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Abstract Air quality monitoring stations are essentials for monitoring air pollu-

tants and, therefore, are essential to protect the public health and the environment

from the adverse effects of air pollution. Two or more stations may monitor the same

pollutant behavior. In this scenario, the equipment must be reallocated to provide a

better use of public resources and to enlarge the monitored area. The identification

of redundant stations can be carried out by the application of principal compo-

nent analysis (PCA) as a grouping technique. The principal component analysis
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is a set of linear combinations of the original variables constructed to explain the

variance-covariance structure of the data. It is well known that outliers affect the

covariance structure of the variables. Since the components are computed by using

the covariance or the correlation matrix, the outliers also affect the properties of

the components. This article proposes a grouping methodology that applies robust

PCA to identify air quality monitoring stations that present similar behavior for

any pollutant or meteorological measure. To illustrate the usefulness of the proposed

methodology, the robust PCA is applied to the management of the automatic air

quality monitoring network of the Greater Vitória Region in Brazil consists of 8 sta-

tions. It was found that four components could explain 84% of the total variability,

and it is possible to create a group composed of at least two stations in each one of

the components. Therefore, the redundant stations can be installed in a new site to

expand the monitored area.

Keywords Air quality · Monitoring networks · time series · Robust principal

component analysis · Outliers

1 Introduction

The concern about air pollution problems has increased considerably in the last 50

years. Especially in developing countries, the air quality has been degraded as a result

of industrialization, population growth, high rates of urbanization, and inadequate

or nonexistent policies to control air pollution. The problems caused by air pollution

produce local, regional, and global impacts. In this context, the particulate matter

(PM), especially the PM10, which has an aerodynamic diameter less than 10 µm,

is one of the most important pollutants with natural and anthropogenic sources.
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Its adverse impacts on humans health may lead to an increment of mortality rates,

respiratory and cardiovascular problems for short and longterm exposure at high

concentrations (Beelen et al. 2014; Cesaroni et al. 2014; Hoek et al. 2013; Rückerl

et al. 2011).

The primary purpose of air quality management is to protect public health and

the environment from the adverse effects of air pollution. Adequate control of air

quality involves several activities such as risk management, setting standards for

emissions and air quality, implementation of control measures, and risk communi-

cation (WHO 2005). The monitoring of air quality is essential for any air pollution

control policy. The realization of efficient management of air quality is important for

identifying and quantifying the pollutants found in a region and their sources. This

is accomplished by using stations to monitor different pollutants according to the

needs of the regions where the stations are installed.

In Brazil, although the limits for pollutant concentrations are established by the

federal legislation CONAMA 003/90 (Conselho Nacional do Meio Ambiente 1990),

this decree does not contemplate guidelines on how to construct or how to manage

monitoring networks and, thus, entrusting this task to each one of the 27 federative

units. In this scenario, an actual overview of Brazil’s air quality monitoring networks

is given in a recent publication of the Instituto de Energia e Meio Ambiente coau-

thored by the Brazilian Ministry of the Environment. This publication highlights

although essential the air quality monitoring in Brazil is far from being a reality.

Due to the dimensions of the country, the non-prioritization of air quality policies

and the amount of financial resources destined to the monitoring activities, only 12

out of 27 unity members have an operational air quality monitoring network (IEMA

2014).
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The installation and continuous operation of an air quality monitoring station

are cost-intensive as it requires finding a suitable place for the installation and per-

sonnel for its maintenance. Only one monitoring station should operate in an area

characterized by a specific pattern of air pollution. Pires et al. (2008a) indicate the

number of stations that constitute a monitoring network must be optimized to re-

duce costs and expenses. If there are stations with similar patterns of pollution for a

specific pollutant, the monitoring equipment could be properly relocated to another

area of interest.

In this context, the principal component analysis has been successfully used in

air pollution for managing a network of monitoring stations in several studies, for

instance, Zamprogno (2013) studied PCA with time series models in many different

applications related to air pollution data, Zhao et al. (2015) applied PCA to verify

redundant air quality monitoring networks in Shanghai (China). Dominick et al.

