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Abstract—This paper develops a new paradigm for the multi-
input multi-output detection problem with bit interleaved coded
modulation (MIMO-BICM). This new paradigm is based on a
geometric method rather than the traditional interference cancel-
lation or tree search. It describes in greater detail the soft-output
detector called list exploration and exploitation (L2E), which
builds a list of candidates from a geometrical interpretation of a
given objective function. It then computes the log-likelihood ratios
(LLRs) using the max-log approximation. A comparative study
between L2E and a classical tree-based algorithm is carried out in
both computational complexity and detection performance. This
study highlights that although the framework is entirely different,
the complexity and performance are comparable with the state
of the art tree-based paradigm. Finally, the proposed algorithm
is implemented on a field-programmable gate array (FPGA)
device. Simulations carried out with Xilinx Vivado tools and
measurements are provided to analyze the resource utilization,
power consumption, and timing metrics. We further estimate
these metrics for an application-specific integrated circuit (ASIC)
implementation based on multiplicative factors from literature.
This projection demonstrates that our implementation yields
results of the same magnitude as the well-known detectors.

Keywords–Geometrical algorithm; MIMO detection; Complexity
analysis; BER performance; FPGA; Max-log approximation

I. INTRODUCTION

This paper carries on the work initiated in [1], where we
described the interest of geometric detectors. It takes place
in the context of MIMO systems that have been integrated
into many standards, such as IEEE 802.11n [2] or long-term
evolution (LTE). It is well known that increasing the number
of antennas improves the data rate and the link reliability [3],
but at the same time increases the complexity of detection at
the receiver side. Detection problems can be classified into
three types: over-determined MIMO, iso-determined MIMO,
and under-determined MIMO.

Over-determined problems occur in particular in the mas-
sive MIMO uplink case, where a base station is equipped with
a very large number of receiving antennas to detect messages
from a small number of users. Under the hypothesis of a
perfectly-known channel, the problem is very easily solved
with linear detectors such as zero-forcing (ZF) or minimum

mean square error (MMSE). Linear detectors require the
inversion of the channel matrix, which is the most complex
step. Current research offers binary error rate (BER) efficient
detectors with even less algorithmic complexity. These detec-
tors approximate the MMSE criteria or the channel matrix
inversion by conjugate gradient least square [4], symmetric
successive over relaxation [5], Neumann series expansion [6]
or using the Jacobi method [7].

For iso-determined systems, linear detectors cannot provide
acceptable BER performance because there is just enough in-
formation available to retrieve the transmitted signal. In this sit-
uation, the maximum likelihood (ML) detector offers an opti-
mal result at the cost of very high complexity. This complexity
prevents its use for real-time hardware implementations, which
is why simpler sub-optimal detectors are required. The earliest
proposals were based on iterative detection using successive
suppression of interference between antennas [8]. They led
to the successive interference cancellation (SIC) and ordered
successive interference cancellation (OSIC) detectors [9], [10]
that are used nowadays. Parallel interference cancellation (PIC)
is another variant of this paradigm [11], [12]. Subsequently,
detectors based on tree-search became the reference with three
variations: the breadth-first tree-search [13]–[16], the depth-
first tree-search as the sphere decoding (SD) [17], [18] and
the best-first or metric-first [19]. More exotic approaches have
also been proposed, such as geometric detection [20], deep
neural network detection [21] or bio-inspired algorithms [22].

Soft-output detectors are known to be more efficient than
hard-output ones [23] because they exploit the uncertainty
that a ’0’ or a ’1’ is being received to provide an LLR on
the received bits. This probability is then used in conjunction
with an error-correcting code to improve BER performance.
Finding exactly the a-posterior probabilities is known to be
exponentially complex with respect to the number of trans-
mitting antennas [24]. That is why the reference algorithms
approximate the LLRs using the max-log approximation [23],
[25], [26]. Thus,the large majority of soft-output MIMO de-
tectors construct a list of possible candidates and then use
this approximation to produce approached values of LLRs.
Examples include the list sphere decoding [23] or the soft
version of the breadth-first M-algorithm [13], [15].



In the last years, efforts have been made to propose very
large scale integration (VLSI) implementations aiming for
high throughput, low energy consumption, and high flexibility.
Different architectures have been explored: arrays of recon-
figurable units [5], [27]; pipelines with parallel units [16],
[28]; systolic arrays [6] and multiple cores managed by a task
scheduler [18].

