PL maximum by a factor of 2 after illumination of the film during 

21 h accompanied by a red shift of the peak position from  1.63 eV to  1.60 eV (See Fig. 

3(a)). In Fig. 3(b) we display the concomitant evolution of the band gap width measured with 

the FTPS experiment. The FTPS spectra obtained before and after light-soaking display only 

the relative variations of  and have been normalized to the same value at 1.75 eV for an easy 

comparison. It can be seen that, under light-soaking, the gap has shrunk by an amount of  30 

meV, the same energy interval as previously observed with the PL peak shift. Though the 

origin of this gap shrinking remains unclear, it may explain the red-shift of the PL maximum. 
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However, the PL increase is surprising since it is usually believed that light-soaking results in 

the creation of recombining states in the gap of thin film semiconductors leading to an 

increase of the recombination kinetics. On the contrary, this improvement of the 

photoluminescence suggests a decrease of the density of non-radiative recombination centers.  

   

Figure 3. Evolution under light-soaking (a) of the PL spectra, and (b) of the band gap edge, of 

a PVK thin film. 

 

2.2 Transport properties  

In order to study the influence of the environment, air or vacuum, and of the light-

soaking on the transport properties of PVK films we have performed SSPC and SSPG 

measurements under different experimental conditions during one month. Fig. 4 summarizes 

the results we have obtained at room temperature on one of our samples, the same trends 

being also observed on other films. The light used to perform these measurements was 

delivered by a He-Ne laser (632.8 nm) with a power density equal to 12.5 mWcm-2 in both 

experiments, SSPC and SSPG. 

When the sample is maintained under air (black symbols) from day 1 after its growth to 

day 9, Ld and ph present almost constant values around 450 nm and 1.4×10-4 Scm-1 

respectively. On the contrary, when the sample is set under vacuum after day 9 (red symbols) 

we first observe a concomitant decrease of Ld and of ph, though a small increase of this latter 

1.4 1.5 1.6 1.7 1.8 1.9
0

1000

2000

3000

4000

5000

6000

7000

8000

(a)
 0 min
 15 min
 48 min
 4 h
 21 h

 

 

P
L 

(A
rb

. 
U

ni
t)

Energy (eV)

LS time

1.45 1.50 1.55 1.60 1.65 1.70 1.75

10-25

10-24

10-23

10-22

 0 min
 15 min
 48 min
 4 h
 21 hF

T
P

S
 (

A
rb

. 
U

ni
t)

Energy (eV)

(b)

LS time

30 meV



9 

appears just after the sample is set under vacuum. Then, with time, we observe a slight 

improvement of these quantities, but largely less pronounced as when the sample is set back 

in the air on day 23.  

Subsequently, the sample was light-soaked under air for 45 hours leading to decrease of 

photoconductivity by a factor of 8, from 1.0×10-4 to 1.2×10-5 Scm-1
, whereas the diffusion 

length is rather constant at a value around 350 nm. Once the sample is set under vacuum, we 

observe again a decrease of the transport properties (day 29) with a slight recover on day 30.  

Remarkably, in both cases, as-deposited or light-soaked, we observe a degradation of the 

transport parameters when the sample is set under vacuum and an improvement once put 

under air. With some samples we even observed a fully reversible evolution of Ld between air 

and vacuum environment30 (see also Fig. S4). This behavior is in line with the PL spectra 

evolution recorded either under air or under vacuum. 

Another interesting point is that, under light-soaking, the photoconductivity drops down 

while Ld remains almost constant. Indeed, this parameter is only reduced by  22 %, a rather 

small decay compared to the drop by a factor of 10 of the photoconductivity compared to the 

values in the as-deposited state. Moreover, it can be noted that the decrease of the 

photoconductivity with light-soaking goes along with a decrease of the dark conductivity as 

shown in Fig. S5 of the supporting information. 

We have repeated the same experiment on other films with similar trends (See Fig. S6). 