(2012) used PCA and Cluster Analysis (CA) to check the pattern of behavior of

the pollutants carbon monoxide (CO), ozone (O3), particulate matter of diameter

< 10µm (PM10), sulfur dioxide (SO2), nitric oxide (NO) and nitrogen dioxide (NO2)

in five different stations in Malaysia. Pires et al. (2009, 2008a,b) applied PCA to

identify monitoring sites with similar concentrations of pollutants for PM10, SO2,

CO, NO2 and O3 in the metropolitan area of Porto (Portugal). Lu et al. (2011)

employed PCA to study the air quality monitoring network of Hong Kong for the

pollutants of SO2, NO2 and Respirable Suspended Particulate (RSP). The authors

found that the monitoring stations located in nearby areas are characterized by the

same specific air pollution characteristics and suggested that redundant equipment

should be transferred to other monitoring stations allowing for further enlargement
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of the monitored area. Other studies include Lau et al. (2009) and Gramsch et al.

(2006).

The application of PCA is not exclusive to the management of air quality moni-

toring networks. Recently, Villas-Boas et al. (2017) used PCA and nonlinear PCA to

assess the redundancy of the parameters and monitoring locations of the Piabanha

water quality network in Brazil. Phung et al. (2015) applied PCA and other multi-

variate statistical tools to assess the river surface water quality and also redundant

monitoring stations in Can Tho City (Vietnam).

At this point, PCA is one of the main multivariate statistical techniques. The goal

of PCA is to explain the covariance structure of the data through auxiliary variables

called components. These components are constructed from linear combinations of

the original variables and are uncorrelated. Briefly, PCA calculates the eigenvalues

and eigenvectors of the covariance or correlation matrix. The main application of

PCA is to reduce the dimensionality of a correlated data matrix of n dimension to

a m dimension, where m < n. The reduction is performed so that the new set of

variables captures most of the variability contained in the original data. A review

of the fundamentals of PCA using R (R Core Team 2018) can be found in Sergeant

et al. (2016).

Besides the use for dimensionality reduction, the PCA technique can be used for

the clustering of the variables of a data matrix. Cadima and Jolliffe (1995) discusses

the clustering of variables considering the eigenvectors of the PCA. The grouping of

variables consists of choosing variables that have similar values for its eigenvectors

in absolute value and are highly correlated to the principal component.

In the air pollution context, outliers may arise from different scenarios such as

human-made disasters and natural catastrophes, measurement errors due to the fail-
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ure of equipment or a sudden change in the atmosphere conditions, human errors,

among others. Another critical situation arises when the observed pollutant is under

the concentration limits established by legislation standards, but it may be consid-

ered as an atypical observation during the statistical analysis.

Furthermore, PCA is sensitive to outliers since the estimation of the mean vector,

the covariance matrix, and the correlation matrix are directly influenced by outliers.

As a consequence, the estimation of the eigenvalues and eigenvectors of the covariance

or correlation matrix will be influenced by outliers present in the data, see, e.g.,

Filzmoser (1999). It is worthwhile to mention that even a single outlier may affect

classical statistics methods. Croux and Haesbroeck (2000) indicate that conclusions

obtained from principal component analysis calculated from a dataset with outliers

may be misleading.

Under these circumstances, the common choice made by a wide range of scientists

and practitioners to mitigate this problem is to delete the observations suspected to

be outliers. As pointed out by Maronna et al. (2006, Chapter 1), the removal of

an outlier observation may lead to many issues since the deletion is based on a

subjective decision. A viable option to attenuate these problems is to use robust

statistical methods since these methods still work well even when the presence of

outliers is uncertain. Among the methods for robust estimation of the covariance or

correlation matrix with time-independent datasets, there is the estimator proposed

by Ma and Genton (2001). This estimator uses the so-called Qn(.) estimator proposed

by Rousseeuw and Croux (1993), which is independent of the location parameter of

the dataset.

