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Simultaneous Seismic Sources Separation Based on
Matrioshka Orthogonal Matching Pursuit,
Application in Oil and Gas Exploration

Ekaterina Shipilova, Michel Barret , Matthieu Bloch , Jean-Luc Boelle, and Jean-Luc Collette

Abstract— We present Matrioshka orthogonal matching pur-1

suit (OMP), a method consisting of two nested OMPs for sepa-2

rating seismic sources at an early stage of the signal processing3

chain. Matrioshka OMP is based on models of sensor signals4

that place nonrestrictive assumptions on the seismic survey using5

simultaneous sources. Our seismic event model is based on the6

spatial coherence of signals, which results in a straight or slightly7

curved feature in the trace representation of the data with a8

specific wavelet, whose magnitude can linearly vary according to9

the offset. We demonstrate the effectiveness of the approach on10

synthetic and real data.11

Index Terms— Acquisition, matching pursuit, optimization12

methods, seismic signal processing, sources separation.13

I. INTRODUCTION14

A. Simultaneous-Source Seismic Acquisition15

SEISMIC surveys are performed at all stages of oil and16

gas exploration and development, with the objective of17

constructing an image of the subsurface without actually18

penetrating into the Earth’s crust. To obtain such an image,19

seismic sources generate a wavefield at or close to the sur-20

face, which then propagates into the subsurface where it is21

altered and reflected by the geological layers and bodies.22

The geological medium only absorbs some of the emitted23

energy and the remaining energy escapes and reaches the24

surface, where seismic receivers sensitive to minute vibrations25

record it. With some assumptions regarding the propagation26

velocities, the knowledge of the emission and detection time27

instants, as well as the spatial positions of the sources and28

receivers, provides information about the subsurface geometry29

and physical properties.30

When simultaneous sources emit their signals, or when31

a single source emits a long signal or makes small pauses32
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between subsequent short shots, one must be able to separate 33

the different sources and the different shots to identify the 34

exact time of emission associated with each seismic event 35

encountered. Since the crosstalk (effect of pollution of one 36

signal by another) between shots significantly complicates the 37

signal processing and eventually degrades image quality [1], 38

conventional seismic surveys ensure that the time and location 39

intervals between shots are large enough to avoid crosstalk. 40

Nevertheless, simultaneous-source seismic data acquisition has 41

recently attracted attention for its potential to acquire larger 42

amounts of data in a reduced time [2], which might be 43

beneficial in harsh meteorological environments [3] or because 44

of environmental regulations. 45

The idea of allowing multiple seismic sources to fire simul- 46

taneously was first introduced in the seventies for marine 47

and land seismic [4], [5], but the first simultaneous shooting 48

was only implemented for land vibroseis acquisition in the 49

late nineties [6] by controlling the pattern of the sources, 50

also known as source sweeping. Since then, vibratory seis- 51

mic source techniques have constantly improved, and sweep 52

generation and management is still actively ongoing [7]–[9]. 53

The first proposal of simultaneous shooting without constraints 54

on the source pattern, i.e., without specific encoding or sweep 55

management, dates back to the late nineties [10], but actual 56

implementation of appropriate logistics, survey design, and 57

processing has taken nearly a decade. The difficulty may be 58

attributed in part to the dithering of shooting times required 59

for best wavefield separation, which could result in complex 60

real-time communication and synchronization of the sources 61

in the field [11]. It was not until 2006 that BP proposed a new 62

approach called independent simultaneous sourcing (ISS1), 63

in which no effort is made to synchronize the sources [12], and 64

the burden is placed on the receiver to process a continuous 65

recording. Subsequent published tests on synthetic and real 66

data [13] have established the usefulness and potential of 67

data acquired in simultaneous-source mode [14]; however, 68

these early tests did not exploit any specific processing and 69

only relied on the noise attenuation capacity of stacking 70

for crosstalk suppression. Moreover, subsequent full scale 71

surveys were only held at the exploration stage, in zones 72

where structural interpretation was needed [15]–[18]. To speed 73

up seismic campaigns, industry is now envisioning the use 74

of simultaneous shooting at all exploration and development 75

stages, including those having reservoir characterization [19], 76

1ISS is a registered trade mark of BP p.l.c.
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[20] and monitoring [21]–[24] purposes. Consequently, more77