In this paper, we detail more precisely the L2E algo-
rithm [1], which builds a list from geometric considerations
rather than from tree paths. In particular, we present some
algorithmic improvements and compare the complexity to the
one of tree-based detectors (i.e., detectors with quasi-optimal
performance). We also present initial investigations on the
hardware implementability of geometric algorithms. To do
so, we provide the architecture of the corresponding hard-
output detector and highlight the intrinsic parallel structure of
this algorithm. Finally, we present Monte-Carlo simulations to
compare L2E performance with the best-known detectors.

In Section II, we present the mathematical system model.
Then we describe the L2E and K-best Schnorr-Euchner (KSE)
algorithms in Section III. Subsequently, Section IV compares
the two algorithms and Section V presents an FPGA-based
hardware implementation. Finally, Section VI concludes this
paper.

II. MATHEMATICAL MODEL

In this paper, bold lower cases (resp. capital letters) denote
vectors (resp. matrices) and other characters refer to scalars.
We call v(i) the ith coefficient of the vector v and A(i, j) the
coefficient on the ith row and the jth column of A. In this
section, we present the modeling of the MIMO-BICM system,
detail the LLRs calculations and discuss on the advantages of
the QR decomposition.

A. MIMO-BICM system model
We consider a quadrature phase-shift keying (QPSK), and

we note φ the set of possible symbols. Let yc ∈ CM be
the vector containing the signal received on the M reception
antennas. These signals are the result of the N transmitted
symbols xc ∈ φN after passing through the channel described
by the matrix Hc ∈ CM×N and after adding a Gaussian noise
wc ∈ CM . With these notations, the transmission system is
modeled by

yc = Hcxc + wc. (1)

For the sake of implementation, we propose a real-valued
version of the previous model using < (resp. =) the real
(resp. imaginary) part operator. We introduce the real-valued
equivalent of the previous vectors, matrix and set:

y ,

[
<(yc)
=(yc)

]
(2)

H ,

[
<(Hc) −=(Hc)
=(Hc) <(Hc)

]
(3)

x ,

[
<(xc)
=(xc)

]
(4)

w ,

[
<(wc)
=(wc)

]
(5)

ξ , <(φ) (6)

The MIMO-BICM model can now be expressed as

y = Hx + w. (7)

This real-model representation of (1) has exactly the same
amount of information as the complex-valued version and we
define n , 2N , m , 2M . Indeed, it is like treating the
real and imaginary axis independently. In the remainder, we
assume n ≤ m: we have at least as many receiving antennas
as transmitting one.

This model can be used to describe any iso-determined or
over-determined MIMO-BICM system. On transmission, the
message is coded by an encoder, interleaved with an assumed
perfect interleaver, and then mapped to symbols. On reception,
the data flow is processed in the opposite way: it goes through a
detector, a de-interleaver, and then a decoder. A perfect channel
state information is assumed only at the reception, and no
information at all is known at the transmitter.

B. LLRs generation
Let us consider bij the ith bit of information coded in the

jth component of x. To minimize the BER, a soft detector must
maximize the a posteriori probability that is calculated from
the probability mass function P (bij |(H, y)) of the bit bij given
the state of the channel H and the received vector y. The LLR
is defined as

Lij = ln
P (bij = 1|(H, y))

P (bij = 0|(H, y))
. (8)

The closed-form evaluation is known to be exponentially
complex with respect to the dimensions of the MIMO sys-
tem [24]. This is why we use the classic max-log approxima-
tion [23], [25], [26]

Lij ≈
1

2σ2

(
min
x∈χ0

ij

‖y−Hx‖22 − min
x∈χ1

ij

‖y−Hx‖22

)
(9)

where χkij = {x ∈ ξn : bij = k} is the set of all symbols with
bij equals to k, and σ2 is the noise variance. Although simpler,
this new expression remains exponentially complex since we
have card(χkij) = 2n−1 where card() denotes the cardinality
of a set. therefore,we introduce a new subset Γ ⊂ ξn

representing a list of candidates and we compute LLRs only
from this subset:

Lij ≈
1

2σ2

(
min

x∈Γ∩χ0
ij

‖y−Hx‖22 − min
x∈Γ∩χ1

ij

‖y−Hx‖22

)
.

(10)
If Γ ∩ χkij = ∅, we consider that bij is different from k for
sure and set Lij to its maximum or minimum value in order
to reflect this certainty.