Once again, the diffusion length was almost not affected by the light-soaking process whereas 

a systematic decrease of the photoconductivity by a factor of 10 was noted.  
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Figure 4. Evolutions of the ambipolar diffusion length Ld measured by SSPG (squares) and of 

the photoconductivity ph measured by SSPC (stars) under different environments (air in 

black or vacuum in red) and with light-soaking (LS). Lines are guides to the eye. 
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vacuum conditions. 

 

Figure 5. Photocurrent evolution during light-soaking (LS) of triple-cation PVK thin films 

under air (red squares) and under vacuum (black squares).  
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Finally, FTPS experiments have been carried out on different samples before and after 

light-soaking both under vacuum and under air. The results are presented in Fig. 6.  

It can be seen that there is only little evolution of the FTPS spectrum when light-soaking 

is done under vacuum. However, we can estimate an average increase of the deep states by a 

factor around 2. When light-soaking is done under air we observe a red shift of the band gap, 

the Urbach tail being moved to lower energies (see the black and dark yellow curves of Fig. 

6(b)). To have a better overview of the deep states increase, the FTPS spectrum obtained after 

light-soaking has been plotted 40 meV upward to match the band tail of the FTPS spectrum 

obtained in the as-deposited state (dashed red curve of Fig. 6(b)). This shift puts into evidence 

that the band tail of the density of states is not modified by light-soaking and underlines a 

slight increase of the deep states by a factor of 2 to 3 around 1.35 eV. We have also 

investigated on the reversibility of the band gap evolution. With the FTPS experiment, we 

have observed that the bang gap comes back to its initial position if the sample is left under 

dark and under primary vacuum at room temperature within a few days. Example of such an 

evolution is presented in Fig. S7. 

  

Figure 6. Evolution of the FTPS spectra with light soaking (a) performed under vacuum (b) 

performed under air. The FTPS spectrum obtained after light-soaking under air has been 

sifted 40 meV upward (dashed red line) to be compared with the as-deposited spectrum. 
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3. DISCUSSION 

Before going further in the discussion of the PL results we would like to underline the 

influence of the wavelength on the penetration depth of the light. Shorter wavelengths are 

absorbed closer to the surface than the longer ones. Measurements by ellipsometry of the 

absorption coefficient  of our triple-cation perovskite have shown that (470 nm) ≈ 2×105 

cm-1 and (670 nm) ≈ 3.2×104 cm-1 which means that the penetration depths of the light are 

around 50 nm and 310 nm for 470 nm and 670 nm, respectively.  

The rise of the PL response, when done with short illumination times (ON/OFF PL) (See 

Figs. 1-2), is certainly due to the passivation of non-radiative traps starting from the very top 

surface of the film in contact with the atmosphere, in line with the results presented in the 

literature.17, 18 Assuming that the passivation depends on the penetration of an air component 

inside the film, the passivation depth must be time dependent. In this case, passivation must 

occur in two steps, each needing a certain amount of time: the time for the air to penetrate the 

film and the time linked to the kinetic of the passivation reaction itself. The experimental 

results we obtained tend to confirm this assumption. Indeed, since the blue laser is absorbed 

very close to the surface, the influence of the passivation of the very first layers of the film is 

faster for the PL response at 470 nm than for the red laser which is absorbed deeper in the 

film.  

The reversible creation of a passivation layer on top of the PVK film may also explain 

one of the evolutions of transport properties of the samples. When exposed to the air, the 

creation of a passivation layer on top of the film should result in the decrease of a 

recombination path and eventually in an increase of the carrier lifetimes, explaining the 

increase of the photoconductivity (see also Fig. S8 of the supporting information) and 

diffusion length experimentally measured. 
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However, when the PL spectra are recorded under air with a continuous illumination by 

the lasers light (Figs. S1(a), S1(c)), we still observe an increase of the PL intensity but with 

much longer time constants and accompanied by a red-shift of the PL maximum. This result is 

consistent with recent observation of a red-shift of the PL maximum during light-soaking in 

air for triple-cation PVK by Andaji-Garmaroudi and coworkers.31 This is also consistent with 

the shrinking of the band gap (see Figs. 3(b) and 6(b)) measured during the light-soaking 

study, suggesting the same type of degradation. The continuous illumination of the lasers light 

induces the same red-shift of the gap, identified by the red-shift of the PL peak, as if the films 

were light-soaked, at least partially, during the experiment. We cannot therefore reject a 

possible competition between passivation, which increases the PL response, and degradation 

of the transport properties that slows down the PL intensity rise, this competition resulting in 

longer time constants for the increase of the PL maximum.  