sophisticated processing is needed to achieve the high pre-78

cision necessary at these stages. Seismic processing engi-79

neers could also benefit from simultaneous sources separation80

methods to suppress interference between neighboring seismic81

surveys [25].82

The seismic data resulting from simultaneous-source shoot-83

ing is now colloquially known as blended data. The methods84

proposed to process blended seismic data can be classified into85

the three following groups. Most of them impose constraints86

on data acquisition, as the firing times of different sources87

must be random enough, except for some completely differ-88

ent techniques, such as seismic apparition [26] or coherent89

simultaneous shooting [27].90

1) Random Noise Attenuation: These methods consist in91

presenting the signal coming from each source as being92

coherent and removing the incoherent signals coming93

from the other sources using conventional denoising94

procedures such as median filtering [28]–[30], prediction95

error filtering [31], or a combination of these filters [32].96

2) Inversion-Based Source Separation: These methods97

treat the signals of each source as signal and not as noise;98

they aim to explain all interpretable signals present in99

the data. The inversion approach has been the most100

successful so far and has been shown to render superior101

performance over the random noise attenuation [33].102

The common mathematical formulation of such methods103

is given in [34]; this includes a coherency constraint104

usually expressed in a transform domain rather than the105

(t, x) domain, e.g., Fourier domain [35]–[37], Radon106

domain [38], curvelet domain [39], seislet domain [40],107

or in more sophisticated domain combinations [41]–108

[43]. The method presented in this article falls into this109

category.110

3) Direct Imaging of Blended Data: These methods aim at111

processing blended data without explicit separation [44].112

This approach has the potential to reduce computational113

complexity, since explicit source separation typically114

increases the amount of data volumes to process: a115

separate data set is created for each source.116

Direct imaging methods might be the most promising in the117

future but would require a complete and costly overhaul of the118

currently used seismic signal processing chain. Since existing119

state-of-the-art industrial seismic processing algorithms are not120

compatible with blended data, there is still much interest in121

deblending the raw seismic signals to keep the subsequent122

processing unchanged.123

Many of the currently proposed deblending methods need124

some preprocessing of the data, e.g., surface wave suppres-125

sion [33]. In this article, we propose to use a data-driven126

seismic event model in a greedy decomposition to obtain a sep-127

aration suitable for application at the earliest processing stages.128

We start by briefly recalling in Section II notions of seismics129

from a perspective that facilitates the description of our method130

and identifies the conditions required for our method to apply.131

We then introduce in Section II-C the data-driven parametric132

model of a seismic event, which includes a curvature parameter133

and a magnitude attenuation factor depending on the position134

of the source. We describe in Section III the main contributions 135

of this article, which are the data-driven model and the decom- 136

position method implementation. We also state in Sections 137

II and III the assumptions that are necessary and sufficient 138

to apply our method. Finally, we illustrate in Section IV the 139

performance of our method on synthetic and real seismic data. 140

B. Signal Decomposition and Orthogonal Matching Pursuit 141

Let the signal to decompose be d(t) ∈ H, where H is 142

a Hilbert space, with inner product and Euclidean norm, 143

respectively, defined by �d, g� = � +∞
−∞ d(t)g(t) dt (where g is 144

the complex conjugate of g) and �d� = �d, d�1/2. The inner 145

product becomes �d, g� = �
t∈�t Z

d(t)g(t) after sampling 146

with a period �t . A dictionary D is a subset {gγ (t)}γ∈� ⊂ H 147

comprised of unit-norm vectors indexed by a set � ⊂ Rν , 148

with ν ∈ N. The elements of a dictionary are called atoms. 149

When decomposing a signal d into a linear combination of 150

L D-atoms, we look for a subset � ⊂ � of L elements and 151

complex numbers {cγ }γ∈� that lead to the smallest approx- 152

imation error min{�⊂� : |�|=L} min{cγ } �d − �
γ∈� cγ gγ �. If 153

we knew L and � a priori, we could solve this problem with 154

least-squares methods. However, for such complex dictionaries 155

as ours, we cannot fix L and � beforehand; we first have 156

to choose an optimal set of atoms and then find a linear 157

combination that best approximates the signal. 158

Greedy algorithms, such as matching pursuit (MP) [45] and 159

orthogonal matching pursuit (OMP) [46], provide an efficient 160

solution to that problem. It consists in constructing successive 161

approximations of d by making orthogonal projections on ele- 162

ments of D. Let us set R0d = d and suppose that the (� − 1)th 163

order residue R�−1d is computed for � ≥ 1. Then, R�−1d 164

is decomposed into R�−1d = �R�−1d, gγ��gγ� + R�d . This 165

leads to �R�−1d, gγ�� = �R�−1d, gγ���gγ� , gγ�� + �R�d, gγ��, 166

which shows that the residue R�d is orthogonal to gγ� , 167

since the atoms are unit-norm vectors. Hence, �R�−1d�2 = 168

|�R�−1d, gγ��|2 + �R�d�2, and to minimize the norm of the 169

residue �R�d�, one must choose gγ� ∈ D such that
170

|�R�−1d, gγ��| = max
γ∈�

|�R�−1d, gγ �|. (1) 171

If we now carry the decomposition up to the Lth order, 172

we obtain: d = �L
�=1�R�−1d, gγ��gγ� + RLd and �d�2 = 173�L

�=1 |�R�−1d, gγ��|2+�RL d�2, which proves that the residue 174

norm is decreasing. At this stage, the signal d is modeled 175

as a finite linear combination of L atoms with an error 176

RLd . However, this model can be improved using the same 177

dictionary, since RLd is generally not orthogonal to VL , 178

the linear span of {gγ�}1≤�≤L : it is only orthogonal to the 179

last selected atom gγL . The OMP algorithm corrects this 180

shortcoming by computing orthogonal projections at each 181

iteration. As in MP, at iteration � the algorithm selects an 182

atom gγ� solving (1), builds an orthogonal basis of VL using 183

the Gram-Schmidt orthogonalization, and uses it to compute 184

the orthogonal projection of d on VL . With OMP, the residue 185

norm is also proven to decrease monotonically. 186

Greedy algorithms have already been applied to seismic data 187

for several different purposes, such as filtering [47], linear 188
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Fig. 1. Ocean Bottom Nodes (OBN) acquisition scheme for two seismic sources, where T i
n and xi

n denote the time and the coordinate of the nth shot of
source i on the axis of its shooting line.