The algorithmic cost to approximate LLRs is now fully
controlled by card(Γ): the more points in Γ, the better the
approximation, but at the same time the more difficult the
computation becomes. The L2E algorithm constructs a set
Γ whose cardinal grows linearly with n and is independent
with respect to the signal-to-noise ratio (SNR) values. In the
remainder of this paper, we refer to ‖y−Hx‖22 as the objective



function and the best points of a set refer to the points that
minimize this `2-norm.

C. QR decomposition
QR decomposition is a well-known technique to simplify

the norm evaluation. Let be H = QR the QR decomposition
of the channel matrix with Q an orthogonal matrix and R an
upper triangular matrix. Then we have:

‖y−Hx‖2 = ‖y−QRx‖2 = ‖QT y−QTQRx‖2 (11)

as orthogonal matrices act as isometries. Thus, by exploiting
the property of orthogonal matrices QT = Q−1 this norm can
be rewritten as

‖y−Hx‖2 = ‖ỹ− Rx‖2 (12)

with ỹ , QT y.
We recognize the same pattern so that an algorithm able to

solve the full matrix version can solve the QR-based version
in a similar way. Because of this mathematical similarity, we
will continue in the following to use the full-matrix notation.
All the results obtained for the full-matrix version are directly
applicable in the triangular case. Thus, unless otherwise stated,
the following developments are valid in both cases, even if only
the full-matrix case is described.

III. ALGORITHMIC INTERPRETATION

In this section, we present an algorithm to obtain a set
with a reduced cardinality without compromising decoding
properties. The L2E detector is based on two steps: exploration
and exploitation, which will be detailed in the first two sub-
sections. Next, we will present a classical tree-based algorithm
that will be used as a reference in the following.

A. Exploration step
The exploration phase has two main objectives: to begin to

create the Γ set for the LLRs’ evaluations and to build a set of
promising points Γb that will be processed by the exploitation
step.

To achieve these objectives, we first rewrite the objec-
tive function by introducing the singular value decomposition
(SVD) of H = UDVT with U and V two orthogonal matrices
and D the diagonal matrix containing the singular values
{λi : 1 6 i 6 n}. The order of these values being arbitrary,
we choose to number them in ascending order.

We introduce the starting point define by x0 = H−L y
where H−L denotes the left Moore-Penrose inverse of H.
Consequently, the objective function can be rewritten as

‖y−Hx‖22 =
(
VT (x− x0)

)T
DUTUD

(
VT (x− x0)

)
. (13)

As the vectors of V, named {vi : 1 6 i 6 n}, constitute a
basis, we can define {αi : 1 6 i 6 n} the coordinates of
x− x0 on this basis. Using the orthogonality of U and V and
the diagonality of D, equation (13) leads to

‖y−Hx‖22 =

n∑
i=1

α2
iλ

2
i . (14)

Let ∆i be the straight line passing through x0 and directed
by vi. One can note that (14) highlights that the objective
function grows more slowly along the first ∆i rather than

along the last ones. Thus, promising points are more likely to
be found around these first straight lines. Figure 1 illustrates
the previous reasoning in the simplified case of a space of
dimension n = m = 2. The black ellipses represent the
evolution of the objective function along the two positions of
x. The objective function minimum is reached in x0. The two
singular vectors vi and the corresponding lines ∆i are also
plotted. We can see that the objective function grows more
slowly along ∆1 than along ∆2. In this example, the solution
that minimize the objective function is the point x = (−1, 1).
It is confirmed that this solution is located close to the line
∆1.
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Figure 1. Link between the objective function and the SVD of H

There are several methods for choosing points near a
line. To reduce the complexity, we choose to compute the
intersection of the first straight lines with each hyperplane
defined by Hi = {x ∈ Rn : x(i) = 0} and then to search in ξn
for the nearest point to each intersections. Figure 2 illustrates,
in the same situation as for Figure 1, the process of obtaining
points from intersections. The points are obtained by a two-
step process. First, the algorithm computes all the intersections
between the line ∆1 with the brown hyperplanes Hi. Then, it
searches for the nearest point in the constellation. When two
points are equidistant, we take the closest to x0.
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Figure 2. Getting promising points from a line ∆i



The set Γb is obtained by picking the best C points obtained
for each line ∆ considered. Thus,we have by construction
card(Γb) = CD. Besides, all the points that have been com-
puted are included to start building the set Γ. This operation
does not cost anything since the points, and their objective
function have already been calculated to obtain Γb. As better
results are observed with x0 being the MMSE estimator, we
use it in the following.