Finally, when the film is put under vacuum the decays of PLmax present the same time 

constants for the two tested wavelengths (Fig. 2). This results suggests that as soon as the film 

is set under vacuum, the desorption of the air passivating component (water vapor, 

oxygen,…) ”reactivate” the non-radiative recombining states and induces a rapid decrease of 

the PL intensity. In the case where the PL is measured under a steady illumination we do not 

observe a reversible evolution of the energy position of the PL maximum. This difference can 

be explained by the very long time constant, a few days, needed for the band gap to come 

back to its original value after light-soaking (See Fig. S7). The few minutes under which the 

evolution under vacuum of PL was observed are too short for the band gap to recover. 

Concerning this band gap shift, the reader may note that evolutions of the band gap under 

light-soaking and recovery after light-soaking have been reported in the literature with rather 

large time constants and have been attributed to phase segregation.32, 33 However, we cannot 

definitely attribute the band gap shift observed in our case to this phenomenon since the 
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reported results concern PVK with much higher bromide content than in our samples and we 

do not observe any band gap shift when light-soaking is achieved under vacuum.  

Concerning the opto-electronic properties, we observe under long light-soaking: i/ an 

increase of the photoluminescence, ii/ almost a stability of the diffusion length and iii/ a large 

decay of the photoconductivity. If one assumes that one type of carrier is predominant, the 

mobility×lifetime product of the majority carriers can be estimated from the expression of ph 

and that of the minority carriers can be estimated from the expression of Ld given by27 

ph  = q () (1-R) F     and    ௗܮ ൌ 	ට2
௞್்

௤
ሺ߬ߤሻ௅    ,  (1) 

where q is the absolute value of the electron charge,  is the quantum efficiency, µ the 

mobility×lifetime products, R the reflection coefficient, kb the Boltzmann constant and T the 

temperature. From the data of Fig. 4, before light-soaking, ph ≈ 1.4×10-4 Scm-1, Ld ≈ 450 nm, 

the µ products can be estimated to be (µ = 1.4×10-6 cm2V-1 and (µL = 4.0×10-8 cm2V-1 at 

room temperature. After light-soaking, ph ≈ 1.2×10-5 Scm-1, Ld ≈ 350 nm, giving (µ = 

1.3×10-7 cm2V-1 and (µL = 2.4×10-8 cm2V-1. It can be seen that, in both states of the film, 

before and after light-soaking, we always have (µ much larger than (µL meaning that 

indeed one type of carrier dominates the transport. In addition, after light-soaking, (µ has 

decreased by a factor of the order of 10. If one assumes that this decay is essentially due to a 

decrease of , it would mean that a recombination path had widened resulting from an 

increase of the deep defect density of states.  

However, the results obtained from FTPS invalidate this assumption. According to the 

spectra evolution upon light-soaking (See Fig. 6) the deep defect density increases by only a 

factor of 2 to 3 either when light-soaking is achieved under vacuum or under air: the spectra 

displayed in Fig. 6 emphasize the small deep states evolution with light-soaking. We cannot 

reject the possibility of an increase of deep states below 1.1 eV but, even in this case, it would 
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be difficult to understand that if the decrease of (µ by a factor of 10 was only due to a 

decay of , we also observe: i/ a diffusion length only very little affected by this enhanced 

recombination path, and, ii/ an increase by a factor of 2 of PLmax after light-soaking. 

Remembering that without light-soaking we have obtained, under air, an increase of the PL 

maximum by a factor of 3 that we have attributed to surface passivation, the increase by a 

factor of 2 under light-soaking could be also due to a surface passivation effect mitigated by a 

small degradation of the lifetime. These results suggest that the observed decrease of (µ is 

more probably a combined effect of a (small) decrease of the lifetime and a (large) decrease 

of the mobility of the majority carriers according to [34].  