noise suppression [48], [49], seismic data interpolation and189

regularization [50], [51], seismic data compression and sparse190

storage [52], [53], or reflectivity inversion [54], but few, if any,191

contributions have considered their application to the problem192

of separating signals from different sources.193

II. MODELING SENSOR SIGNALS IN SIMULTANEOUS194

SOURCES SEISMIC SURVEY195

We introduce our model of simultaneous-source seismic196

surveying and highlight the assumptions that justify our data-197

driven model for simple geometries of the Earth’s subsurface.198

A. Earth’s Transfer Function199

We consider an ocean bottom seismic acquisition with200

K ≥ 1 sources {Sk}1≤k≤K and a single sensor D located at201

fixed positions in the Earth’s space–time referential. We denote202

the kth source excitation by sk(t), and the measured signal203

by d(t), both time-dependent. The Earth acts as a filter204

(i.e., a linear, time-shift invariant, and continuous system) for205

the emitted signals sk(t), which enables us to represent the206

recorded signal as a convolution product d(t) = �K
k=1(rk �207

sk)(t), with the Earth’s response coefficients rk depending on208

the positions of all the sources and the detector. Each source Sk209

makes Nk shots at times {T k
n }n∈[[1;Nk ]] and in the corresponding210

positions {xk
n}n∈[[1;Nk ]]. We also make the following hypothesis.211

Hypothesis 1: Source Sk emits the same short excitation sk212

for each of its shots.213

Consequently, the signal d(t) is given by214

d(xD, t) =
K�

k=1

Nk�
n=1

�
rk
�
xk

n, xD
�

� sk
��

t − T k
n

�+ b(t) (2)215

where b(t) is the additive noise capturing the unavoidable216

imperfections of real seismic acquisitions. Note that rk(xk
n, xD)217

from (2) does not correspond to the true Earth reflectivity218

between xk
n and xD (the detector position) but acts as a219

transfer function between the source and receiver locations220

that accumulates Earth’s entire response. Since the posi-221

tion of the detector is constant, we will write d(t) instead222

of d(xD, t).223

B. Simultaneous Sources for Classical Seismic Survey Design224

1) Experimental Conditions for Simultaneous-Source Sur-225

veys: We assume that each receiver continuously records all226

the seismic signals produced during the acquisition, which227

requires that all the survey equipment be kept synchronized. 228

Time ranges from 0 to Tglob, the global acquisition time. 229

We make the following hypothesis. 230

Hypothesis 2: The sources fire along straight lines, which 231

may differ for different sources. 232

As illustrated in Fig. 1, the moveout of each seismic event 233

depends on the source location along its shooting line. After 234

sampling with period �t , the recorded data have the shape 235

of a column matrix d(k) = d(k�t). This type of recording 236

is specific to simultaneous sources surveys. We further make 237

two realistic hypotheses to simplify our analysis. 238

Hypothesis 3: Each source makes pauses between consec- 239

utive shots, during which its emitted signal is null. 240

Hypothesis 4: Shooting times of different sources are asyn- 241

chronous and shooting intervals of each source are random. 242

The benefit of Hypotheses 3 and 4 is illustrated in Fig. 2, 243

in which we align the data according to the shooting times of 244

different sources. Each shot of the same source can be distin- 245

guished from the others following the time axis and the shots 246

of different sources can be separated using a spatial coherence 247

criterion—as detailed in Section II-C—which consists in a 248

straight or slightly curved feature in the representation space 249

(t, x) of the data. 250

2) (t, x) Representation Spaces of the Data : We define a 251

linear operator, called pseudo-deblending, to align the sensor 252

signal by the source i to form the traces (see Fig. 3). For d(t) 253

from (2), it is written as Ai : L2(R) → L2([0, maxn(T i
n+1 − 254

T i
n )] × [xi

min, xi
max]), d(t) �→ Di (t �, x) = d(t � + T i

n ), if x = 255

xi
n − xi

0 and t � ∈ �0 ; T i
n+1 − T i

n

�
; Di (t �, x) = 0, otherwise. 256

Pseudo-deblending creates as many data representation spaces 257

(t, x) as there are sources. To simplify, the (t, x) representation 258

space is called in the following a (t, x) trace domain. 259

In conventional single source seismic, the operation Ai 260

is done implicitly: the data are cut into traces according to 261

the shooting times T i
n , which do not play any further role 262

in the processing. In contrast, for simultaneous-source data 263

processing, it is crucial to preserve the shooting times, as they 264

contain critical information to separate the signals coming 265

from different sources. 266

We introduce these notions to clarify the concept of a 267

seismic event, used in our data-driven model and related to 268

the notion of traveltime curve, the graph of the time that 269

a seismic wave spends to travel from the shot point to the 270

receiver point. Note that the knowledge of the firing times 271

and positions of each source makes it easy to switch from a 272

1-D representation to any 2-D trace domain representation of 273
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Fig. 2. Separation by random shot-times. Data aligned according to the (Left) first and (Right) second source shot-times. Dark (resp. light) wiggles correspond
to the aligned (resp. nonaligned) source.

Fig. 3. Example of (t, x) representations of a continuous signal cut into
traces with regular shooting times T 1

n for the first source and irregular ones
T 2

n and T 3
n for the second and the third sources, respectively. Zero padding

(the white squares correspond to zeros) is applied in order to keep the matrices
rectangular.

the signals and vice versa. Therefore, with a slight abuse of274

language, we use the same terminology for events and patterns275

in 1-D and 2-D representations, even though such events or276

patterns are only clearly visible in 2-D representations.277

Hypothesis 5: Traveltime curves of coherent seismic waves278

(e.g., direct waves, surface waves, and reflected waves) are279

identifiable in one (and only one) seismic traces domain.280

Traveltime curves are usually close to straight lines, parabolas,281

or hyperbolas in synthetic and real seismic data [55]. This282

observation and Hypothesis 5 imply the possibility of decom-283

posing d(t) into a sum of a finite number of coherent features284

that have a reasonably simple mathematical representation,285

as we shall see in Section II-C.286

C. Data-Driven Seismic Event Model287

We now introduce our parametric model of a seismic288

event that may either carry information about the Earth’s289

subsurface geometry or correspond to a direct arrival. This290

model, which includes a curvature parameter, a magnitude291

attenuation factor depending on the source positions and the292

wavelet’s decomposition into a sum of simple signals, and its293

implementation are the main contributions of this article.294

1) Decomposition Into a Sum of Seismic Events: Actual295

seismic data usually have a significant size: one gather can296

contain hundreds of traces acquired with maximal offsets 297

of 6 km or more. In complex geological environments with 298

lateral velocity and density variability, it is difficult to establish 299

a data-driven seismic model that would directly apply to the 300

whole gather. Therefore, we choose to restrict our area of 301

search to N seismic traces in the (t, x) domain, with N 302

typically between 10 and 30 depending on the data complexity. 303

This allows us to make the following reasonable hypothesis. 304

Hypothesis 6: The wavelet w(t) found in the data does not 305

vary significantly from one seismic trace to another within 306

some constrained spatial window of N seismic traces. 307

When dealing with multiple sources recorded by the same 308

receiver, which results in multiple (t, x) trace domains to 309

consider, one must adopt a consistent decomposition strategy. 310

There may be several relevant ones, such as fully explaining 311

all coherent features in the first source before passing on to 312

the second one. If we were to follow this strategy, we would be 313

able to cut our data into traces once, using the Ai operator for 314

each source i , and continue with the 2-D (t, x) trace domain 315

representation common for a geophysicist. This approach has 316

the following disadvantage: the algorithm aims at retrieving 317

the low-amplitude signal hidden by the high-amplitude blend- 318

ing noise originating from the other sources. We propose to 319

simultaneously work in all the (t, x) trace domains in order to 320

first identify and subtract the globally most energetic features 321

and then continue with less energetic ones. The less energetic 322

features are initially hidden under the crosstalk but are revealed 323

by the first iterations of the algorithm. This is the main 324

reason why we stick to the 1-D representation of the data. 325

The decomposition is therefore simultaneously performed in 326

all the sources (t, x) trace domains, in which we look for 327

particular identifiable features that we call seismic events. 328

To do so, we first have to find in the column matrix d(k�t) 329

the N-traces part of the signal corresponding to each of the 330

sources. We then represent the data d(t) as a finite sum of 331

seismic events h� � w�(t) 332

d(t) =
L�

�=1

h� � w�(t) + RLd(t). (3) 333

Our model consists of two parts: h(t), called traveltime curve 334

(we call it curve because of the trace representation (t, x) 335

of 1-D signals), contains all the parameters related to the wave 336
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propagation time (medium characteristics), distance between337

