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Abstract

The Canny shape-reconstruction algorithm is combined with the thermographic signal reconstruction (TSR) technique
for the characterisation of delamination defects in planar multilayer structures. The adopted approach consists in fitting
the raw thermographic images to a low-degree polynomial in the log-log representation of the time axis, according to TSR
technique, and then apply the Canny algorithm to the reconstruction of the original signals. The proposed juxtaposition
of the two treatments benefits from the inherent signal de-noising and compression of the TSR algorithm, thus enhancing
the performance of the overall reconstruction process. The proposed approach has been applied using synthetic signals
obtained via a 3D semi-analytical simulation code and the obtained reconstructed images have been compared with the
(known) delamination geometry demonstrating satisfactory results.

Keywords: infrared testing, delamination, image reconstruction, Canny algorithm, TSR, semi-analytical solution.

1. Introduction1

Infrared non-destructive testing (IR) techniques have2

received growing attention in recent years thanks to their3

advantages, that is, fast, high resolution and contactless4

control, and benefiting from the technological progress in5

the domain of the hardware, namely infrared cameras and6

data acquisition equipment. The acquired infrared images7

are then analysed for the detection and characterization8

of flaws. Subsurface irregularities will affect the heat dif-9

fusion rate leading to a thermal contrast on the surface of10

the homogeneous work-piece. By analysing alterations or11

the contrast in the thermal pattern of the material surface,12

one can obtain information about subsurface flaws.13

The material under testing may be heated using various14

sources as optical excitation, electromagnetic excitation,15

acoustic excitation, stress excitation. The most common16

form of active thermography [1] for material evaluation17

consists in using sources as flash lamps [2] or lasers [3, 4]18

where a pulse of light instantaneously heats a surface and19

the resulting temperature change is observed with a ther-20

mal camera. This technique is also known as pulsed ther-21

mography (PT) [5] or square pulse thermography (SPT) [6]22

and has been extensively used as inspection technology for23

composites and layered structures. According to the heat-24

ing function, other common types of active thermography25

are stepped thermography (ST) [7], lock-in thermogra-26

phy (LT) [8, 9], pulsed phase thermography (PPT) [10],27

and frequency modulated thermography (FMT) [11].28

The detection of the defects can be on the same side as29

the heat source or on the opposite side, depending on the30

type of access to the sample. Typical TNDT procedure re-31

sults in a sequence of infrared (IR) images, obtained via an32

IR camera, that reflects the evolution of temperature over33

time. The recorded thermal response usually is degraded34

because of several factors. Uneven heating and variations35

of emissivity on the observed surface are only few of the36

factors which can cause signal-to-noise-ratio (SNR) prob-37

lems and limit the potential sensitivity of any method.38

Analysing the thermal images may be an intense and39

not an easy task to perform. The detection and character-40

ization of the defects highly depends on the quality of the41

images as well as on the techniques used. Signal process-42

ing is a crucial mean to extract useful information from43

raw data captured from sensors. More and more signal44

processing algorithms including thermographic signal re-45

construction (TSR) [12, 13], principal component analysis46

(PCA) [14], independent component analysis (ICA) [15,47

16], wavelet transform [17], Tucker decomposition [18, 19],48

support vector machine (SVM) [20], and pattern recogni-49

tion [21] are being used in thermography. The use of any50

of the aforementioned techniques depends on the physics51

of the problem and their results are usually qualitative,52

meaning that the defects are not fully characterised. De-53

pending on the application, the detection and the shape54

reconstruction of the defects may be a success.55

In the present work, the TSR method has been used56

to reduce the amount of noise in thermal images and local57

storage requirements while improving the visibility of de-58

fects. The technique significantly reduces temporal noise.59

Even though the TSR is a pixel-based technique, one of60

its side effects is the reduction of spatial noise, making the61

images more suitable for the defects’ detection.62

Underlying defects and discontinuities appear explic-63
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itly in the reconstructed images with a different intensity.64