As seen with the above results we are systematically dealing with a competition between 

passivation and degradation during light-soaking, and this competition influences the 

transport properties as illustrated in Fig. 5. At short times, the photocurrent (Iph = 6.1×10-7 A) 

for the sample under air is higher than for the sample under vacuum (Iph = 4.5×10-7 A) and 

both decrease under the influence of the degradation due to light-soaking. In a second region, 

after 80 s of light-soaking, the photocurrent starts to increase, in a less pronounced manner 

and during a shorter period of time for the sample under vacuum ( 10 % at t ≈ 400 s) than 

under air ( 32 % at t ≈ 1600 s). Then in a third region, both photocurrents decrease to reach 

quite similar values around Iph = 4×10-8 A. These behaviors reflect the competition between 

passivation and degradation during light-soaking. Light-soaking induces first a degradation of 

the transport properties in region 1 for both films (under air and under vacuum). Then, 

passivation of the surface occurs, mainly for the sample in contact with air, until degradation 

takes the pace over passivation in the third region. Fig. 7 summarizes the competition between 

passivation and degradation during light-soaking, these two processes presenting very 

different time constants, rather short for the passivation and quite long for the degradation. 
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On the contrary the degradation mechanism only weakly influences the PL intensity, 

suggesting again that it mainly affects the mobility of the majority carriers instead of their 

lifetime.  

 
Figure 7. Schematic diagram of the competition between passivation and degradation during 

light-soaking and its influence on the photocurrent. 

 

We would like to add a few comments on this competition between passivation and 

degradation that could give also some directions for future research studies. The first one 

deals with the nature of the passivation mechanism. It can be due to a chemical reaction or to 

simple adsorption which might be either physisorption or chemisorptions. In the case of 

physisorption the reversibility can be easily explained. Indeed, physisorption would concern 

only few nanometers at the perovskite top interface (PVK/air) with rather weak bonding (Van 

der Walls bonding, for instance) and desorption would be induced almost instantaneously 

when the sample is set under vacuum. In case of chemisorption, the created bonds would be 

stronger and reversibility would imply an extra source of energy such as the temperature (heat) 

of the sample. In this last case, the phenomenon should be activated with temperature but such 

a study was largely beyond the scope of the paper.  
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 The second point deals with the influence of the light in the mechanisms of passivation 

and degradation. Concerning this latter, light seems to induce degradation both under vacuum 

and under air. The mechanism that can be responsible for defect creation by light is the 

following. By band to band generation light creates free carriers that recombine either 

radiatively or non-radiatively. In the second case, the energy lost during recombination is 

transmitted to the network and can be enough to break weak bonds or initiate chemical 

reactions and eventually to create defects. The degradation would be faster under vacuum 

because the passivation of the top surface of PVK by air is absent which is precisely one of 

our observations. Concerning this passivation or rather de-passivation, light may provide 

additional energy to de-passivate the PVK/air interface when the sample is set under vacuum 

from the same mechanism as exposed above. Thus, light would also work against the 

passivation when the sample is set under air. It could be an alternative explanation to the 

different time constants we found, larger for passivation than for de-passivation.  

 

4. CONCLUSIONS 

We have investigated on the influence of the environment and light-soaking onto the 

opto-electronic and transport properties of triple-cation perovskite thin films. For that purpose, 

we have applied several complementary characterization techniques - photoluminescence, 

Fourier transform photocurrent spectroscopy, steady state photocarrier grating, dark and 

photoconductivity - to thin films maintained either under air or under vacuum. Air exposure 

resulted into an increase of the PL peak intensity, of the diffusion length and of the 

photoconductivity. We have suggested that this improvement is due to the creation of a 

passivation layer on top of the PVK film, this creation taking place within a few minutes after 

exposure to air.  
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More surprising are the results obtained after light-soaking since we have observed an 

increase of the PL maximum accompanied by a red-shift of its energy position, a small 

decrease of the diffusion length but a large decrease of the photoconductivity by a factor of 