In this paper, the central idea is to robustify the estimation of the covariance

matrix before calculating its eigenvalues and eigenvectors in PCA. The methodology
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proposed consists of the application of robust principal component analysis and

selecting the stations which presented higher correlations to the selected PCs. Then,

a decision rule is to be applied to decide to keep the redundant station in the same

place or to move it to a new area. This proposed methodology is also adequate when

outliers are presented in the dataset. The PM10 data of the metropolitan area of the

Greater Vitória Region (GVR), Brazil, is analyzed as an illustrative example.

The paper is structured as follows: Section 2 describes the data and the statistical

model introducing the proposed estimation method and how to identify monitoring

stations that present similar behavior; Section 3 presents the data analysis and its

discussion comparing robust PCA to the standard one. Finally, Section 4 presents

the closing remarks.

2 Data and methods

2.1 Sampling stations in the Greater Vitoria Region

The Greater Vitória Region is located on the southeast coast of Brazil (latitude 20ž

19S, longitude 40ž20W) with a population of approximately 1.900.000 inhabitants.

The climate is tropical humid, with average temperatures ranging from 24žC to

30žC. The region has many ports being an important cargo transport hub in Brazil.

Also, there are many industries presented in the region, such as steel plants, iron ore

pellet mill, stone quarrying, cement and food industry, and asphalt plant.

The automatic air pollution monitoring network (AAQMN) of GVR is consisted

by eight monitoring stations distributed in the cities of this region as follows: two

stations in Serra (Laranjeiras and Carapina), three stations in Vitória (Jardim Cam-

buri, Enseada do Suá and Vitória Centro), two stations in Vila Velha (Vila Velha



8 H. Cotta, V. Reisen, P. Bondon, P. Prezotti

Centro and Ibes) and one station in Cariacica (at the regional food distribution cen-

ter, CEASA). The PM10, in µg/m3, is monitored in all stations. Figure 1 presents

the geographical location of each station. The PM10 series corresponds to the daily

average (over 24h period) observed at all stations from January 2005 to December

2009.

2.5 0 2.5 5 7.5 10 km

Fig. 1 Geographical location of the stations.

2.2 Principal component analysis

Most of the practitioners employ the standard PCA, which is based on the sample

covariance matrix and is summarized in the sequel. Let X1, . . . ,Xn be a sample of

size n of an independent and identically distributed multivariate distribution with

dimension p, mean vector µ, and covariance matrix Σ. The method of moment
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estimator (MME) of Σ is

Σ̂n =
1
n

n∑

i=1

(Xi − µ̂)(Xi − µ̂)′, (1)

where µ̂ = 1
n

∑n
i=1 Xi. As stated by Jollife (2002), the big drawback of PCA tool

based on covariance matrices is the sensitivity of the PCs to the units of measurement

of the variables. Therefore, if large differences in the variances of variables are found,

the variables with large variances will tend to dominate the first PCs. To avoid this

problem, the use of PCA based on the correlation matrix is suggested. To this end,

the sample correlation matrix P̂ can be obtained as P̂ = D̂Σ̂nD̂, where D̂ =

diag(1/
√
σ̂11, . . . , 1/

√
σ̂pp), where σ̂ii, for i = 1, . . . , p, is the sample covariance. It

is straightforward to see that even one outlier will affect the sample mean, and, thus,

the whole covariance (or correlation matrix).

Now, consider the random vector X ′ = [X1, X2, . . . , Xp] with sample covariance

matrix Σ̂n and its associated sample eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p ≥ 0 with

corresponding normed eigenvectors â′ = [â1, â2, . . . , âp]. Let

Ŷi = â′
iX. (2)

Then, we have

V̂ar(Ŷi) = â′iΣ̂nâi = λ̂i, i = 1, 2, . . . , p, (3)

Ĉov(Ŷi, Ŷk) = â′iΣ̂nâk = 0, i $= k, i, k = 1, 2, . . . , p, . (4)

If some λ̂i are equal, the choice of the corresponding eigenvectors âi is not unique.

Associated with (2), it can be shown that

p∑

i=1

V̂ar(Xi) = λ̂1 + λ̂2 + · · ·+ λ̂p =
p∑

i=1

V̂ar(Ŷi). (5)
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Equation 5 states that the whole variability of X is retained by the principal com-

ponents Ŷ . Therefore, if the main goal of the use of PCA is to reduce the number of

variables, the scientist may choose to retain only part of the total original variability.