Morphological image processing techniques can be used to65

detect these abnormalities. Almond et al. here [22] sug-66

gested the identification procedure called Full Width Half67

Maximum (FWHM) which is based on the measurement of68

the distance between the points which correspond to half of69

the maximum temperature signal. Thermal edge effects for70

crack-like defects have been calculated using the Wiener-71

Hopf technique. Lugin and Netzelmann [23] proposed a72

model–based iterative algorithm for the reconstruction of73

two– and three–dimensional defect shapes.74

More generic image processing techniques can be used75

for the detection of the defects’ edges. A suitable edge–76

detection technique which can be used for accurate recog-77

nition and shape reconstruction is the Canny algorithm [24].78

Canny edge detector is a multi-step technique that pro-79

cesses an input image and detects the edges of any objects.80

Because of its great accuracy, the algorithm is used in com-81

puter vision systems, yet not only. In the NDT field the82

applications of the algorithm are numerous and its usage83

can be found in several inspection techniques. Alaknanda84

et al. [25] used the Canny algorithm for the flaw detection85

in radiographic weld images. In a recent work by Yan et86

al. [26] the algorithm has been used for the detection of87

corrosion via pulse–modulation eddy current inspection.88

In thermography, Sham et al. [27] used the algorithm for89

the detection of cracks on concrete surfaces heated by a90

flash lamp.91

This paper proposes a new approach for the real–time92

shape reconstruction of delamination defects in planar mul-93

tilayer structures based on a combination of the TSR method94

and the Canny algorithm. To assess the performance of95

the approach, the proposed algorithm is applied to syn-96

thetic thermograms obtained by corrupting simulation re-97

sults with different levels of additive Gaussian noise.98

The numerical simulation of IR procedures involves99

the solution of the heat conduction problem in the con-100

sidered work-piece, with and without defects, in order to101

obtain the temperature distribution at the piece interfaces,102

which constitutes the measurement. The full solution to103

this problem can be obtained using a numerical technique104

like the finite elements method (FEM). Nevertheless, in105

practical situations it is often meaningful to renounce the106

detailed information of the complete numerical solution in107

favour of fast analytical or semi-analytical approximations,108

which hold the essence of the thermal flow behaviour. A109

powerful, well-established approach is the so-called ther-110

mal quadrupole method, where the original three dimen-111

sional problem is approximated as a multilayer one dimen-112

sional problem (by ignoring the heat flow in the lateral lay-113

ers directions) and modelled as a cascade of ”quadrupoles”114

in analogy with the electrical network theory [28, 29, 30].115

Should the lateral propagation become no longer neg-116

ligible, as in the case of thermal image processing at late117

times considered in this work, the quadrupole approach118

is not valid anymore, and a more general approach prop-119

erly accounting for the 3D diffusion should be followed.120

Semi-analytical formulations are still tractable in this case,121

provided that the considered geometry consists of canon-122

ical pieces and making the assumption that the solution123

is negligible (or stationary) at sufficient distance from the124

region of interest. This approach is based on the artificial125

truncation of the computational domain, referred to in the126

literature as the truncated region eigenfunction expansion127

(TREE), and has been successfully applied in electromag-128

netics for the solution of magnetostatic and low-frequency129

(eddy-current) problems [31, 32, 33, 34, 35]. Defects can130

be modelled either directly as part of the geometry like131

in [33, 34, 35], or indirectly by first applying the TREE132

method to construct the Green’s function accounting for133

the geometry of the flawless piece and treating the defect134

as a perturbation by solving the appropriate integral equa-135

tion [36, 37].136

The TREE approach has already been tested for the137

inversion of thermographic signals in order to estimate the138

thickness of delamination defects [38]. In this work, this139

approach is extended to multilayer specimens and is com-140

bined with the TSR method for providing the simulated141

signals to the reconstruction algorithm.142

The paper is organised as follows. The considered in-143

spection problem is posed and a semi-analytical solution144

of the heat conduction problem using the TREE approach145

is presented in section 2. The defect reconstruction al-146

gorithm is then discussed in section 3, where a detailed147

presentation of the constituting bricks, namely the TSR148

and the Canny algorithm, is provided. The application of149

the proposed approach in the case of a two-layer medium150

embedding a number of delamination patches between the151

two layers is examined in section 4, and the article is con-152

cluded with a brief discussion in section 5.153

2. Heat propagation problem in multilayer pieces154

with delamination defects155

2.1. Problem position156

Let us consider a planar piece composed of N stacked157

sheets perfectly joined with another. The medium above158

and underneath the considered piece is air. The piece is159

thermally excited at its upper interface by means of an im-160

pinging heat flux (flash lamp, laser source, air flow). The161

exact form of the excitation is irrelevant for the hereafter162

developed mathematical analysis. Solely its geometrical163

features, i.e., the shape and the dimensions of the flux164

spot as well as its intensity, that is, the heat power per165

unit of surface, are of interest here. We also assume that166

the considered medium is affected by a delamination flaw167

located between the ith and the (i + 1)th layer. As such,168

it is understood a local loss of contact between the two169

layers, which physically takes the form of a very thin cav-170

ity between the two layers, filled with air. The considered171

configuration is depicted in Fig. 1.172

Each layer i is characterised by its mass density ρi, its173

heat capacity at constant (atmospheric) pressure cpi and174
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Figure 1: Problem configuration: a planar multilayer medium af-
fected by a number of delamination flaws is thermally excited by an
impinging heat flux.

its thermal conductivity, which in the context of this work175

we assume that it is isotropic κi.176

We seek to calculate the temperature at every point177

of the medium throughout an observation time window178

comprising the excitation and a relaxation time interval179

after the source switch-off. In particular, we are interested180

in the temperature distribution at the upper and lower181

piece-air interface since these distributions are the exper-182

imentally accessible information. These two distributions183

can be extracted by the solution of the associated heat184

propagation problem, as developed below.185

2.2. Formal solution186

Let T (i)(r, t) be the temperature distribution inside the
ith layer, as shown in Fig. 1, expressed as a function of
position r and time t. Since no heat sources exist inside
the layer by hypothesis, T (i)(r, t) satisfies the homogeneous
heat equation in this layer(

∇2 − 1

αi

∂

∂t

)
T (i)(r, t) = 0, (1)

where αi = κi/cpiρi stands for the diffusivity of the layer.187

Since we are interested in the transient solution of the
heat equation, and we are particularly keen to the early
time response, the established (and also most efficient) ap-
proach is to consider the problem in Laplace domain. Ap-
plication of the Laplace transform to (1) yields(

∇2 − s

αi

)
T (i)(r, s) = 0, (2)

s being the Laplace variable.188

In media with flaws the total solution for the tempera-189

ture field can be decomposed into two terms: the solution190

for the unperturbed medium under the excitation of the191

considered heat source, and a perturbation term produced192

by the interaction of the incoming heat flux with the mate-193

rial flaw. Given that we are dealing with a diffusion prob-194

lem, the latter contribution can be considered as negligible195

at sufficiently remote distance from the flaw, in the same196

way we treat the flaw field in eddy current problems. As a197

consequence, the temperature field at these distances will198

be dominated by the solution for the unperturbed medium,199

which for an infinite planar piece depends solely on the di-200

mensions of the incoming heat flux. Hence, for extended201

(practically infinite) fluxes, the computational domain can202

be closed (truncated) by a Neumann boundary condition,203

which assures zero escaping heat flux from the domain204

boundaries (otherwise stated, an adiabatic condition).205

∂T (i)

∂x

∣∣∣∣
x=0

=
∂T (i)

∂x

∣∣∣∣
x=Lx

= 0, (3)206

∂T (i)

∂y

∣∣∣∣
y=0

=
∂T (i)

∂y

∣∣∣∣
y=Ly

= 0, (4)207

with the computational domain extending from 0 to Lx in208

the x direction and from 0 to Ly in the y direction. This209

condition is in accordance with the physics of the solution.210

If, instead, the consider source has a finite (with respect211

to the characteristic dimensions of the problem) support,212

the domain can be truncated either by a Dirichlet (zero213

temperature) or Neumann (zero flux) condition, as it is214

the usual practice with the TREE method1.215

In this work we deliberately choose to work with finite216

support sources since this case leads to simpler mathemat-217

ical treatment (absence of a zero-order term). It does not218

lack practical significance either, since narrow lamp spots219

and point sources like laser beams are also of interest in220

real world applications. We thus impose221

T (i)
∣∣∣
x=0

= T (i)
∣∣∣
x=Lx

= 0, (5)222

T (i)
∣∣∣
y=0

= T (i)
∣∣∣
y=Ly

= 0. (6)223

Notice here that re-gauging the temperature field to be
zero at the ambient conditions, we can apply the homoge-
neous Dirichlet condition at the domain boundaries. The
formal solution for the temperature field in the ith layer
reads as

T (i) =

∞∑
m=1

∞∑
n=1

C(i)
mne

η(i)mn(z−zi−1)wmn(x, y)

+

∞∑
m=1

∞∑
n=1

D(i)
mne

−η(i)mn(z−zi)wmn(x, y) (7)

for i = 1 . . . , N , with

wmn(x, y) = sin(κmx) sin(λny) , (8)

the discrete eigenvalues κm and λn being determined by
the truncation conditions in the x and y directions (5),(6),

1It should be underlined here the difference with the eddy-current
problems, where the TREE formulation has been extensively stud-
ied. In these problems, the excitation term is always localised around
the coil and hence one can use either Dirichlet or Neumann condi-
tions in almost every case. The basic criterion in the final choice is
mathematical convenience.
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namely,

sin(κmLx) = 0, κm =
mπ

Lx
, m = 1 . . . ,∞, (9)

sin(λnLy) = 0, λn =
nπ

Ly
, n = 1 . . . ,∞, (10)

and η
(i)
mn being calculated using the dispersion equation

η(i)mn =

√
κ2m + λ2n +

s

ai
. (11)

Note that the development coefficients C
(i)
mn and D

(i)
mn224

standing for the upwards and downwards evanescent modes225

have been normalised with respect to the values of the cor-226

responding exponential terms at the lower zi and upper227

zi−1 interface, respectively. There are different ways to228

normalise the modes. The one chosen here assures that229

all the corresponding exponents are negative, resulting in230

values lower than one, and thus overflows are avoided.231

In the air regions above and underneath the piece, only
the terms vanishing to infinity must be kept, reducing the
general expansion to the following expressions