the sources and the receiver, the sources firing times and the338

linear amplitude variation from one trace to another; w(t),339

called signature or wavelet, is associated with the excitations340

emitted by the sources and distorted by propagation and341

reflection. Note that even if (2) and (3) are similar, there342

is a significant difference between the reflectivity ri (xi
n, xD),343

which is Earth’s transfer function between the locations of the344

detector and of the nth shot of source i , and the traveltime345

curve h(t), which indicates the position of a seismic event346

in the traces domain and is driven by the data. Moreover,347

the residue RLd(t) generally differs from the noise b(t). In348

the case of two sources, we rewrite (3) as349

d(t) =
K1�
�=1

h(1)
� � w

(1)
� (t) +

K2�
�=1

h(2)
� � w

(2)
� (t) + RLd(t) (4)350

with K1 + K2 = L and where the first (resp. second) sum351

corresponds to the seismic events identifiable in the (t, x)352

traces domain of the first (resp. second) source. Thus, a perfect353

deblending would consist in reducing the residue RLd(t) to354

the ambient noise, as in this case, each sum would correspond355

to the isolated signal of the corresponding source. Before356

developing this point in Section III, we clarify the concepts of357

traveltime curve and wavelet in Sections II-C2 and II-C3.358

2) Traveltime Curve Model: If we omit the amplitude vari-359

ation, a traveltime curve is a graph of arrival time depending360

on the coordinates of the detector and the source shots. One361

can prove [55] that, for a simple case of a single horizontal362

reflector with a constant velocity above it, the traveltime curve363

is a hyperbola. Furthermore, with reasonable accuracy, one can364

model the arrival time function of a coherent seismic wave as a365

straight or slightly curved line in the (t, x) trace domain within366

some lateral processing window (the closer the shot is to the367

receiver, the more curvature is observed). This assumption368

holds if the acoustic and elastic properties of the subsurface369

do not abruptly change in the horizontal direction within the370

chosen lateral processing window. The “pure” traveltime part371

h̃(t) of the seismic event takes the form372

h̃(i)�xi
n, t
�=δ

⎛
⎝t−τ − p

�
xi

n−xi
0

�−q



xi

n −xi
0

xi
max−xi

min

�2
⎞
⎠ (5)373

or, for the convenience of our computation, in 1-D374

h̃(i)(t)=
N�

n=1

δ

⎛
⎝t−τ − p

�
xi

n −xi
0

�−q



xi

n−xi
0

xi
max−xi

min

�2

−T i
n

⎞
⎠ .375

(6)376

Equations (5) and (6) are equivalent, but we stick to the377

1-D representation to highlight the specific nature of the378

simultaneous-source data. Note that we omit the index �379

present in (3) to alleviate notation. Here, i is the index of380

the source associated with the event; N the number of shots381

taken into account to construct the event; xi
0, xi

min and xi
max are382

the reference coordinates of the i th source; δ(t) is the Dirac383

distribution; τ , p, and q are the parameters that define the384

seismic event: the reference time, the slope and the curvature.385

Finally, to obtain the full traveltime curve, we add a linear 386

amplitude variation parameter α to this representation and 387

obtain 388

h(i)(t)=
N�

n=1

�
1+α

�
xi

n − xi
0

��
389

× δ

�
t−τ − p

�
xi

n−xi
0

�−q



xi

n −xi
0

xi
max−xi

min

�2

−T i
n

�
. (7) 390

Note that the attenuation factor 1 + α(xi
n − xi

0) cannot van- 391

ish when xi
n = xi

0 in (7). We shall see in the following 392

(Section III-B and criterion (13)) how one can address such 393

a case. Strictly speaking, (7) defines an amplitude-variation- 394

preserving traveltime curve, but for brevity we use the term 395

traveltime curve in the following. It is worth noting that differ- 396

ent sources illuminating the same area in the subsurface, e.g., 397

an interface between two geological layers approximately at 398

the same location, correspond to a single physical (geological) 399

event; however, with our model (4), we obtain at least one 400

separate seismic event per source. Moreover, even though our 401

seismic event atoms correspond to simple cases of physical 402

events, their linear combinations allow us to model complex 403

physical situations (see Section IV). 404

3) Wavelet Model: Wavelet estimation has been a long- 405

standing issue in seismic prospecting and different methods 406

have been suggested in the literature. We focus on methods 407

based on coherence; in other words, from Hypothesis 6, 408

we assume that the wavelet does not abruptly change from 409

trace to trace in a seismic event. This is intuitively justified by 410

Hypothesis 1, and the fact that Earth’s response to excitations 411

varies slowly with respect to the source displacement. Never- 412

theless, we take into account the eventual presence of low and 413

high energy noise that may perturb the wavelet originating 414

from a single source by averaging the wavelet encountered 415

in neighboring traces after getting rid of eventual outliers. 416

Since propagation and reflection distort the source signals, 417

the wavelet encountered in seismic gathers differs from the 418

signal emitted by the source, and we suppose that the wavelet 419

differs from one seismic event to another, even if it originates 420

from the same seismic source. 421

As already mentioned, a single physical event may be 422

captured by a sum of several seismic events, so we look for 423

a new seismic event within a limited time interval that we 424

denote [−M�t , M�t ] and call “corridor” (M is an integer 425

meta-parameter). This corridor is defined along a traveltime 426

curve of the form (7), which is assumed known for now. 427

It must be large enough not to change the wavelet spec- 428

trum. The fact that the traveltime curve h(i) is not perfectly 429

known is addressed in Sections III-B and III-D. After get- 430

ting a first estimation ŵ(i) of the wavelet w(i), we refine 431

the estimation thanks to optimization stages described in 432

Section III-C2. To reduce the dimension of the optimization 433

problem, we choose to decompose the estimated wavelet into 434

a linear combination of a small number of wavelet atoms. 435

We also choose wavelet atoms that can be represented analyt- 436

ically, e.g., Ricker and Ormsby wavelets, which are elementary 437

wavelets widely used in seismic exploration and for which 438
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Fig. 4. Power spectrum of the signal of length 500 ms in black, reconstructed
using 178 Ricker (in dark gray), or 212 Ormsby (in light gray), wavelets.