B. Exploitation step
Exploitation step aims to enrich the already computed Γ set

without increasing too much its size (i.e., the upper-bound of
the number of added points is nCD per exploitation iteration).
Let Bx,r be the closed Hamming ball of radius r and centered
at a point x. To increase card(Γ), we add each points in Bx,r
for all x ∈ Γb. This process can be seen as flipping at most r
bits of each procpoints in Γb. As there are

(
n
i

)
ways to change

i bits among n, the exploitation of a point requires
∑r
i=0

(
n
i

)
evaluations of the objective function. essIn order to reduce the
computational complexity of the L2E detector, we fixed the
value of r to 1. After one iteration, L2E makes a new one if
it finds a better point in Bx,r than the center of the ball (i.e.,
L2E iterates until it reaches a stable point).

After this second step, we obtain a set Γ such that

card(Γ) ≤ (ni + n)CD (15)

where ni is the number of exploitation iterations. This result
is consistent with both the linear growth in the number of
antennas and the independence from the SNR. Figure 3 gives
an overview of the whole L2E algorithm where we recognize
the pre-processing from instruction 1 to instruction 5, the
exploration phase in the first for-loop, the exploitation phase in
the last for-loop and eventually the soft-output computations
to obtain LLRs at instruction 18. If the QR decomposition
representation is adopted, its computation should be added in
the pre-processing, and ỹ should be processed before the first
for-loop.

C. A tree-based reference: K-best Schnorr-Euchner (KSE)
In this section, we will briefly describe a tree-based algo-

rithm that will serve as a reference later on. We select the
breadth-first algorithm KSE mode 1 without maximal radius
as described in [14] since it is a well-known algorithm with a
very acceptable complexity and performance. This algorithm
also uses the max-log approximation and QR decomposition
of the channel matrix and additionally requires that diagonal
coefficients of R to be in ascending order.

KSE first completes the QR decomposition transformation
as described in Section II-C and then uses the triangularity
of R to compute the objective function iteratively. Thus, we
can introduce d(k) = ỹ(k) − (Rx)(k) such that the objective
function is written as

‖ỹ− Rx‖22 =

n∑
k=1

d(k)2. (16)

Moreover, triangularity gives for all k ∈ {1, . . . , n}

(Rx)(k) =

n∑
j=1

R(k, j)x(j) =

n∑
j=k

R(k, j)x(j) (17)

1 Extract the first D right singular vectors vi from H
2 Compute left pseudo-inverse H−L
3 while H does not change do
4 Compute starting point x0

5 Initialize Γ with the projection of x0 on ξn
6 foreach ∆ in {∆1, . . . ,∆D} do
7 foreach H in {H1, . . . ,Hn} do
8 Find the intersection of ∆ with H
9 Project the intersection on ξn

10 Evaluate objective function
11 Add the point to Γ and save its cost
12 Add C best points to Γb

13 foreach x in Γb do
14 Add the points in Bx,1 to Γ
15 if there is a better point in Bx,1 than x then
16 Center a new ball at this best point
17 Make a new iteration starting at line 13

18 Compute LLRs using (10)
19 return LLRs

Figure 3. L2E algorithm

that leads to

d(k) = ỹ(k)−
n∑
j=k

R(k, j)x(j). (18)

The basic idea underlying the KSE algorithm is to compute
partial estimations of the objective function and d(k) coeffi-
cients as the solution vector is built. Indeed, starting from the
last component, it is possible to add a new operand in (16)
as soon as a hypothesis is made on x(j) since (18) is fully
evaluated for this position. Figure 4 gives a brief overview of
the KSE decoding process with X being the set of partially
constructed solutions. For the sake of readability, the indexes
of the d(k) and the objective function relating to each partially
constructed vector are omitted, but there is one vector d and
one partial norm per solution in X .

IV. COMPARING THE TWO STRATEGIES

In this section, we provide a full analysis of the above al-
gorithms in terms of hardware complexity (number of products
and number of additions) and BER performance.

A. Computational complexity
The complexity analysis should be done distinguishing

between the pre-processing, which is performed once per
coherence block and the decoding itself. Indeed, during a
coherence block, several hundred symbol vectors can be sent
[29]. That is why pre-processing does not profoundly impact
the total complexity.