T (0) =

∞∑
m=1

∞∑
n=1

D(1)
mne

−η(0)mnzwmn(x, y) (12)

and

T (N+1) =

∞∑
m=1

∞∑
n=1

C(N+1)
mn eη

(0)
mn(z−zN )wmn(x, y) (13)

for the regions above and below the piece, respectively,232

with η
(0)
mn =

√
κ2m + λ2n + s/a0, a0 standing for the air233

diffusivity.234

The expansion coefficients in (7) and (12),(13) are de-235

termined according to the standard procedure by applying236

the continuity of the temperature and the normal to the237

interface heat flux across the piece interfaces.238

We treat the problem in two steps. First, the solution239

for the flawless medium is developed, assuming a perfect240

thermal contact between all layers. The effect of delam-241

ination effects is accounted for in a second step by mod-242

ification of the temperature continuity at the respective243

interfaces.244

2.3. Equation system for the flawless medium245

Considering the interface between the i and the (i+1)th
layers, these two relations are written as[

T (i) − T (i+1)
]
z=zi

= 0 (14)

and [
J (i)
n − J (i+1)

n

]
z=zi

= Je, (15)

respectively, with the normal heat flux in the ith layer
being given by the Fourier’s law

J (i)
n (x, y) = −κi

∂T (i)

∂z
. (16)

Je stands for the incoming flux of the heat source, which
for the class of problems which we are dealing admits a
non-zero value only at the upper interface, where the ther-
mal excitation is applied. Assuming an impinging beam
of constant intensity Je and of arbitrary support S(x, y),
the source term can be developed in terms of the modal
functions wmn(x, y) as

Je(x, y) =

∞∑
m=1

∞∑
n=1

C(e)
mnwmn(x, y) , (17)

where the development coefficients are given by the inte-
grals

C(e)
mn = Je

∫ Lx

0

∫ Ly

0

S(x, y)wmn(x, y) dx dy. (18)

The above integrals admit closed form expressions for the246

most usual shapes such as rectangular and circular.247

Substituting (7),(12),(13) and (17) in (14),(15) and
weighting with wmn we obtain

C(i)
mne

−η(i)mndi +D(i)
mn

−C(i+1)
mn −D(i+1)

mn e−η
(i+1)
mn di+1 = 0 (19)

and

− η(i)mnκi
(
C(i)
mne

−η(i)mndi −D(i)
mn

)
η(i+1)
mn κi+1

(
C(i+1)
mn −D(i+1)

mn e−η
(i+1)
mn di+1

)
= C(e)

mnδi,0, (20)

where di = zi−1 − zi and δi,0 is the Kronecker delta. No-248

tice that for the first and last interface, C
(1)
mn and D

(N+1)
mn249

vanish.250

Since the development basis is infinite, we need to trun-
cate the sums (7),(12) and (13) in order to arrive at a solv-
able system of equations. We are allowed to do that since
the series terms are decreasing for increasing mode num-
bers m and n. Thus, assuming an exact arithmetic, the
error can be made arbitrarily small by judicious choice of
the number of modes taken into account. Let Nm and Nn
be this number for the modes along the x and y directions.
The previous result for the continuity relations at the ith
interface can be conveniently represented in a matrix form
as follows

A(i)X(i) = B(i), (21)

with

A(i) =

[
e−η

(i)di 1 −1 −e−η(i+1)di+1

−βie−η(i)di βi βi+1 −βi+1e−η
(i+1)di+1

]
(22)

X(i) =
[
C(i) D(i) C(i+1) D(i+1)

]T
(23)
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and

B(i) =
[
0 δi,0C

(e)
]T
. (24)

The bold symbols in the system matrix (22) are under-251

stood as diagonal matrices, namely η(i) = diag
[
η
(i)
mn

]
,252

m = 0, . . . , Nm, n = 0, . . . , Nn and β(i) = κiη
(i), and253

the coefficient vectors such as C(e) are column vectors,254

i.e., C(i) =
[
C

(i)
mn

](i)
, m = 0, . . . , Nm, n = 0, . . . , Nn, etc.255

Assembling the relations (21) for the N + 1 interfaces256

of the medium, we arrive at a linear system of equations,257

which relates the 2(N+1)NmNn sought development coef-258

ficients, i.e., the system rank is 2(N + 1)NmNn. It should259

be noticed here that the inversion of (21) using algorithms260

for sparse matrices is equivalent to the explicit iterative261

calculation of (7), (12),(13) or the reflection/transmission262

coefficients approach adopted elsewhere, both from theo-263

retical and computational point of view. The matrix form264

representation adopted in this work allows a more compact265

notation, which is the reason for choosing it.266

2.4. Introduction of delamination defects267

Let us consider now the multilayer medium of the pre-268

vious paragraph but this time we assume an imperfect con-269

tact between the ith and the (i+ 1)th layer, which can be270

attributed to the existence of a thin void inclusion between271

the two layers. This kind of imperfect contacts between272

two adjacent layers is practically met in media affected by273

delamination defects. The effect of the defect on the heat274

propagation inside the medium can be taken into account275

by locally modifying the continuity relation between the276

two layers i and i+ 1.277

T (i)

T (i+)

d(x, y)
T (i)

κd

Figure 2: Void inclusion between two adjacent layers. The void is
assumed homogeneous and much thiner than the embedding layers.

Consider the general case of a thin void inclusion de-
picted in Fig. 2, where D is void domain and d(x, y) stands
for its thickness, which in the general case is a function of
the x, y position. By applying the Fourier’s law across the
void volume, one has

Jz = −κd∇T, (25)

which for relatively small values of d(x, z) reduces to the
finite difference relation

Jz(x, y) ≈ −κd
T (i)(x, y)− T (i+1)(x, y)

d(x, y)
. (26)

By introducing the local thermal resistance as [28]

R(x, y) =
d(x, y)

κd
, (27)

the previous relation can be written as follows:

T (i) − T (i+1) = −R(x, y) Jz. (28)

Substitution of (28) into (19) and taking (16) into ac-
count yields

Nm∑
m′=0

Nn∑
n′=0

(
δnm,n′m′ −Rm′n′κiη(i)m′n′

)
C

(i)
m′n′e

−η(i)
m′n′di

+

Nm∑
m′=0

Nn∑
n′=0

(
δnm,n′m′ +Rm′n′κiη

(i)
m′n′

)
D

(i)
m′n′e

−η(i)
m′n′di

−C(i+1)
mn −D(i+1)

mn e−η
(i+1)
mn di+1 = 0, (29)

where Rmn stands for the weighted thermal resistance
function

Rmn =

Lx∫
−Lx

Ly∫
−Ly

R(x, y)w(x, y) dxdy. (30)

Adopting again the matrix notation presented above,
the continuity relations for the ith layer become(