we can explicitly compute temporal derivatives. This allows439

us to reduce the computational complexity of our algorithm440

optimization stages.441

We choose to decompose the estimated wavelet into a linear442

combination of a small number of wavelet atoms using the443

OMP algorithm, which requires the identification of an adapted444

dictionary. We shall see in Section III-C1, how we construct a445

finite number S (of several units) of classical wavelet shapes446

from a preliminary spectral analysis of the data. The index447

s denotes the shape of the wavelet ws(t), and the dictionary448

consists of atoms (before normalization) {ws(t − τ ) : 1 ≤449

s ≤ S, τ ∈ [0, T ]} where T > 0 is a meta-parameter. Thus,450

we obtain the following parametric wavelet estimation:451

ŵ(i)(t) =
K�

k=1

akwsk (t − τk) + RK ŵ(i)(t) and452

w(i)(t) =
K�

k=1

akwsk (t − τk). (8)453

Fig. 4 shows the power spectrum of a modeled marine454

seismic source signature. We observe that the parametric455

model of the form (8) is accurate enough in the useful part of456

the spectrum both with Ricker (K = 178 for this example) and457

Ormsby (K = 212) wavelets. Note that these numbers are sig-458

nificantly larger than those used in our deblending algorithm459

because here the whole length of the source signal is taken460

into account (0.5 s) with a very dense sampling (0.5 ms of461

period). For subsequent simulations we use narrower corridors462

for wavelet estimation, typically 0.1 s, with �t = 2 ms.463

III. MATRIOSHKA OMP IMPLEMENTATION464

We now present the implementation of our algorithm.465

In Section III-A, we present the fundamentals of our method,466

which we call Matrioshka OMP and which relies on detailed467

parameter optimization. To obtain suitable parameter values,468

we use iterative optimizations, which require a sufficiently469

accurate prior knowledge of the parameters, i.e., satisfac-470

tory initial conditions. The initial condition computation is471

described in Section III-B. Sections III-C and III-D provide472

an overview of the different parts of the algorithm.473

A. Deblending Using Data-Driven Model and OMP 474

An iterative method that performs a decomposition as in (4) 475

automatically results in a partial deblending of the data. 476

Moreover, if the first terms in this decomposition correspond 477

to the seismic events having the most energy, then only the 478

lowest energy cross-talks are left in the residue RLd(t), which 479

can then be handled by classical seismic processing techniques 480

as if no other sources had been firing simultaneously. Conse- 481

quently, we look for a decomposition (4) in which the most 482

energetic features of the deblended signal associated with the 483

i th source are found in the sum 484

Ki�
�=1

h(i)
� � w

(i)
� (9) 485

and the most energetic cross-talks due to the other sources are 486

captured in the sums 487

K j�
�=1

h( j )
� � w

( j )
� with j 
= i (10) 488

to allow classical processing of the deblended data
�Ki

�=1 h(i)
� � 489

w
(i)
� +RLd(t). To successfully deblend with this approach, it is 490

crucial that the sum (9) contains the most energetic features 491

of the deblended signal associated with the source i and not 492

any coherent seismic events originating from a source j 
= i . 493

Hypotheses 2, 3, and 4 justify the fact that we can expect 494

to capture in the sum (9) seismic events originating from the 495

source i alone. Moreover, if the most energetic features are 496

identified at the first iterations of the decomposition, then the 497

most energetic cross-talks from other sources are captured in 498

other sums (10), and thus, do not pollute the residue RLd(t) 499

any more. Fortunately, this is exactly how OMP proceeds 500

provided that we choose a well-adapted dictionary. Now, if the 501

atoms are expressed, before normalization, as Gγ = h(i) �w(i), 502

and h(i) and w(i) given, respectively, by (7) and (8), then 503

Gγ (t) 504

=
N�

n=1

�
1 + α

�
xi

n − xi
0

�� K�
k=1

ak 505

× wsk

⎛
⎝t−τ − p

�
xi

n−xi
0

�−q



xi

n − xi
0

xi
max−xi

min

�2

−T i
n −τk

⎞
⎠ 506

(11) 507

with γ = {i, τ, p, q, α, K , {sk , ak, τk}1≤k≤K } the complete 508

set of parameters. Hence, we can construct a decomposi- 509

tion (4) that fulfills the aforementioned conditions required 510

for deblending. Examples of such atoms, given in Fig. 5, show 511

the ability of the algorithm to handle curvature and amplitude 512

variation. 513

Note that, when L tends to infinity, the residue RLd is not 514

necessarily white noise or any other type of noise. Indeed, 515

it corresponds to the last residue (part of the signal) not 516

explained by the dictionary, i.e., orthogonal to the dictionary 517

used for decomposition. A “good” decomposition, though, 518

would leave the noise in the residue. 519
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Fig. 5. Examples of atoms Gγ (t) (before normalization) of the seismic events
dictionary.

To simplify the computation of vector norms �Gγ �, we make520

the following hypothesis.521

Hypothesis 7: For each source, the pauses between two522

consecutive shots are significantly longer than the emission523

time of each shot of the same source.524

Note that Hypothesis 7 does not forbid crosstalk between525

consecutive shots of the same source, i.e., the delay between526

consecutive shots can be smaller than the listening time527

implying auto-pollution or self-simultaneous sourcing.528

Now, the problem is to find an approximate solution of (1).529

For this, we must overcome two major difficulties: 1) the530

objective function to maximize is not concave and 2) the531

number of parameters describing an atom is too large for532

sampling the dictionary into a finite subset of atoms � ⊂ �.533

To overcome the first difficulty, we use iterative optimization534

algorithms that converge to a local maximum whose position535

depends on the initial conditions. It is therefore crucial to accu-536

rately choose the initial conditions. To overcome the second537

difficulty, we gradually build atoms of the dictionary close to538

the desired maximum.539

B. Initial Conditions of the OMP Optimization Step 540

In this section, we present our approach to find the initial 541

conditions of the iterative algorithm. We construct an atom Gγ 542

(before normalization) given by (11) in several steps. We start 543

by building the traveltime curve h(i) given in (7), first looking 544

for parameters i, τ, p, q that maximize the objective function 545

C(i, τ, p, q) 546

=
������

N�
n=1

R�−1d

⎛
⎝τ + p

�
xi

n −xi
0

�+q



xi

n−xi
0

xi
max−xi

min

�2

+T i
n

⎞
⎠
������ . 547

(12) 548

In other words, noting that C(i, τ, p, q) = |h̃(i) � �R�−1d(0)|, 549

for h̃(i) introduced in (6), and �R�−1d(t) = R�−1d(−t), we are 550

looking for a traveltime curve h̃(i) that maximizes the magni- 551

tude of its correlation at time t = 0 with the residue R�−1d(t) 552

at the �th OMP iteration. Here too, the objective function is not 553

concave, and the parameters i, τ, p, q that maximize (12) are 554

found using an iterative optimization algorithm starting from 555

suitable initial conditions and converging to a local maximum. 556

To do so, we introduce the following hypothesis. 557

Hypothesis 8: To maximize the objective function in (12), 558

good initial conditions are q = 0 and the values of i, τ, p that 559

maximize the slant stack magnitude of the residue R�−1d . 560

Various successful applications of slant stack (or Linear 561

Radon Transform) to seismic data processing justify this 562

hypothesis, for example, coherent noise suppression, such 563

as multiples and direct arrivals removal [56]; plane-wave 564

decomposition for velocity picking [57]. In our case, if one 565

can pick the absolute maximum in the (τ, p) domain, this 566

maximum identifies a real seismic event with nearly the most 567

energy. Once we have identified a traveltime curve h̃(i) that 568

maximizes its correlation with the residue, we compute the 569

coefficients α� and β � of the linear regression between the term 570

R�−1d(τ + p(xi
n − xi

0) + · · · ) appearing in (12) and xi
n − xi

0 571

for 1 ≤ n ≤ N that minimize 572

C(α�, β �) 573

=
N�

n=1

⎡
⎣R�−1d

⎛
⎝τ + p

�
xi

n − xi
0

�+ q



xi

n − xi
0

xi
max − xi

min

�2

+T i
n

⎞
⎠ 574

−[β � + α��xi
n − xi

0

�]
⎤
⎦

2

(13) 575

in order to obtain a first estimation of the complete traveltime 576

curve h(i) given in (7). In addition, when |β �| > ε (in our 577

implementation we took ε = 10−7), we set α = α�/β �. 578

We observed that criterion (12) does not give the best 579

initial conditions to the OMP optimization when the factor 580

β � + α�(xi
n − xi

0) changes its sign between the extreme values 581

of xi
n and we shall see in Section III-E how to modify (12) to 582

obtain better initial conditions. 583

Next, we define a “corridor” in the representation space 584

(t, x) associated with the i th source. This corridor has a width 585

of (2M+1)�t , it is centered around the maximal values of h̃(i)
586

and passes through the N considered traces. We thus obtain a 587
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nonparametric estimation ŵ(i) of the wavelet w(i), associated588