the order of 10. Using FTPS we have shown that light-soaking under air produced a shrinking 

of the gap by the same amount of the red-shift of the PL maximum. Though phase segregation 

could be thought to be at the origin of this gap reduction, this process does not explain why 

such a reduction is not seen when the film is light-soaked under vacuum. We may suggest a 

deep penetration of an air component inside the material by diffusion, a process that would 

also explain the long time needed for the band gap to recover its as-deposited value, the time 

needed for the complete exo-diffusion of this component. FTPS has also shown that the deep 

defect density, at least above 1.1 eV, was only little affected by light-soaking. Therefore, the 

origin of the decrease of the photoconductivity cannot be completely attributed to a decrease 

of the carrier lifetime that would be linked to an increase of the deep defect density, unless 

this increase occurs below 1.1 eV and is undetected by FPTS. However, in this last case we 

should have observed a large degradation of the diffusion length which is not the case. We 

believe then that light-soaking induces mostly a decay of the majority carrier mobility, a 

process that would unaltered the diffusion length linked to the minority carriers and that 

would have only little influence on the PL spectra, the maximum of which increase under air 

even during light-soaking.  

This last result underlines the competition that exists between improvement of the opto-

electronic properties by passivation by air of the film surface and the degradation of some of 

these properties under light-soaking. 

 

5. EXPERIMENTAL SECTION 

5.1. Perovskite films deposition. The perovskite (PVK) thin layers in this study were 
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composed of three cations, Methylammonium (MA), Formamidinium (FA), and Cesium (Cs). 

To grow the perovskite films, a double-cation perovskite solution, 

(MA0.17FA0.83)Pb(Br0.17I0.83)3 referred as (MA,FA)Pb(Br,I)3, was first prepared by dissolving 

1.10 M PbI2 (TCI Chemicals), 0.20 M PbBr2 (Alfa Aesar), 1.00 M formamidinium iodide 

(FAI, Dyesol) and 0.20 M methylammonium bromide (MABr, Dyesol) in a mixture of 

DMSO:DMF (4:1 in v/v) as solvent. In order to obtain the three cations perovskite, i.e. 

Csx(MA0.17FA0.83)1-xPb(Br0.17I0.83)3, the required quantity of Cs+ was additionally injected 

from a precursor solution of CsI (Sigma Aldrich) 1.50 M in DMSO solvent.35 After stirring in 

a magnetic mixer for ~18 hours, the mixed perovskite solution was then deposited on glass 

substrates by spin-coating, utilizing a double plateau (2000 rpm to cast the perovskite 

precursor solution followed by 6000 rpm to drip 100 µL of chlorobenzene). The 1 mm thick 

glass substrates were rinsed in solutions of acetone, ethanol, and followed by exposure to an 

UV-ozone cleaner for 120 min just before spin-coating. After deposition, the perovskite films 

were submitted to an annealing treatment at a temperature of 100 C for 30 minutes in a N2 

glove box. The perovskite films had an average thickness  500 nm, and their morphology, 

measured via SEM, showed that compact films were obtained with a crystalline grain size in 

the range 200 - 400 nm. The finalized thin films were then fitted with two parallel Au 

electrodes, 1.5 mm apart and 1 cm long, deposited by thermal evaporation. A SEM cross-

section picture of a device incorporating a typical PVK film and a SEM top view of a PVK 

film are given in Figs. S9 and S10, respectively, showing the morphological structure of the 

PVK films we have studied. Fig. S11 displays an I(V) curve obtained on one of our PVK 

devices  

5.2. Opto-electronic characterizations. Optical properties of the films were investigated 

with photoluminescence (PL) and Fourier transform photocurrent spectroscopy (FTPS) 

experiments. Photoluminescence measurements were performed the samples being set into a 
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cryostat either under atmospheric conditions or under a vacuum level below 10-5 mBar. 