A(i) + δA(i)
)
X(i) = B(i) (31)

with A(i), X(i) and B(i) being given by (22), (23) and (24)
respectively, and

δA(i) = R

[
−βi βi 0 0
0 0 0 0

]
, (32)

where this time R is a full matrix that couples all modes278

together. The introduction of the defect, in other words,279

comes at the cost of the partial loss of the system spar-280

sity. An interesting limiting case, though, is the one where281

the support of the delamination defect exceeds the com-282

putational domain, i.e. R(x, y) = c, for −Lx ≤ x ≤ Lx283

and −Ly ≤ y ≤ Ly, with c constant. In this case R be-284

comes diagonal and the sparsity of the original system is285

restored. This is the quasi-1D case in the sense that the286

considered geometry is invariant along x and y directions,287

yet excited via an arbitrary flux profile. An intermediate288

case would be also having an infinite source along one of289

the x or y directions. In this latter case, the R matrix be-290

comes block-diagonal, i.e., it has the form of a Kronecker291

product of a diagonal and a full submatrix.292

2.5. Inverse Laplace transform293

For the development of the semi-analytical solution we294

have worked so far entirely in the Laplace domain. We are295

interested though in the transient response of a number of296

observables such as the temperature evolution at specific297

points of the geometry and especially on the two surfaces298

of the medium, which is actually the only accessible exper-299

imental information of the method. In order to obtain the300

temporal evolution of the temperature field the solution in301
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the Laplace domain should be transformed back into the302

time domain.303

There are several methods reported in the literature304

for performing this inversion. In this work we have chosen305

to carry out the inversion numerically using the Stehfest’s306

algorithm [39, 40], which is an improved variant of Gaver’s307

method [41]. This method is well adapted to the problem308

of impulse thermography studied here [28].309

If F (s) is the known Laplace transform of the function
f(t), evaluated at s = aj/t where aj = j ln(2), then an ap-
proximate value of this function at time t can be calculated
as

f(t) ∼=
ln(2)

t

N∑
J=1

VjF

(
j

ln(2)

t

)
. (33)

The coefficients Vj are given by the following expression
for an even value of N :

Vj = (−1)j+N/2

×
Min(N/2,j)∑

k=Int((j+1)/2)

kN/2(2k)!

(N/2− k)!k!(k − 1)!(j − k)!(2k − j)!
.

(34)

In this equation ’Int’ designates the integer part of a real310

number and ’Min’ the minimum of two numbers.311

Applying (34) at a number of preselected instances t,312

we then obtain the temporal profile of our observable at313

those points. The optimal choice of the points, itself, will314

depend on the thermal signal processing that we wish to315

apply. In the following, the TSR approach is used for the316

representation of the thermograms at the plate interfaces,317

and consequently the choice of the suitable sampling points318

will be based on this approach.319

3. Defect shape reconstruction from the thermal320

images321

In order to properly characterize subsurface defects322

in laminates, the signals recorded by an infrared cam-323

era should be processed by some algorithms. Data pro-324

cessing algorithms in TNDT are either one-dimensional325

or two-dimensional, with the first ones being applied to326

pixel-based temperature evolution in time and the second327

ones applied to single images. The time series of each328

recorded pixel is separately evaluated, usually to find any329

alterations of material’ properties or the depth of those330

alterations. Single IR images are normally filtered or seg-331

mented to reduce random noise or to analyse geometrical332

features of the areas of interest.333

Since its introduction [42], the thermographic signal334

reconstruction (TSR) method has emerged as one of the335

most widely used methods for enhancement, analysis and336

compression of raw thermographic sequences. The tech-337

nique was originally developed for pulse thermography to338

improve contrast results and is one of the pixel-based meth-339

ods.340

One of the well-established edge-detection algorithms341

is the so-called Canny algorithm [24]. The methods pro-342

cesses an input image and detects the edges of any present343

objects (defects). Because of a better signal to noise ratio344

and detection accuracy, the Canny operator becomes the345

evaluation criterion of other methods. The algorithm con-346

sists of Gauss filtering, gradient calculation, non-maximum347

suppression, double thresholding, checking the edges and348

connecting the edges.349

In this section, the theoretical background of the two350

mentioned methods is given and numerical results from351

their application for the detection of delamination-type352

defect in planar media shown.353

3.1. Thermographic signal reconstruction354

The technique is based on the pixel-based evaluation355

of the time series which represent the surface temperature356

variation over time. The technique consists of two basic357

steps. The first step is the fitting of the recorded time358

series in the log-log space by a logarithmic polynomial of359

degree n. This step provides a significant compression of360

the raw data. In a later step, the reconstruction of the361

temperature signals in the logarithmic domain using the362

polynomial has to be performed, providing noise-reduced363

copy of each pixel time series. Fitting to the thermograms364

highly depends on the time window chosen and the poly-365

nomial degree. Thus, the choice of the time window has366

to be made with the objective to consider only the part of367

the thermograms influenced by the physical phenomena to368

characterize, and the polynomial degree has to be defined369

considering that this will be a trade-off between accuracy370

of signal reproduction and denoising.371

Especially, in a defect-free sample, the thermal dif-
fusion in the lateral direction could be neglected com-
pared to the normal direction, so one can consider the
one-dimensional heat equation for the thermography. In
principle, the method exploits the well-known observation
that in a semi-infinite flawless sample, or in a very thick
slab, the surface temperature response to instantaneous
uniform heating, ideal impulsive heat flux, is described by
the one-dimensional heat diffusion equation

∂T

∂t
= α

∂2T

∂z2
, (35)

where α = κ
ρc is the thermal diffusivity of the material

with the solution

T (z, t) =
Q

ε
√
πt
e
z2

4αt (36)

at distance z from its surface, where ε =
√
κρc is the heat

effusivity and Q is the quantity of energy absorbed by the
surface. Since thermal imaging is only applicable to sur-
face temperature, from Eq. (36) one has the temperature
increase ∆T (thermogram) as a function of time t at the
surface:

∆T (t) =
Q

ε
√
πt
. (37)
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The one-dimensional approximation of Eq. (37) assumes372

that the lateral diffusion components more or less cancel373

in a defect-free sample. However, in the presence of an374

adiabatic subsurface boundary such as a void, a wall, a375

buried defect, or in the case of a multi-layer sample the in-376

cident heat flow from the sample surface is impeded, and377

this solution no longer applies locally. The effect of a wall378

is shown in the left plot in Fig. 3 where the surface tem-379

perature for a semi-infinite sample is compared with the380

case of the presence of an adiabatic wall at three different381

depths. The effect of a buried defect in the thermograms382

is shown in the right plot in Fig. 3 where the separation of383

the temperature response at the surface of a solid between384

a sound area and a defected area should be simple when385

these defects are large or very close to the surface. How-386

ever, when one attempts to detect thin buried defects, the387

effects of infrared camera noise as well as the complexity388

found in many samples limit the ability to discriminate389

between sound and flawed areas.390
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Figure 3: Surface temperature decay curves for a single point of a
steel plate. Left: Comparison of temperature time plot of a semi-
infinite sample with three adiabatic samples of different thickness.
Right: Comparison of temperature time plot of a sound sample with
two defected samples at different depth.