Concerning pre-processing, KSE requires a QR decompo-
sition when L2E requires an SVD and the computation of a
Moore-Penrose inverse. These two decompositions are known
to have a cubic complexity in the largest size of the channel
matrix [30]. It is noteworthy that the Moore-Penrose inverse
can be obtained far more quickly based on an SVD of the



1 Compute QR-decomposition QR = H
2 while H does not change do
3 Compute ỹ = QT y
4 Initialize the partial objective function at 0
5 Initialize d = ỹ
6 for k = n to 1 do
7 foreach x in X do
8 foreach s in ξ do
9 Evaluate sR(k, k)

10 Update the partial d(k)
11 Update the partial objective function

12 Update X by keeping the best K partial vectors
13 Update d(j) for j ∈ {1, . . . , k − 1}
14 Compute LLRs using (18)
15 return LLRs

Figure 4. KSE algorithm

matrix. Thus, the pre-processing of L2E is faster than if the
decomposition and inversion were performed independently.
Finally, it should also be noted that a QR decomposition may
be added to this pre-processing if this approach is adopted. To
sum up, KSE has a slightly lighter pre-processing than L2E,
but both have complexity in O(m3) products.

Table I details the complexity of each step of the L2E
decoder for a QPSK depending on the parameters C and D
and using the tricks presented in Section V-B. The addition of
the calculation of ỹ in the QR-based setup would, in practice,
reduce the number of operations required due to the triangular-
ity of the channel matrix that speeds up the objective function
evaluation. The experimental results presented in Section V-D2
support this point. As a comparison, we also evaluate KSE
using a QPSK denoting by K the maximum number of paths
kept at each step. KSE required 4K additions and 4K products
per position to compute d(k) and to update the partial objective
function. Moreover, it also required some operations to update
d(k), the amount depending on the processed coordinate.
Indeed, (18) highlights that the fewer coordinates are left to
process, and the fewer calculations are required.

TABLE I. Complexity of L2E assuming one exploitation iteration and KSE

Step Additions Multiplications

Compute x0 nm nm

Intersections & Projections Dn2 Dn2

Evaluate objective function Dn2(m+ 1) Dn2m

Exploitation step CDn(m+ n+ 1) CDn(m+ n)

Compute LLRs 1 0

Asymptotic complexity L2E O(Dn2m) O(Dn2m)

In total, the KSE algorithm has a lighter asymptotic com-
plexity in O(n(m+nK/2)). However, the number of antennas
in a MIMO system is not always large enough to match the
asymptotic behavior. For this reason, Figure 5 shows the exact
number of operations depending on the number of antennas of
a square MIMO (n = m). We compare the two detectors on
both the number of additions and products. These two numbers

are very close, given that the most significant operation is
the norm computations. One can note that both algorithms
have an effective operating range with a cross-point around
16 antennas.
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Figure 5. Number of operation of L2E (C = 4, D = 3) with soft KSE
mode 1 (K = 252) from [14] using a QPSK.

B. BER performance
In this section, we propose Monte-Carlo simulations to

evaluate the BER for different SNR = nEs/N0 with Es the
average energy symbol and N0 the noise variance per entry
[4]. We consider a MIMO-BICM system as modeled in Section
II-A transmitting over an uncorrelated Rayleigh fading chan-
nel. The associate matrix H is constructed as independent and
identically distributed (i.i.d.) variables following a circularly-
symmetric normal distribution and then transformed to its real-
valued equivalent. Similarly, w is elaborated with i.i.d. zero
mean Gaussian noise with a variable variance to match the
required SNR.

We assume a perfect interleaver so that all transmitted
symbols are independent of one another. The binary data are
mapped to a QPSK and encoded using a simple convolutional
code of rate 1/2 generated by the polynomials (5, 7). The
decoder uses the Viterbi algorithm with a traceback depth
of 10. Figure 6 compares the performance of L2E using 3
singular directions and 4 candidates per directions (C = 4 and
D = 3) with KSE using 252 paths in the case of a 4x4 MIMO
(n = m = 8). One can note that the performance is strictly
equivalent up to 13 dB and that L2E loses only 2 dB for a BER
of 10−5 while requiring roughly six times fewer operations.
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Figure 6. Performance comparison of L2E (C = 4, D = 3) with soft KSE
mode 1 (K = 252) from [14] on a 4x4 MIMO channel using a QPSK.