2.2.1 Robust PCA

Outliers affect the estimation of the location (mean) and the scale (variance) of

random variables. To address this problem, Rousseeuw and Croux (1993) proposed

a robust estimator, Qn, for the dispersion of a dataset. Let X1, . . . , Xn be n i.i.d.

copies of a random variable X, the estimator Qn is the k-th order

Qn(x) = d {|Xi −Xj |; i < j}{k}, (6)

where i, j = 1, . . . , n, and d is a value for consistency of the estimator. The k-th

order statistic is the integer value k = %(
(n
2

)
+ 2)/4&+ 1.

It is known that for any univariate second-order random variables X and Y it is

possible to compute the covariance between them as follows

Cov(X,Y ) =
αβ
4

(
Var(X/α+ Y/β)−Var(X/α− Y/β)

)
, (7)

for any α,β ∈ R, see, Huber (2004). In order to robustify (7), Ma and Genton (2001)

proposed to use the estimator Qn instead of the sample variance obtaining

σ̂Qn(X,Y) =
αβ
4

[
Q2

n

(
X
α

+
Y
β

)
−Q2

n

(
X
α

− Y
β

)]
, (8)

where α = Qn(X) and β = Qn(Y ).

The correlation between the univariate second-order random variables X and Y

can be estimated by

ρ̂Qn(X,Y) =
Q2

n

(
X
α + Y

β

)
−Q2

n

(
X
α − Y

β

)

Q2
n

(
X
α + Y

β

)
+Q2

n

(
X
α − Y

β

) , (9)
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where X, Y , α and β are defined in (8).

Let X be a random vector of p ≥ 2 variables. The robust sample covariance and

correlation matrix of the random vector X, namely, Σ̂Qn and P̂Qn , respectively,

are obtained by estimating every covariance or correlation pairs between Xi and Xj ,

i, j = 1, . . . , p. In this work, the robustified principal component analysis is achieved

by replacing the standard covariance (or correlation matrix) with Σ̂Qn and P̂Qn .

It is worthwhile to mention that the robust estimation procedure discussed above

will provide similar results to the ones estimated using the standard sample estimator

when there are no outliers presented in the dataset. Therefore, its usage is recom-

mended.

2.2.2 PCA clustering and station selection

PCA technique can also be used for clustering of the variables. A method for cluster-

ing variables using PCA is discussed in Cadima and Jolliffe (1995). The grouping of

variables consists of choosing variables that have similar values for its eigenvectors

in module and are highly correlated to the principal component. The correlation

between a retained PC group and the related full PC (containing all the variability

of Ŷi) is given by

r̂k = λ̂1/2
j (âk′

j Σ̂
−1
n,kâ

k
j )

1/2, (10)

where λ̂j is eigenvalue of j-th component, âk
j is the clustered vector of âj containing

k variables and Σ̂
−1
n,k is the sub-matrix of Σ̂n, which lines and columns correspond

to the k grouped variables.

The main idea behind the method is to address monitoring stations which present

similar behaviors for the PM10 pollutant (the technique is easily expanded to any
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other pollutant or meteorological parameter). Thus, a decision rule can be applied

to decide to keep the redundant station in the same place or to move it to a new

area.

As a possible decision rule, Pires et al. (2009) suggested three criteria: (i) sites

should be monitoring the highest possible pollutant concentrations; (ii) the num-

ber of pollutants being monitored at each site should be maximized; and (iii) the

distribution should maximize distances between locations.