Considering the time evolution of the surface temper-
ature in the logarithmic domain, where Eq. (37) can be
written in the logarithmic scale, additional insight into the
surface temperature response during the cooling period of
the sample is gained:

ln (∆T ) = ln

(
Q

ε
√
π

)
− 1

2
ln (t) . (38)

In Eq (38) the time dependence has been separated from391

the input energy and material properties. Only the offset392

of the response will change as the sample material and the393

input energy vary.394

For a semi-infinite piece, Eq. (38) describes a straight395

line with slope equal to −1/2, as pictured in Fig. 4. In the396

case of an adiabatic plate, the response deviates from the397

straight line at a particular time, depicted in the left plot in398

Fig. 4. This particular time is correlated with the thickness399

of the plate. In the presence of a subsurface defect in a400

plate, or in a semi-infinite solid, the time evolution plot of401

the temperature corresponding to those pixels depart from402

that behaviour in a particular time but in a different way403

comparing to the case of the adiabatic flaw-free plate, as404

shown in the right hand plot in Fig. 4.405
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Figure 4: Surface temperature decay curves for a single point of a
steel plate in the logarithmic scale. Left: Comparison of temperature
time plot of a semi-infinite sample with three adiabatic samples of
different thickness in the logarithmic space. Right: Comparison of
temperature time plot of a sound sample with two defected samples
at different depth in the logarithmic space.

In Fig. 4 the thermograms have been normalised based406

on Eq. (38) where the term which describes the source and407

the material effect have been removed.408

For a given pixel, the response given by Eq. (38) can
be approximated, in general, by a function or set of or-
thogonal functions. The TSR method uses a polynomial
series to fit the experimental data in log-log space:

ln (∆T ) =

N∑
n=0

an [ln(t)]
n
. (39)

The fitting of the log-log thermogram, for each recorded
pixel (i, j), by the logarithmic polynomial replaces the full
sequence of the temperature response images T (i, j, t) by
the series of (n + 1) images of the polynomial coefficients
a0(i, j), · · · , an(i, j). Once the time evolution of each pixel
has been approximated by Eq. (39), the original data can
be reconstructed as

∆T = exp

(
N∑
n=0

an [ln(t)]
n

)
. (40)

Thus, it is only necessary to store the polynomial coef-409

ficients an and reconstruct the images stack at required410

time samples. This approach provides a significant degree411

of data compression.412

A low–degree polynomial expansion is applied usually413

to serve as a low–pass filter. Thus, this approximation pre-414
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serves the essential thermal response, while rejecting non–415

thermal noise contributions. The use of higher-order poly-416

nomials reproduces the original data and replicates also417

part of the noise that appears in the later, low–amplitude418

data. In Fig. 5 reconstructed noisy signals by using poly-419

nomial degrees n = 7 and 17, with and without the pres-420

ence of a defect, are compared, and the trade-off between421

accuracy of signal reproduction and signal denoising is422

clearly exhibited.423
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Figure 5: Regression by a logarithmic polynomial of degree n equal
to 7 and to 17, for a sound area, in the top plot, and a flawed area,
in the bottom plot.

The use of TSR effectively removes the temporal noise424

from the recorded raw signals. However, the reduction425

of temporal noise does not necessarily increase the flaw426

detectability. This can be partially addressed by the com-427

putation of the first and second time derivatives, using428

Eq. (39), without additional noise contributions, which429

leads to equations430

d ln (∆T )

d [ln(t)]
=

N∑
n=1

nan [ln(t)]
n−1

, (41)431

d2 ln (∆T )

d [ln(t)]
2 =

N∑
n=2

n(n− 1)an [ln(t)]
n−2

, (42)432

for the first and the second derivative, respectively. The433

temperature in the logarithmic scale is compared with the434

first and the second time derivative for a sound area and435

a flawed area in Fig. 6.436

The denoising provided by TSR is not limited to the437

time signals but has been partially transmitted to the spa-438

tial signals also, this is an indirect effect of the method.439

The derivatives, by definition, are much more sensitive to440
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Figure 6: Plots of the logarithmic thermogram, 1st and 2nd loga-
rithmic time derivatives for a thick steel plate. Top: Homogeneous
sound plate. Bottom: Homogeneous plate with an embedded flaw.

small changes in amplitude than the raw signal. However,441

after the application of the TSR that acts as a low-pass442

filter, the derivatives are less sensitive to random signal443

fluctuations. In Fig. 7 the raw signals versus the horizon-444

tal position plot of the steel defect sample and the TSR445

first derivative are compared.446
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Figure 7: Comparison of raw and TSR results for a horizontal line
through the centre row of delamination.

The derivative signals have been partially denoised by447

TSR also. The high sensitivity of the derivatives to small448

changes makes them ideal for the detection of features that449

can be undetectable in the original data. Comparing now450

images obtained from TSR, first and second derivatives,451

in Fig. 8, it is obvious that the images are sharper and452

the detectability of small flaws has been significantly im-453

proved.454
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Figure 8: Comparison of raw image in the left top corner, TSR image
in the right top corner, 1st derivative image in the left bottom corner
and 2nd derivative image in the right bottom corner.

3.2. Shape reconstruction using the Canny edge detection455

algorithm456

In its classical form, the Canny algorithm, in its first
step, processes the image smoothly through Gaussian con-
volution and obtains the gradient image through differen-
tial operation on the image which is processed via Gaus-
sian convolution. Consider the two-dimensional Gaussian
function

G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (43)

with mean µ = 0 and standard deviation σ. The pa-
rameter σ is the width of the Gaussian filter and directly
determines the effect of filtering where larger σ provides
smoother images. The filtered image is derived from the
convolution

Î (x, y) = G(x, y) ∗I (x, y), (44)

where I (x, y) is the original image matrix. Making use of457

Gaussian function’s separability, ∇G can be decomposed458

into two one-dimension filters:459

∂G

∂x
= kx exp

(
− x2

2σ2

)
exp

(
− y2

2σ2

)
, (45a)460

∂G

∂y
= ky exp

(
− y2

2σ2

)
exp

(
− x2

2σ2

)
. (45b)461

By convolving these equations with the image we obtain:462

Lx =
∂G

∂x
∗I (x, y), (46a)463

Ly =
∂G

∂y
∗I (x, y), (46b)464

where in a matrix representation this can be written as:465

Lx = Kx ∗I (i, j), (47a)466

Ly = Ky ∗I (i, j), (47b)467

where i and j are the coordinates of a pixel in the image.468

This is a way to compute the gradient, but not the469

only one. Different kernels can be used to calculate the470

image gradient. This could separate the denoising part of471

the algorithm from the computation of the gradient. For472

the traditional Canny algorithm, two 2 × 2 convolution473

operators Kx and Ky are deployed to calculate the image474

gradient in the x and y directions, respectively. These475

operators are written as:476

Kx =

[
1 −1
1 −1

]
, (48a)477

Ky =

[
1 1
−1 −1

]
. (48b)478

In general, 2 × 2 or 3 × 3 kernels based on finite dif-479

ferences are used for the computation of the gradient. In480

the literature one can find many other derivative kernels481

which provide also some smoothing in the data, with the482

most used ones being the Sobel operator:483

Kx =

1 0 −1
2 1 −2
1 0 −1

 , (49a)484

Ky =

 1 2 1
0 1 0
−1 −2 −1

 . (49b)485

After convolving the image with the kernels, the gradient-
component intensity of the image is derived from

M(i, j) =
√
L2
x(i, j) + L2

y(i, j), (50)

and its normal vector direction at the pixel (i, j) is defined
as

θ(i, j) = arctan

[
Lx(i, j)

Ly(i, j)

]
. (51)