V. FPGA IMPLEMENTATION

In this section, we present an exploratory work on the
implementation of geometrical algorithms on FPGA hardware
platforms. Given the exploratory nature of this work, we focus
our description and implementation efforts on the most specific
part of the L2E detector. The hardware platform selected is the
Xilinx Zynq-7000 SoC that contains a 28nm programmable
logic (PL) and an ARM processing system (PS). We choose
to study only the hard algorithm [20] since it involves all steps
but the LLRs computation. Moving from the hard version to
the soft version only requires having a minimum search and a
subtraction since all the norms required to calculate (10) are
already provided by the hard part of the algorithm. This part
is implemented using the PL.

The calculations that are well documented in the literature
are performed upstream by the PS: SVD and QR decompo-
sitions and the x0 calculation. The hardware architecture in
PL described includes all the other stages, namely exploration
and exploitation. Since this is an exploratory work, we have
chosen to place parameterization and reusability before the
performance, which is why we present an implementation
using a data-driven pipeline where each module is independent
of the others.

In the sequel, we set the n-dimension and the m-dimension
to 10. We denote a fixed point quantization using the following
notation: total word length is i+ f , where i is the number of
integer bits, f is the number of fractional bits. We summarize
the fixed point design parameters for the reference solution
x0, the directing vectors {vi}Di=1, the received vector y and
the entries of channel matrix R in Table II.

TABLE II. Quantization of the fixed point parameters.

Integer length Fractionnal length Total length
x0 3 bits 3 bits 6 bits

{vi}Di=1 1 bit 5 bits 6 bits
y 6 bits 2 bits 8 bits
R 6 bits 2 bits 8 bits

In this section, we will present the chosen FPGA archi-
tecture and detail the content of each module as well as the
global structure based on a data-driven pipeline. Then, we
give the results and compare them with the simulation and
the current state-of-the-art literature. It is not straightforward
to compare these results from a small FPGA with those from
optimized ASICs. Some studies evaluated the performance gap
between FPGAs and ASICs on general-purpose projects [31]
and for convolutional neural networks (CNN) [32]. It is
noteworthy that even if MIMO detection and CNN are two
different problems, they are both mainly based on sum-product
operations. These two studies draw similar factors on the
performance gap on three quantities: clock frequency (which
is comparable to throughput, resource use, and dynamic power
consumption. Moreover, it is a common practice to scale up
ASICs performance to 65nm CMOS. Table III details the
mapping factors to be used to convert the results from a
28nm FPGA to a 28nm ASIC based on the performance gap
highlighted earlier and then to a 65nm ASIC based on the
same method as [16].

A. FPGA architecture
Figure 7 shows the architecture considered as a simplified

data flow and as a layout on the PL after the place and root

TABLE III. Multiplicative factor to approximate ASICs results

28nm FPGA 28nm ASIC 65nm ASIC
Throughput (∼ fclk) 1 3 to 6 1.3 to 2.6

Resource use / Area 1 1/30 to 1/13 1/5.6 to 1/2.4
Dynamic power consumption 1 1/14 to 1/12 1/6 to 1/5

optimizations. On the layout, we notice that the exploration
modules noted D-1 and D-2 (for diversification) represent the
most significant part of the area used. The four exploitation
modules marked I (for intensification) are the second most
important module in the resource use. The other slices relate
to the interfaces and the final sorting.

The data flow diagram (Figure 7a) highlights the previously
underlined parallelization, which is carried out at three levels.
The D explorations are performed at the same time as the CD
exploitations. Within these modules, the sub-modules are also
executed in parallel: see, for example, the intersections and
the computation of their norm. Finally, the internal operations
within each sub-module can be parallelized using classical
methods. It is evident, for example, that the contribution of
each component of a vector can be treated independently
when processing its norm. This data flow omits the data-driven
synchronization modules for the sake of simplicity.

Two versions have been developed to check the decoding
correctness and to measure the throughput. For the correctness
verification, the PL is interfaced with the PS using AXI
interfaces. The PS supplies the PL on request with the channel
data (y,H), the starting point x0, and the first singular vectors.
The result is then returned to the PS that compares the
solution to the one provided by the simulation. The throughput
measurement is performed on PL without interaction with the
PS to reduce its impact. The FPGA decodes 6365 datasets
while counting the number of clock periods and then transmits
this counter to the PL. The results of these tests are described
in Section V-D.