with the atom Gγ introduced in (11). The estimation is locally589

made from the current residue, within the corridor and after590

making the following hypothesis.591

Hypothesis 9: A wavelet estimation can be statistically592

derived from the N traces by stacking along curves parallel to593

the traveltime curve maxima weighted by attenuation factors.594

We then apply a Tukey window to this nonparametric595

wavelet estimation to avoid discontinuities at the corridor596

edges. Finally, we obtain a parametric estimation w(i) of the597

wavelet having the form (8) by applying the OMP algorithm598

to the windowed wavelet estimation, and we compute the599

nonnormalized atom Gγ , mentioned at the beginning of this600

section, as h(i) � w(i).601

We can summarize the computation of the initial conditions602

Gγ into the following stages.2603

1) Find the values i, τ̂ , and p̂ that maximize the slant stack604

magnitude of the residue R�−1d .605

2) From the initial conditions obtained at the previous stage606

and q = 0, find a traveltime curve h̃(i) maximizing its607

correlation magnitude with R�−1d at time t = 0, within608

the N traces.609

3) Find the coefficients α� and β � of the regression (13) to610

obtain α = α�/β � and the amplitude-variation-preserving611

traveltime curve h(i)(t), with the attenuation factor612

1 + α(xi
n − xi

0).613

4) In the (t, x) trace domain associated with source i , iden-614

tify a (2M+1)�t -seconds high corridor centered around615

the traveltime curve maxima found at the previous stage;616

then make a nonparametric wavelet estimation using a617

weighted stacking by reverse attenuation factors along618

the curves parallel to the h̃(i) maxima within the corridor.619

5) Window the nonparametric wavelet estimation obtained620

at the previous stage and apply OMP to get a parametric621

estimation w(i) given by (8).622

6) Find the initial conditions atom which, before normal-623

ization, equals to Gγ = h(i) � w(i).624

In this way, we propose to perform deblending by means of625

OMP, and we use the OMP algorithm twice. To distinguish626

them, we denote by outer OMP, the one which has a dictionary627

of atoms of the form (11) before normalization, and by inner628

OMP, the one performing the parametric wavelet estimation.629

In Section III-C, we present the inner OMP algorithm.630

C. Inner OMP Overview631

Before starting the iterations of Matrioshka OMP, we per-632

form a spectral analysis of the data to determine the shapes633

of the wavelets to use in the inner OMP dictionary. For this,634

we compute the power spectrum of d(t) and pick the frequency635

values at its maximum and 3 and 6 dB lower. This procedure636

provides a set of frequencies that we use to build the wavelet637

dictionary (for example, the five frequencies above give the638

dominant frequencies of the Ricker wavelets).639

2We shall see in Section III-E that, when the factor β�+α�(xi
n −xi

0) changes
its sign between the extreme values of xi

n , the stages 2 and 3 can be iterated,
modifying the criterion (12). For simplicity, we do not present this procedure
here.

1) Wavelet Dictionary: We choose a finite number S of 640

classical wavelet shapes. The shape index s (1 ≤ s ≤ S) 641

corresponds to either a Ricker wavelet with a given dominant 642

frequency or an Ormsby wavelet with a given set of cut-off 643

frequencies. If we need Ricker wavelets of different dominant 644

frequencies, we use as many Ricker shapes as needed and 645

likewise for Ormsby wavelets. The predefined shapes can be 646

extended to any other kind of wavelets. 647

The dictionary is composed of time-shifted unit-norm ele- 648

mentary wavelets of the predefined shapes. Since the estimated 649

wavelet must be inside the abovementioned corridor, we limit 650

the time shifts so that an atom is represented as wγ (t) = 651

(ws(t − ν��
τ − τ �))/�ws(t)�, where ν ∈ [[−μM, μM]] is 652

an integer, τ � ∈](−��
τ /2),��

τ /2[ with ��
τ = �t/μ, and 653

μ−1 ∈ N divides M . Thus, the dictionary is D = {wγ }γ∈� 654

with � = {(s, ν, τ �) : s ∈ [[1, S]], ν ∈ [[−μM, μM]] and 655

τ � ∈](−��
τ /2), (��

τ /2)[}. We also use a discrete version 656

of the dictionary, with vanishing τ �: {wγ }γ∈� with 657

� = {(s, ν, 0) ∈ �}. 658

2) Inner OMP: For simplicity, in this paragraph, we omit 659

the superscript (i) of an estimated wavelet w(i), and we 660

consider wavelets as continuous-time signals. 661

The inner OMP is initialized with the windowed non- 662

parametric estimation R0w(t) = w̃(t). Let Rk−1w be the 663

residue after (k − 1) iterations of the inner OMP. At iter- 664

ation k, first we look for a solution γ̂k = (sk, νk , 0) 665

to |�Rk−1w,wγ̂k �| = maxγ∈� |�Rk−1w,wγ �|, which gives 666

initial conditions for the iterative optimization algorithm 667

converging to a local maximum, approximate solution to 668

|�Rk−1w,wγk �| = maxγ∈� |�Rk−1w,wγ �|. Thus, we obtain 669

wγk , the atom of the inner OMP chosen at the iteration k. In the 670

following step, we update the coefficients of the orthogonal 671

projection of w̃ on the vector subspace of the first k atoms 672

obtained via the inner OMP. After K iterations, we obtain the 673

decomposition w̃(t) =�K
k=1 akwsk (t −νk�

�
τ −τ �

k)+ RK w̃(t), 674

which gives the parametric estimation of the stage 5 above: 675

w(i) =�K
k=1 akwsk (t − νk�

�
τ − τ �

k). 676

Section III-D presents a complete view of the deblending 677

algorithm Matrioshka OMP. 678

D. Matrioshka OMP Overview 679

Matrioshka OMP [58] stands for two OMP algorithms 680

embedded into one another. The algorithm is illustrated 681

in Fig. 6, where the outer OMP consists of the whole 682

algorithmic loop with the inner OMP embedded into it 683

and highlighted in orange. We now describe each step 684

individually. 685

After the spectral analysis of the data, the second stage of 686

the processing is to split the continuously recorded signal d(t) 687

into temporal frames suitable for deblending. It is worth noting 688

that the definition of windows width using a number of traces 689

is no longer compatible with the data. Indeed, the number 690

of traces (whole or parts) does not necessarily match for 691

the different sources. To overcome this ambiguity, we chose 692

to define window width in terms of time. When a window 693

break occurs between shooting times of a source, we use the 694

knowledge of the previous shooting time to exploit all the 695
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Fig. 6. Matrioshka OMP algorithm, with .

information available in the data. Thus, the outer OMP is696

initialized from the input data d(t) windowed by a rectangular697

time window strictly included in the interval [0, Tglob] and698

corresponding to N seismic traces for one source. We denote699

by d̃(t) the windowed signal d(t) and take it as the first 700

residue: R0d = d̃ . 701

Let R�−1d be the residue after (� − 1) iterations of 702

the outer OMP. At the �th iteration, we have seen in 703
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Fig. 7. (a) Input unblended data for the first source and (b) same data after blending. (c) Reconstruction results after L = 5 iterations of the outer OMP:
events attributed to the first source, i.e., S(1)

� of (14) with � = L and (d) residue RL d of (4). (e) and (f) Idem after L = 59 iterations. All the signals are
represented in the (t, x) trace domain of Source 1. In our method, the deblended signal associated with Source 1 after L iterations is the sum of signals
appearing in the graphs (c) and (d) for L = 5 and the sum of signals in the graphs (e) and (f) for L = 59.