To follow, after smoothing the image using Gaussian486

smoothing and convolving it with derivative kernels, one487

ends up with the gradient magnitude image M(i, j) which488

reflects the edge intensity at the pixel (i, j), and θ(i, j),489

which reflects the normal vector at the pixel (i, j) in the490

image. Edges of objects can be extracted from the gradient491

component intensity image, but they will be quite blurry.492

In this step, the algorithm aims at thinning those edges493

by setting the pixels around local maxima in the gradient494

image M to 0.495

Firstly, the direction angle is rounded to 0◦, 45◦, 90◦,496

135◦ for the relative position in adjacent pixels of the im-497

age. Aiming at every pixel whose value is non-zero, the498

gradient-component intensity of a candidate pixel M(i, j)499

is compared with two adjacent pixels along the rounded500

direction angle. The candidate pixel is preserved only if501

9



its gradient component intensity is the largest. Otherwise,502

it is set to zero. Let the processed image be M̂(i, j).503

The non-maximum suppression gives the non-zero pix-504

els providing more accurate approximation regarding the505

edges of the objects in the processed image M(i, j). These506

pixels are taken as the edge pixels. Due to noise in the orig-507

inal image, M̂(i, j) contains pixels depicting false edges,508

the spurious edge response. To mitigate these spurious509

edges, hysteresis tracking is performed using dual thresh-510

olding by setting a high τh and a low τl threshold pa-511

rameter. Edge pixels which have gradient larger than τh512

are added automatically to the final binary image and are513

considered as strong edge pixels. In opposition, edge pixels514

with a gradient lower than τl are considered as phantom515

edges and are discarded. The remaining pixels with a gra-516

dient value between τl and τh are considered as weak edges517

and are added to the final binary image only if they are518

connected with a strong edge pixel. When none of the519

8-connected neighbourhood pixels is a strong pixel, the520

candidate pixel is suppressed.521

The choice of thresholds is very crucial for the success522

of the method. The algorithm can wipe off most of the523

spurious edges while increasing the value of τh, but mean-524

while, some edges may be missed. On the other hand,525

by decreasing the value of τl more information about the526

edges will be preserved but the edge’s characteristic will527

become less and less at the point where the true edges will528

be missed. Auto-select thresholding value is a difficult529

task. At present, there are many kinds of methods in se-530

lecting threshold values. The more widely used is the Otsu531

method [43] but also other methods based on histogram,532

maximum entropy, or statics are used [44, 45, 46].533

The Otsu method has the best threshold value in the534

statistical sense and is the most stable method in the im-535

age threshold segmentation. The method has been used536

here to choose the value of τh automatically. The method537

assumes that the pixels of the image to be thresholded can538

be separated into two classes, e.g. foreground and back-539

ground, then calculates the optimum threshold separating540

those two classes so that their combined spread is minimal.541

Suppose that G = [0, L− 1] is the range of greyscale in
image F and Pi is the probability of every greyscale and
the threshold value τ has splitted the image in two classes
which are C0 = [0, τ ] and C1 = [τ + 1, L − 1]. The two
classes probabilities are

α0 =

τ∑
i=0

Pi

and
α1 = 1− α0,

respectively. The average grey values of the two classes
are

µ0 =

τ∑
i=0

iPi
α0

=
µτ
α0

and

µ1 =

L−1∑
i=τ+1

iPi
α1

=
µ− µτ
1− α0

,

respectively, therein

µ =

L−1∑
i=0

iPi, µτ =

τ∑
i=0

iPi.

The criterion function has been defined as variance be-542

tween the two classes, expressed as543

η2(τ) = α0 (µ0 − µ)
2

+ α1 (µ1 − µ)
2

(52)544

= α0α1 (µ0 − µ1)
2
. (53)545

The optimal threshold value τ? is given by

η2(τ?) = max
0≤τ≤L

η2(τ). (54)

Threshold τ? will be used as the high threshold parameter546

τh. The value of the low threshold τl, usually, is set to547

be τl = τh
2 .548

The last step of the algorithm is the connection of549

already detected edges on the binary image under some550

restrictions. These restrictions are criteria set upon the551

gradient value M̂(i, j) and the gradient angle θ(i, j) of the552

non-edge pixels between two edges. If the gradient is larger553

than a given value and the gradient angle is close to zero,554

the pixels between the two edges are added to the binary555

image.556

The output of the Canny algorithm is a binary image557

which contains the edges of any object present in the initial558

image.559

4. Results560

4.1. Description of the configuration561

In this section, the proposed multi-step flaw charac-562

terization technique will be demonstrated by employing563

the forward model developed in Sec. 2, and the image564

processing techniques described in Sec. 3. Temperature565

signals, produced by the three-dimensional TREE model,566

have been corrupted with Gaussian noise of different levels567

to simulate temperature signals collected by an infrared568

camera and from now on are called raw signals. Other569

types of noise beyond Gaussian could be used in this part570

but this is out of our scope. The detection and charac-571

terization procedure has been divided into two parts.The572

first step concerns the detection and shape reconstruction573

of candidate flaws and the second step, their characteriza-574

tion through an iterative parameter estimation technique575

regularised by the information gained from the first step.576

Concerning this section, the three-dimensional model577

developed in Sec. 2 has been used to compute the temper-578

ature field, for the general configuration depicted in Fig. 9.579

These signals are supposed to be collected at the front,580

or upper surface of the work piece. A grade 4340 steel plate581
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Figure 9: Sketch of the configuration in the (x, y) and (x, z)–plane,
left and right respectively.