B. Module description
Exploration structure is straightforward as it is the direct

transcription of the algorithm in Figure 3: xZF and all ∆∩H are
processed and projected on ξn, the objective function (see (16))
is computed and then the C best points per direction are kept
for the second step.

The exploitation module introduces the intermediate vari-
able

Ω = y−Hx (19)

to reduce the complexity of this step. Thus, once Ω is calcu-
lated, flipping the ith components of x only requires updating
the preliminary result with

Ωi = Ω−Hz (20)

where all the components of z but the ith are null. In addition,
as we use a QPSK, the non-zero component is zi = −2xi and
the update of the result can be reduced to n additions.

The two selection modules cannot use the same principle
since one seeks a minimum norm while the other searches for
several ones. The selection of the best point is made using
a reduction tree in which each level contains a flip-flop. In
contrast, the selection of the best C points is based on C
registers containing the best norms encountered so far. These
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Figure 7. FPGA architecture implementing exploration and exploitation steps: (a) simplified data flow, (b) layout of main modules for C = D = 2 where
D-i refer to the ith exploration module and I to the exploitation modules

registers are initialized with the highest possible norm. Then
each candidate is inserted to maintain an increasing order
among the registers. Thus, for each norm, C comparisons and
at most C shifts are required. Table IV gives an example of
the selection process.

TABLE IV. Example of selecting C = 3 best points from 5 candidates

Input norm Inserted in Reg 0 Reg 1 Reg 2
26 Reg 0 max max max
15 Reg 0 26 max max
25 Reg 1 15 26 max
19 Reg 1 15 25 26
34 Discarded 15 19 26

Result 15 19 26

C. Data-driven pipeline
Data-driven pipeline is an approach adapted to prospective

work since it divides the global system into small indepen-
dent elements. Then, each sub-module can be developed and
studied independently. This type of pipeline is close to the
globally asynchronous locally synchronous (GALS) paradigm.
Indeed, it requires an interface with a handshake protocol to
control the data flow. Thus, each sub-module represented in
Figure 7a is implemented as a GALS element, but the entire
FPGA is clocked by the same signal, avoiding the potential
metastabilities at the interfaces.

Regarding the interface, we use a single-rail 2-phase pro-
tocol as described in [33]: a request and acknowledgment
signals are added to the data bus to control the propagation
between the different stages. Each GALS interface is then
equipped with a request port R driven by the sending module,
an acknowledgment port A driven by the receiving module,
and a data bus D driven by the sending one. Communications
follow the given protocol with X̄ being the negation of X and
⊕ the exclusive or:

1) Initially, R = A and the data bus state is unspecified.
2) When the sending module has some data to transmit,

it sets D to the according value and sets R = Ā.
From this point, the data bus must keep its state.

3) The receiving module notices the event by testing
R⊕A, saves the data from D, and sets A = R. This
module can start its computations.

4) The sending module takes note of the acknowledg-
ment by processing R ⊕ A and starts to process the
next data, potentially changing the data bus state.

However, additional caution must be taken when there is
more than one sender or receiver since there is no guarantee
that the processing time is the same for all modules. Muller
C-elements are therefore inserted on the A or R ports to
transmit requests and acknowledgments only when all modules
are ready. A Muller C-element is a gate that replicates the state
of its inputs at its output if they are all identical and keeps its
previous state otherwise [34].

D. Result evaluation
As mentioned earlier, the evaluation of the results is done

using two variants: one using the PL to check the decoding
and one without to evaluate the throughput and resource use.

1) Correctness test: The correctness setup involves the PL
and the PS and a computer that runs the equivalent decoding.
The PS and the computer use a serial port to communicate.
The computer starts by generating 500 datasets in the worst
condition (SNR = 0dB) that contains a quantized version of a
channel matrix, a received vector, the corresponding starting
point, and two singular vectors. These values are then export
as C files and fed to the PL by the PS. After decoding, the PS
read the value from the PL and send it back to the computer
through the serial port to be compared with the simulation
results.

The PL decoding is compared with a double-valued simula-
tion (i.e., the simulation with the best precision available used
in Section IV-B) and a simulation with the same quantization
as the hardware to check that it behaves as expected. Figure 8
represents the relative error on the final objective function as
a histogram after 500 tests.