Sections III-B and III-C how to obtain the initial condi-704

tions (11) before normalization, which allow an iterative705

optimization algorithm to converge to a local maximum.706

Relationships allowing a fast computation of the norm of707

seismic events of the form (11) under Hypothesis 7 can be708

found in [59, Appendix C].
709

In order to separate travel-path-related parameters from the710

wavelet-defining ones, so that they do not intercompensate711

each other, we first optimize the τ, p, q and α parameters 712

and then the (ak, τ
�
k)1≤k≤K parameters. Note that the whole 713

dictionary is never created or stored due to computational 714

costs: a new element of the dictionary is estimated at each iter- 715

ation. We obtain after these optimization stages the atom gγ� , 716

approximate solution of (1), with γ� = (i�, τ�, p�, q�, α�, K�, 717

(sp,�, ap,�, νp,�, τ
�
p,�)1≤p≤K�). We then update the coefficients 718

(c(�)
p )1≤p≤� of the orthogonal projection of d̃ on the linear 719
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Fig. 8. (a) Results obtained on synthetic data with real seismic noise added. Residue energy decreasing in bilogarithmic scale. (b) Coefficients magnitude
decreasing diagram. (c) and (d) Signal-to-noise ratio increasing with the outer OMP iterations for the two sources. The signal-to-noise ratio is computed as
S/N = 10 log10(�ds�2/�ds − dd�2), where ds denotes the initial single source data, and dd the deblended data for the same source.

subspace spanned by the first � outer OMP atoms, and the720

weighted sums—called explained signals in the following—721

assuming we have Ns sources:722

S(i)
� (t) =

��
p=1

δi,i p c(�)
p gγp (for source i = 1, . . . , Ns ) (14)723

where δi, j is the Kronecker delta function. After L iterations,724

d̃(t) =�L
�=1 c�gγ�(t)+ RLd(t) =�Ns

i=1 S(i)
L (t)+ RLd(t), and725

the deblended signal associated with the i th source is equal726

to S(i)
L (t) + RLd(t). To reduce the computational complexity727

of the method, the optimization stages must be efficiently728

implemented. An asymptotic complexity analysis of the algo-729

rithm is given in [59]. After processing each temporal window,730

the deblended data are merged. To increase the deblending731

quality and avoid high-frequency residual noise, windows732

overlap. We end the section by presenting the initial condition733

computation when the maximum magnitude of the wavelet734

changes sign from one end of the seismic event to the other.735

E. Seismic Events With a Phase Rotation 736

To find the initial conditions of Gγ , the approach described 737

in stages 2 and 3 of Section III-B works perfectly for 738

seismic events which have the same polarity all along the 739

processing window. However, it is common to encounter 740

a “phase rotation” corresponding to events whose maxima 741

have different signs on the left and on the right edge of 742

the processing window (see Fig. 5). In this case, (12) no 743

longer represents a good objective function to maximize 744

because the algorithm tends to favour (to follow) amplitudes 745

of the same sign. To solve this problem, we modified the 746

criterion (12) to 747

C(i, τ, p, q) 748

=
������

N�
n=1

R�−1d

⎛
⎝τ + p

�
xi

n −xi
0

�+q



xi

n − xi
0

xi
max − xi

min

�2

+T i
n

⎞
⎠ 749

× sgn
�
β � + α��xi

n − xi
0

������� . (15) 750
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Fig. 9. (a) Full gather tests for the synthetic Marmousi data with added real seismic noise, the first source. Input nonblended signal and (b) same data after
blending. (c) Residue after decomposition and (d) data after deblending (explained signal with the residue added).

and iterated twice the stages 2 and 3; this proved to be effective751

in our simulations.752

F. Stopping Criteria753

Due to the significant complexity of seismic data with754

respect to our dictionary, it is very difficult to define a single755

stopping criterion applicable everywhere. Moreover, the stop- 756

ping criterion must be adapted to the downstream processing. 757

For this reason, we propose setting multiple stopping criteria 758

for each simulation to achieve more accurate results and, 759

at the same time, avoid wasting machine time on unnecessary 760

precision seeking. 761
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Fig. 10. (a) and (b) Real seismic data example: Torpille data. Input clean signal. (c) and (d) Artificially blended signal. (e) and (f) Isolated blending noise.
For each image, its zoomed-in part highlighted by a rectangle is given at its top-right corner.

1) The OMP stopping criterion proposed in [45] is the762

achievement of a null, or at least of a sufficiently763

small �2-norm of the residue RL d : �RL d� < NR .764

This approach is intuitive, but not easy to implement, 765

as different seismic data sets do not have the same 766

amplification, nor do they have the same level of ambient 767
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Fig. 11. (a) and (b) Explained signal. (c) and (d) Unexplained residue for the two sources after approximately 1000 iterations of OMP per lateral window.
(e) and (f) Deblended data (explained signal of the source with the residue added) for the two sources. For each image, its zoomed-in part highlighted by a
rectangle is given at its top-right corner.

noise or other noises which we would not want to768

reconstruct. In other words, the meta-parameter NR is769

difficult to choose as it is highly data dependent.770

2) One relative value related to the residue energy is the 771

relative residual energy �RL d�2
2/�d̃�2

2 < ER . The meta- 772

parameter ER can easily be set to some very small value 773
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(of the order of computation error) in the absence of774