with thermal conductivity k = 44.5 W/mK, heat capac-582

ity Cp = 475 J/kgK, density ρ = 7850 kg/m3 and thick-583

ness d = 3 mm is used. The plate is considered to be in-584

finite in the x– and y–direction where the area of interest585

is a 40 × 40 mm2 rectangle. Three well-defined air-filled586

defects, named A,B and C, which simulate delaminations587

of different thickness, dA = 3 × 10−3 mm, dB = 2 × 10−3588

mm, dC = 1× 10−3 mm and of different sizes 3× 2 mm2,589

4× 2 mm2, 4× 4 mm2, respectively, have been embedded590

into the plate with their larger faces set to be parallel to591

the plate surface. As an excitation term, a flash lamp, set592

above the plate and parallel to its surface, depositing a593

heating power density of Q = 104 W/m2 at the surface of594

the plate, has been modelled as a Dirac’s delta function in595

time, whereas its spatial distribution is considered to be596

uniform and covers all the domain of interest, as already597

done before.598

4.2. TSR and noise reduction599

The described configuration is used in this part with600

the addition that the flaws are located in the middle of the601

plate along the z–axis.602

The shape reconstruction part of the technique starts603

by applying the TSR method to the noisy signals. This604

provides the polynomial approximation of the signals, say,605

the matrix P of dimensionsNx×Ny×(p+1), whereNx, Ny606

are the pixels numbers along the x– and y–directions, and607

p is the polynomial degree. Polynomial coefficients of the608

first and second time derivatives are stored in the matri-609

ces P1 and P2, respectively. The time-dependent tem-610

perature field in the logarithmic scale, as well as the first611

and second time derivatives, can be reconstructed using612

the polynomial matrices P,P1,P2 and stored in the ma-613

trices I ,I1,I2. The reconstruction of the time signals614

derives time frames which are smoother and suitable for615

defect detection. The reconstructed second time deriva-616

tive matrix, I2, will be used for the detection of the time617

which corresponds to the best frame.618

The choice of the polynomial degree is a very crucial619

task for the TSR technique, here we choose to work with620

7th degree polynomials that were shown to approximate621

the original signal with high accuracy and filtering most of622

the noise as observed from the log− log plots in Fig. 5. In623

Fig. 10 the reconstructed signals versus time are compared624

with the raw noisy signals as well as with the synthetic sig-625

nals as a reference. The signals correspond to two different626

pixels with the first one being at the centre of the plate627

where it is considered to be a sound area and the second628

one at the centre of the largest defect, named C, left hand629

and right hand plot in Fig. 10, respectively. It is clear630

from Fig. 10 that most of the noise has been significantly631

filtered through the TSR method and the original signals632

have been reconstructed with great accuracy.633
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Figure 10: Reconstruction of temperature noisy signals with the TSR
technique for a sound area and a flawed area. Comparison of the
reconstructed signals with the reference signals and the noisy sig-
nals. Left: Time signals corresponding to a sound area of the plate.
Right: Time signals corresponding to a flawed area of the plate.

An additional important detrimental factor for the raw634

signal is the finite camera readout precision, which is su-635

perposed to the additive signal noise. In order to test the636

algorithm robustness under more realistic conditions of fi-637

nite camera readout, a minimum temperature resolution638

has been assumed, resulting in a rounded raw temperature639

signal with a precision of 0.05◦C. The raw signal deforma-640

tion when a finite precision is considered is shown in Fig. 7.641

In the same figure is also given the comparison of the re-642

sulting signal with infinite and finite temperature resolu-643

tion after the application of the TSR. As can be seen from644

the comparison, the finite round-off error of the camera645

has a visible impact on the raw signal itself, yet the effect646

is relieved to a satisfactory degree when applying the TSR647

algorithm. Note that the two TSR signals (with zero and648

finite round-off error) have been obtained using the same649

polynomial degree.650

4.3. Shape reconstruction651

The choice of the most suitable frame for shape re-652

construction is crucial at this point. The best frame for653

the shape reconstruction algorithm should correspond to654

a time instant which maximises the contrast of the im-655

age. The contrast for defects of different thicknesses, lo-656

cated at different depths, reach their maximum contrast at657

different times [13]. To compute the contrast, one needs658

information about where the flaws are located and a ref-659

erence sound area. Since no reference data will be used,660

so the computation of the contrast could be considered as661
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Figure 11: Comparison of the thermal signal obtained using zero and
finite round-off error for a horizontal line through the centre row of
delamination. Up: Raw signal. Down: Signal after application of
the TSR algorithm. The TSR seems to remove the finite precision
effect yielding an SNR comparable with the one obtained for zero
round-off.

an option, the second time derivative matrix I2 will be662

used. A criterion upon the second time derivative for each663

pixel will be set instead. Each variation that occurs in664

the time-dependent signals, which is a result of the alter-665

ation of material thermal properties at a specific depth, is666

indicated by a change of the first time derivative of the sig-667

nals. This change on the first time derivative of the signal668

causes the second time derivative to change significantly.669

The times at which the second time derivative reaches its670

local maxima are correlated with the times where the ab-671

solute contrast of the second derivative reaches its local672

maxima. In order to have an early flaw identification, and673

avoid the image blurring at later times, we take into ac-674

count the times where the second time derivative changes675

sign. For each frame, the frequency of the sign changes of676

the second time derivative will be computed and the frame677

with the maximum frequency chosen as shown in Fig. 12,678

where the maximum frequency has been marked with a red679

asterisk. If we have more than one candidate frame, the680

frame that corresponds to the earlier time will be chosen.681

This results in a sharper image but in a multilayer con-682

figuration could result in loss of information about deeply683

buried defects, i.e. very close to the bottom surface. In684

such a case multiple images could be used.685

The image corresponding to that frame number is shown686

in Fig. 13, left, and been named I ∗. The effect of the tech-687

nique on partially denoising the signals in space can be688

seen by the comparison of the derived image with the raw689

image corresponding to the same frame number, Fig. 13,690

right. An RGB image constructed from the triplet I ∗,691

I ∗1 , I ∗2 is shown in Fig. 14. The later is useful in un-692

0 50 100 150 200 250 300

Frame number

Fr
eq

ue
nc

y

Figure 12: Frequency of the sign changes of the second time deriva-
tive for all pixels in each frame of the reconstructed signals.

derstanding the relative depth of the flaws and their rela-693

tive thickness since flaws with significantly different thick-694

ness or located at different depth will appear with different695

colours.696
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Figure 13: Comparison of a raw image with the reconstructed im-
age corresponding to the same optimal frame number. Left: Raw
image, I . Right: Reconstructed image, I ∗.
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Figure 14: RGB(I ∗,I ∗
1 ,I

∗
2 ) image corresponding to the optimal

frame number.

A similar RGB image can be constructed from the697

monomials but that representation is quite noisy when a698

high degree polynomial is used. The degree of the polyno-699

mials used here, p = 7, is considered to be high compared700

with the short time period of the recorded signals and the701

noise level. For a longer time period or lower noise level, an702

RGB image reconstructed using the monomials could be as703

useful as the image in Fig. 14. We illustrate this in Fig. 15,704

where signals with higher SNR (40 dB) are used to recon-705

struct RGB images using 5th and 7th degree polynomials.706

In Fig. 15, left, the monomials −5/5, 4/5, 3/5 are used to707
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form the image and in Fig. 15, right, the used monomials708

are the −7/7, 6/7, 5/7. It is clear from the figures that a709

lower degree polynomial will offer more qualitative infor-710

mation about the flaws that a higher degree polynomial711

which inherits a larger part of noise.712

10 20 30 40

10

20

30

40

x [mm]

y
[m

m
]

10 20 30 40

10

20

30

40

x [mm]

y
[m

m
]

Figure 15: Reconstructed RGB image from the projection of three
monomials after applying TSR on signals with SNR = 40 dB using
polynomials of 5th degree, left, and 7th degree, right.

At this point, the image I ∗ will be provided to the713

Canny algorithm for the detection and the reconstruction714

of defects’ shape. The first step of the algorithm con-715

sists of a Gaussian smoothing of which the image will be a716

subject. Thus the parameter σ that defines the amount717

of smoothing will be provided to the Canny algorithm718

since the smoothing algorithm has been integrated into719

the Canny algorithm. In our case, we perform a slight720

smoothing by using σ = 5. A comparison in greyscale of721

the input image and the smoothed one is shown in Fig. 16,722

where the two images have been rescaled.723
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Figure 16: The impact of the Gaussian smoothing of the input image
to the Canny algorithm shown in grey scale. Left: The noisy input

image I ∗. Right: The smoothed image Î ∗.