The right figure corresponding to the quantized simulation
shows that the FPGA produces a solution with the same objec-
tive function as the simulation in the vast majority of tests and
that the error is always lower than 15%. A closer look during
the execution reveals that the errors are due to tricky situations
where two choices are equivalent because of the quantization at
one stage but do not produce an equivalent final solution. For
example, two intersections with identical objective functions



Figure 8. Histogram of the relative error between the simulation and the
FPGA implementation over 500 tests

can be selected but do not give the same final point after the
exploitation process. The left figure compares the hardware
implementation with the perfect unquantized simulation. It
indicates that quantization is not too damaging and validates
the proof of concept, but a real system would require a better
accuracy to obtain a valid BER.

2) Throughput and resource use test: The second test is
performed without interacting with the PL to investigate the
decoder without interference. Measurements are carried out
after synthesis, placement, and routing in Vivado using the
default settings. Results for the full channel matrix and the QR
decomposition setup are compared on Table V when using the
same frequency.

TABLE V. Implementation metrics (full matrix & QR-based matrix)

Channel matrix Full QR-based Change
Clock frequency (MHz) 140 140 0

Look Up Tables (LUT) used 38 758 29 811 - 23 %
Flip-Flops (FF) used 40 708 37 630 - 7.56 %

Digital Signal Processors (DSP) used 110 70 - 36.4 %
Throughput (Mb/s) 7,88 26,9 + 241 %

Dynamic power consumption (mW) 955 642 - 32.8 %

The first observation to be drawn from these results is that
the QR decomposition greatly reduces the use of resources
while increasing the throughput recorded. This is due to the
reduction by a factor of almost two in the number of channel
matrix coefficients that represent the largest part of the data.
For example, in the case of n = m = 10, storing the full
matrix requires n2 = 100 coefficients, however, the QR-based
requires to store only n(n+1)

2 = 55 coefficients. For the rest of
the processing, memory usage is shallow. Hence, the channel
matrix entries storage has the most significant impact on block
memory usage. Thus, by reducing the number of coefficients,
we can significantly decrease the number of slices used to store
the matrix in the pipeline and reduce the complexity during
the placement and routing phase. Besides, the triangularity
exploitation reduces the number of computations required for
the norms evaluation, which represents the most complex step,
as pointed out in Table I.

As stated earlier, it is unclear how these results can be
compared with state of the art ASICs optimized implementa-
tions with whom the throughput spans from a dozen Mb/s
to a few Gb/s [16]. However, we can get an insight into

the ASICs results based on the prediction factor described in
Table III. Thus, we measured the throughput, and the dynamic
power consumption of our 28nm FPGA implementation then
multiplied with the projection factor to get the estimation of
Table VI. One can notes that the proposed implementation
would be in the lower range but would not be far behind. More-
over, we believe that switching from a data-driven pipeline to a
fully synchronous implementation would significantly increase
the performance leading to an even better result.

TABLE VI. Estimated performance on 65nm ASIC

Actual 28nm FPGA Prediction for 65nm ASIC
Throughput (Mb/s) 26.9 35 to 70

Dynamic power (mW) 642 107 to 129

VI. CONCLUSION

In contrast to the main-stream detection paradigm, which
is based on tree-search algorithms, this paper study a new
paradigm, namely the geometrical algorithm. This paper high-
lights that geometrical detection can produce soft outputs
using a list and the well-known max-log approximation. After
describing the algorithm, we compared the complexity as well
as the BER performance of these two approaches. We show
that L2E is equivalent or only slightly inferior to the common
KSE. Moreover, an implementability study is carried out on
a Xilinx Zynq-7000 SoC using a data-driven pipeline. The
results are validated by comparison to the simulation, and the
resource use and the throughput are evaluated. This throughput
is in the lower bound of the state-of-the-art, but it is important
to note that references work on ASICs while we use an FPGA.

In light of these results, we think that even if the geo-
metrical paradigm currently shows slightly inferior results that
the tree-based one, it could lead to very efficient detectors in
the future. Indeed, the tree-based paradigm is matured and
has been developed for years, while geometrical detectors
are instead on their beginning, and many improvements are
still possible. For instance, we highlight that the hardware
implementation throughput can be significantly increased by
upgrading from FPGA to ASIC and from a data-driven pipeline
to synchronous design. In the same way, BER performance
could be easily improved by using an iterative detector-decoder
framework as already done by the tree-based algorithms.
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