Optical excitation was achieved by two continuous diode lasers with wavelengths of 470 nm 

(Power density 0.83 Wcm-2) and 670 nm (Power density 1.41 Wcm-2) with an illumination 

making an angle of 30° with the sample surface. PL emission was collected by a lens and an 

optical fiber positioned 10 cm in front of sample and was then analyzed with a spectrometer 

to obtain the PL spectrum. By using a shutter in between the laser beams and the sample, we 

could control the illumination time to just a few seconds, long enough to record the PL 

spectrum but short enough to avoid a possible degradation of the PVK sample by a continuous 

illumination (ON/OFF PL experiment). In addition, some PL experiments were done with a 

steady illumination of the film by the lasers light. 

The Fourier transform photocurrent spectroscopy was proposed a few years ago to 

measure the variations of the absorption coefficient  of semiconductor thin films with a 

below gap photon energy.22, 23 Since this absorption is mainly linked to transition from 

occupied states toward empty states this technique also gives information on the density of 

states (DOS) responsible for the observed absorption and its possible evolution under some 

external constraints like submission to strong illumination (light-soaking). It must be 

underlined that FTPS provides only relative variations of  with the photon energy. To obtain 

the absolute variations of  the FTPS spectrum has to be calibrated from 

transmission/reflection measurements. For a review of the FTPS technique and its application 

to thin films see for instance the work of J. Holovski.36  

The transport properties of the films were investigated with dark conductivity, steady 

state photoconductivity (SSPC), and steady state photocarrier grating (SSPG) experiments. 

The dark photoconductivity and SSPC are standard characterization techniques but the SSPG 

is a more sophisticated technique used to derive the ambipolar diffusion length of the carriers 

in semi-insulating materials.24, 27, 37 
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In the SSPG experiment a light beam coming out of a He-Ne laser (632.8 nm) with a 

polarization parallel to the electrodes is split into two beams subsequently sent onto the 

sample in between the electrodes to superimpose one over the other making an angle  

between them. One of the beams can be considered as the main one since it fixes the steady 

state of the sample. The other beam, the probe beam, is attenuated by a factor of the order of 

30 and generates a small perturbation of the steady state of the sample. A voltage bias is 

applied in between the electrodes and one measures the excess current flowing through the 

sample resulting from this perturbation. Two cases can be considered. If the light polarization 

of both beams is parallel to the electrodes, the superimposition of the beams results in the 

generation of interferences on and in the film with a grating period  depending on the angle 

. In this case one measures an excess current Iw. If the light polarization of one beam, for 

instance the main one, is rotated by a /2 plate so that the beam polarizations are crossed, the 

two light beams simply superimpose and one measure a current Iwo. It was shown by Ritter 

and co-workers that the ratio =Iw/Iwo depends on the grating period and on the ambipolar 

diffusion length via the expression24 
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ቁ
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൨
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where  is a parameter that depends on the conductivity of the material and the quality of the 

interferences, and Ld is the ambipolar diffusion length. Consequently, after measurement of  

with different angles between the beams, and thus with different , a fitting of the  () curve 

with Eq. (2) provides information on the carrier ambipolar diffusion length. 

The ‘classical’ SSPG bench has been largely improved.29 The modification of the angle 

between the beams was fully automated and a cryostat was added to study thin film ambipolar 

diffusion length, the sample being either in the air or under vacuum at different temperatures. 

The same bench can also be used to perform under the same conditions as SSPG (same flux, 



22 

same environment, same temperature) either dark conductivity or photoconductivity (SSPC) 

measurements. 

Light-soaking of the samples was achieved under air or under vacuum with a high power 

LED presenting a spectrum close to that of AM1.5G illumination in the visible range with a 

power density of 44 mWcm-2. A comparison of the AM1.5G spectrum and of the high power 

LED spectrum can be found in Fig. S3 of the supporting information. The fact that there is no 

infra-red component in the LED spectrum is not detrimental to the light-soaking effect since 

the light is only weakly or even not absorbed by the PVK film for wavelengths larger than 

800 nm. The advantage of the high-power LED is the lack of infra-red wavelengths which 

avoid heating of the sample during light-soaking. Indeed, using a thermal camera we have 

observed that under the LED flux the sample temperature was only increasing from 23 °C to 

28 °C. Therefore, we could rule out any influence of the temperature on the phenomena we 

have observed. 
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