A gradient magnitude image M , Fig. 17, left, of the724

smoothed image Î ∗, Fig. 16, right, will be derived after its725

convolution with the derivative kernel, and in this case, the726

Sobel kernel has been used. By applying non-maximum727

suppression to the gradient image, all values along the line728

of the gradient that are not peak values of the ridge have729

been suppressed. This leads to the image M̂ , Fig. 17, right,730

which contains one-pixel- wide edges.731

Due to noise in the original image, M̂ contains pixels732

depicting false edges and to mitigate these spurious edges,733

hysteresis tracking is performed using dual thresholding.734
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Figure 17: The impact of the non-maximum suppression on the gra-
dient intensity image. Left: The gradient intensity image before
applying non-maximum suppression, M(i, j). Right: The gradient

intensity image after applying non-maximum suppression, M̂(i, j).

The choice of the threshold parameters is crucial for the735

success of the method, so we use the Otsu [43] method to736

compute these parameters. The method provides the high737

threshold parameter τh, and the low threshold parameter738

τl will be set by us, τl = τh/2. Pixels that correspond to739

values higher than the high threshold are considered strong740

edges and preserved, pixels that fall under the low thresh-741

old are omitted. Pixels that fall between the two threshold742

parameters are considered as weak edges and kept only if743

connected with a strong edge. The last step of the algo-744

rithm is the connection of already detected edges in the745

binary image under some restrictions upon the gradient746

and the gradient angle.747

The stages of the edge detection for the three individual748

defects are shown in Fig. 18, where different colours refer749

to different stages of the detection. The strong edges de-750

tected after the non-maximum suppression are coloured in751

blue. In green and red, are the parts of the edge omitted752

or added after the hysteresis tracking, respectively. The753

green part of the edges is the last added part during the754

connectivity analysis.
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Figure 18: The stages of the edge detection algorithm illustrated
with different colours.

755

The final binary image which gives the edges of the756

flaws is depicted in Fig. 19 where the true shape of the757

defects is depicted with green colour lines.758
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Figure 19: The final binary image.

The presented multi-step procedure was fully automated759

exempt the fact that the smoothing parameter σ is needed760

to be given. By giving a different value to this parameter761

the results will change but in our case not dramatically as762

can be seen in Fig. 20, where the smoothed input image is763

given, for σ = 3, and the final reconstructed binary image.764
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Figure 20: Gaussian smoothing of the input image to the Canny
algorithm shown in grey scale. Left: The noisy input image I ∗.

Right: The smoothed image Î ∗.

765

4.4. Non uniform heating766

The previous results have been produced under the as-767

sumption of an ideal homogeneous heating. In reality, a768

number of factors such as the finite camera support, its769

position and orientation, local variations of material prop-770

erties, etc. can introduce gradients into the heat front771

profile. In order to study the impact of this effect on the772

reconstruction results, the profile of the impinging flux has773

been modified by introducing a gradient along the x direc-774

tion as follows775

Je(x, y) = −
[
1− sin(φx)

x− x1
x2

]
k(1)

∂T̂ (e)

∂z
(55)

where x1 and x2 are the limits of the flash support in776

the x–direction. This excitation term leads to an uneven777

heating of the piece in the x-direction, with the left side778

being heated more than the right one.779

The TSR results for the best contrast image for φx = 5780

and φx = 30 with an SNR equal to 10 dB are shown in781

Fig. 21. The corresponding results of the Canny algorithm782

for the edge detection are given in Fig. 22.
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Figure 21: Best TSR reconstructed frame with different heat-front
gradient. Left: φx = 5. Right: φx = 30
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Figure 22: Results for the edge detection obtained using the frames of
Fig. 21 after application of non-maximum suppression. Left: φx = 5.
Right: φx = 30

.
783

Being relatively smooth, the gradient of the thermal784

field does not seem having a severe impact to the recon-785

struction images (cf. Fig. 21). As far as the edge detection786

is concerned, the algorithm seems to be relatively insensi-787

tive, with a weak variation of the edge stroke being visible788

for the stronger gradient (φx = 30).789

It must be underlined however that the above con-790

clusions apply as far as the field gradient is relatively791

low-frequency, in other words smooth with respect to the792

sought defect. This assumption is met for sources with793

extended illumination support, such as flash lamps con-794

sidered in this work. The algorithm is expected to be less795
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robust when point-wise heating, using Laser sources for796

example, is applied.797

4.5. Depth effect798

The reconstruction results are expected to be also de-799

pendent from the depth of the defects, since the primary800

field of the heat source becomes more diffuse. This ef-801

fect is important, when the inspection is carried out from802

the opposite side of the excitation (transmission thermog-803

raphy). In order to test the algorithm performance with804

increasing defect depth, the simulations have been car-805

ried out for three different depths, namely z = 0.75mm,806

z = 1.5mm and z = 2.25mm, and the reconstruction al-807

gorithm has been applied using the corresponding noise-808

corrupted images. The raw and TSR reconstructed results809

for the optimal-contrast frame are shown in Fig. 23. The810

SNR has been set equal to 10 dB.811
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Figure 23: Comparison of a raw image with the reconstructed image
corresponding to the same optimal frame number for three different
defect depths z = 0.75mm, z = 1.5mm and z = 2.25mm. Left
Column: Raw images. Right Column: Reconstructed images.

From the illustrated results the beneficial effect of the812

TSR-induced denoising becomes evident and the resulting813

enhancement of the edge detection algorithm is obvious.814

4.6. Complex defect shapes815

For a better judgement of the reconstruction capabili-816

ties in the case of defects with more complex shapes, the817

proposed algorithm has been applied in the case of a cir-818

cular and an irregular shaped defect, whose geometries are819

given in Fig. 24. In the same figure are illustrated the edges820

forms obtained after the application of the TSR-Canny ap-821

proach with non-maximum suppression. Both defects are822

embedded in the same depth with the one of the nomi-823

nal case, namely 1.5 mm under the upper surface and the824

SNR has been set to 10 dB. It appears that the applied825

approach yields overall satisfactory results for both cases.826
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Figure 24: Defect geometries in the (x, y)-plane and the correspond-
ing edge-detection results after application of the TSR-Canny ap-
proach. Left column: A disc of radius 1.5 mm included in a ring of
internal radius 8.5 mm and external radius 10 mm. Right column:
A complex shape of dimensions 20 × 18 mm.

827

5. Discussion828

The TSR method has been combined with the Canny829

algorithm for the detection and the dimensioning of de-830

lamination defects in thermograms obtained using pulsed831

thermography. In this combined approach TSR is used832

for compression and denoising the raw signals, and the833

thus proceeded images are passed to the Canny algorithm.834

It is interesting to note the partial spatial denoising of835

the images (beside the temporal filtering) achieved by the836

TSR, which contributes to a beneficial improvement to the837

overall processing thus enhancing the performance of the838

Canny algorithm.839

TSR has been also used as an acceleration technique840

for the simulation of the heat propagation problem, in the841

sense that the temperature field needs to be calculated842

at a limited number of time instances, used for the poly-843

nomial fitting when the TSR approximation is computed.844
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Combined with a fast semi-analytical solution based on845

the TREE approach, TSR provides a powerful tool.846

This work is restricted to the characterisation of delam-847

ination defects in homogeneous and isotropic media with848

the thermal excitation being applied upon one of the piece849

interfaces. Volumetric heat production via ultrasonic of850

eddy current excitation [47, 48] are of great practical in-851

terest as well, and work is under way in order to extend852

the herein developed approach in order to treat such kind853

of inspection scenarios as well.854
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