noise or can be derived from the pre-estimated signal-775

to-noise ratio in the case of noisy data.776

3) In some cases the parameters NR and even ER are777

difficult to define. If, in addition, the user only requires a778

low reconstruction precision (only wants to reconstruct779

and separate the most energetic events), it could be780

helpful to set Lmax—the maximal number of iterations781

to perform—to a low value.782

4) The reciprocal condition number is used to measure783

whether a matrix is well or badly conditioned (if this784

number is small). The condition number of a matrix785

affects the solutions of similar linear systems of equa-786

tions: if the values of the matrix are slightly perturbed,787

this leads to big differences in the solution; thus, we stop788

the decomposition when this number is too small.789

IV. RESULTS790

This section shows results obtained with the Matrioshka791

OMP algorithm, applied to a complex synthetic data set issued792

from the Marmousi geological model [60], with real seismic793

noise (see Section IV-A) and to real ocean bottom node (OBN)794

seismic data acquired in Torpille (Offshore Gabon) (see795

Section IV-B). More results on simple synthetic data examples796

that demonstrate the performance in “laboratory” conditions of797

the method can be found in [59].798

A. Complex Synthetics—Realistic Case Study799

We tested our method on a realistic data set, generated by800

the Allied Geophysical Laboratories of the University of Hous-801

ton from the Marmousi geological model. Martin et al. [61]802

performed a highly precise elastic modeling to provide as803

many of the seismic features usually present in real seismic804

data as possible. Namely, the data contain not only primary and805

multiple reflections, but also diffractions, head waves, surface806

waves, scattering effects, and other realistic particularities. The807

acquisition geometry adopted for this simulation is that of a808

source vessel towing an airgun source at a depth of 10 m and809

performing a shot every 25 m. The source signature is a zero-810

phase 5–10-60–80 Hz Ormsby wavelet with frequencies up to811

80 Hz. The Ocean Bottom Cable is situated at the water bottom812

at a depth of 450 m. We performed an artificial blending of the813

data by attributing different parts of the data to two different814

sources and creating overlapping shooting time patterns for815

each source: the first source shoots regularly, with an interval816

equal to 5 s, and the second source shoots with irregular time817

intervals around 7 ± 2 s.818

The first test, illustrated in Figs. 7 and 8, contains 20 traces819

for each source, which corresponds to a 500-m-wide lateral820

window. Fig. 7 shows decomposition residue and explained821

signal for the first source in the upper part of the section, where822

the signal is quite strong since it contains direct arrival and sur-823

face waves. Fig. 7(c) and (d) shows the decomposition result824

after only five iterations of the outer OMP: several of the most825

energetic seismic events have already been reconstructed, and826

the residue energy has significantly decreased. After 59 iter-827

ations of the outer OMP [see Fig. 7(e) and (f)], the useful828

signal present in the section is almost perfectly explained. The 829

leakage of Source 1 remaining in the residue [see Fig. 7(f)] 830

is present in the deblended signal associated with Source 2, 831

but with a sufficiently low energy to be eliminated as acquisi- 832

tion noise by the classical downstream processing. However, 833

because of the presence of significantly weaker signals in other 834

parts of the studied sections, we continued the decomposition 835

up to 1750 iterations of the outer OMP, getting a perfectly 836

explained useful signal. The energy of the residue decreases 837

almost linearly in logarithmic scale, as shown in Fig. 8(a). 838

Fig. 8(b) shows the magnitude of the coefficients found during 839

the decomposition. Note the rapid decrease in the beginning 840

of the curve, indicating the sparsity of the transform. Fig. 8(c) 841

and (d) shows for the two sources the increasing signal-to- 842

noise ratio computed as S/N = 10 log10(�ds�2/�ds − dd�2), 843

where ds denotes the initial single source data, and dd the 844

deblended data for the same source. 845

Fig. 9 shows a test on the same data, with the entire shot 846

lines processed using sliding windows and in the presence of 847

real seismic noise. Note that most of the noise is left in the 848

residue, moreover to avoid any signal loss, the residue can be 849

added back to the explained coherent events, if there is any 850

signal left in it. 851

B. Real Seismic Data Example 852

In this section, we present test results on real data extracted 853

from a 3-D OBN seismic survey acquired in Torpille. The 854

acquisition used a conventional single source mode, with an 855

airgun seismic source towed at a 7-m depth with a shot-point 856

interval of 50 m. The water depth in this area varies from 857

25 to 35 m, which implies the presence of Scholte waves 858

making the data almost as difficult to process as onshore. The 859

sampling period was of 3 ms, and the listening time for each 860

shot was of 5.4 s. We blended them artificially as for the 861

Marmousi data. The clean and blended input data are shown 862

in Fig. 10(a)–(d). Note that the shooting line of the first source 863

is significantly closer to the receiver, since the useful signal 864

in Fig. 10(b) and (d) is located deeper (i.e., later in time) than 865

that in Fig. 10(a) and (c). Obviously, the further away the 866

source is from the receiver, the weaker its recorded signal is. 867

Therefore, the blending appears more aggressive for the sec- 868

ond source than for the first one, as shown in Fig. 10(e) and (f). 869

The first source, however, is also significantly contaminated, 870

especially in the part where useful signals, as the primary 871

reflections, are present (below 2 s). The decomposition allows 872

us to reconstruct the most energetic physical events, such as 873

the direct arrivals, the surface waves and the guided waves. 874

A significant part of the reflections is also reconstructed, which 875

is well seen in the zoomed-in parts of Fig. 11(a) and (b). 876

However, part of the coherent signals stays in the residue 877

[see Fig. 11(c) and (d)]. Nevertheless, in order to avoid leak- 878

age, the residue can be added back to the reconstructed events 879

for each source, as shown in Fig. 11(e) and (f). Note that the 880

decomposition and deblending results for the real seismic data 881

have inferior quality compared to the synthetic data with real 882

noise added. This can be explained as follows. First, the Tor- 883

pille data contain a significant part of incoherent noise—which 884
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our algorithm is not trying to capture—and when we blend885

data, we sum up the ambient noise recorded at different times,886

leading to a less favorable situation than a true simultaneous887

sources acquisition. Second, the big difference in the energy888

of the two sources is also difficult to handle, as sometimes the889

energetic noise tends to be reconstructed as coherent signal.890

Nevertheless, we were able to achieve a significant improve-891

ment of the signal-to-noise ratio for the deblending results892

shown in Fig. 11(e) and (f): around 10–15 dB for both sources.893

Taking into account that the deblending takes place in the very894

beginning of the processing sequence, the residual blending895

noise is likely to be handled by further conventional denoising896

or other processing. Limitations of our method include poten-897

tial high computational complexity when big data sets need to898

be processed with a high level of precision. We addressed this899

issue by implementing analytical derivation in the optimization900

routines and fast norm calculation, but further code optimiza-901

tions may be needed to industrialize the algorithm. Our method902

provides both deblended signals and a sparse representation903

of seismic data with a given precision, which is beneficial for904

diverse seismic data processing problems.905

V. CONCLUSION906

In this article, we have proposed a new source-separation907

method applied to seismic data acquired in simultaneous-908

source mode. This method consists of two nested OMPs and is909

called Matrioshka OMP. We have proposed two mathematical910

models of sensor signals in simultaneous-source seismic sur-911

veys. These models are justified by nonrestrictive assumptions912

on the seismic survey and the simultaneous sources, which913

we have stated as hypotheses. Our data-driven seismic event914

model is based on features which are characterized by spatial915

coherence of wavelet signals. Precisely, a seismic event is a916

straight or slightly curved feature in the trace representation917

of the data with a specific wavelet sufficiently stable within918

a local spatial window, whose magnitude can linearly vary919

according to the offset. We have deduced from this model920

specific dictionaries adapted to raw seismic data without921

preprocessing, and we have implemented two nested OMPs922

with these dictionaries. For this, we have efficiently solved a923

nonconvex optimization problem thanks to the gradual con-924

struction of the initial conditions close to the globally optimal925

solution. Finally, we have tested our method on complex926

synthetic seismic data with real noise and on real data. The927

synthetic data examples presented show excellent deblending928

results: the algorithm is capable of explaining almost all of929

the coherent seismic events present in the data. The real data930

example was more difficult to process, but the final results are931

acceptable in terms of further processing.932
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