In this context, the following methodology for addressing monitoring stations

which present similar behavior for a given pollutant is proposed:

1. Perform a descriptive statistical analysis of the data to verify the occurrence of

possible outliers and to check for different scale of the measured variables;

2. Compute the robust PCA using the covariance or the correlation matrix;

3. Select a desirable number of PCs to be retained, e.g., 80% or more of the total

variability;

4. Arbitrarily choose a cutoff point for the absolute values of the eigenvectors;

5. Create a group of variables whose coefficient of eigenvectors are equal or greater

than the cutoff point in the component;

6. Using (10) compute the correlation between the selected variables in the PC and

the full component. If the chosen variables and the component are not correlated,

verify the cutoff point and redo the steps 4-6;

7. Apply the decision criteria of Pires et al. (2009) to decide to keep or to move to

a new area the monitoring equipment of the pollutant considered in the study.
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3 Data analysis and discussion

In this study, the robust PCA was applied as a classification tool to group monitoring

sites with redundant measurements of PM10 concentrations from January 1st of 2005

to December 31 of 2009 (n = 1826). All the plots and analysis were performed using

the computing environment R. Σ̂Qn and P̂Qn are available in the package tsqn

(Cotta et al. 2017). The dataset and the R codes are available upon request.

Table 1 shows the descriptive statistics (i.e., the averages, standard deviations,

and quantile values, among others) of the variables considered. The concentrations

of PM10 pollutants exceeded hourly and annually, the guidelines suggested by the

World Health Organization (WHO 2005). It is observed a high range for all stations.

The boxplot of the data and the series of PM10 are shown in Figures 2 and 3,

respectively. From the boxplot and the plots of the series, one can observe higher

levels of PM10 pollutant compared to WHO’s guidelines, where the established limit

is 50 µg/m3 for 24-hour concentrations. Although the high levels of PM10 are es-

sential information that should be considered in the context of the air pollution and

its impact on human health, these observations can be identified, from a statistical

point of view, as being outliers. Therefore, the high levels of PM10 presented in the

series justify the use and comparison of the robust PCA.

Tables 2 and 3 show the correlations and the robust correlations (as in Section 2.2)

between the monitoring stations in the study. From both tables, we observe strong

correlations between the variables, e.g., 0.78 for Ibes and Enseada do Suá stations.

The grouping of stations with redundant measurements for the PM10 pollutant

was carried out following the methodology proposed in Section 2.2.2. That is, stations
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Fig. 2 Boxplot of PM10’s concentrations of the AAQMN of the GVR.
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having the same contribution in a given component will have similar values for their

eigenvectors, and they will also be correlated to the component.

In the PCA tool, the estimates of the eigenvalues and their corresponding eigen-

vectors using P̂ and P̂Qn are given in Table 4 where, for each component, the

grouped stations are highlight by boldface. For both estimators, four components

could explain approximately 85 % of the total variability of the dataset, leading to a

dimension reduction of the data. It is observed that PCA computed by using P̂Qn

preserved a higher percentage of variability in the components.

For both PCAs, the cutoff point was selected to be 0.37 in absolute value, which

led to the highest correlation values. In the standard PCA, this cutoff led to a

correlation between the selected PCs groups and the original PCs of 0.96, 0.88, 0.66,

and 0.96, for the four PCs, respectively. In the case of robust PCA, correlations of

0.96, 0.89, 0.66, and 0.95 were found. The values are close in both standard and

robust PCA.

Thus, for the method of moments estimator for the first component, it is possible

to visualize the existence of a group of stations formed by Ibes, Vila Velha Centro,

and Cariacica. In the second component, the group is formed by Laranjeiras and

Carapina. For the third component, Vila Velha Centro forms a group. Finally, the

fourth component is the group formed by Jardim Camburi, and Enseada do Suá.

For the grouping through robust PCA, in the first component, Ibes, Enseada do

Suá, and Vitória Centro can be grouped. For the second component, Laranjeiras and

Cariacica form a group. In the third component, Vila Velha Centro is the only station

in the group. For the fourth component, the group is formed by Enseada do Suá and

Jardim Camburi. Therefore, the proposed method allocated groups differently from
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P̂ . However, base on boxplot (Figure 2) and descriptive statistics (Table 1), the

grouping based on P̂Qn is suggested here.

To visually confirm the grouping results for both estimators, the daily averages

of PM10 for the groups are shown in Figure 4. It is seen that the grouping using

P̂Qn is superior since, for the first component, the grouped stations have similar

concentrations.

To end this analysis and continuing with the procedure of the methodology dis-

cussed in Section 2.2.2, the stations of Vitória Centro and Enseada do Suá may be

selected to be moved to a new area to enlarge the total monitored area. It is high-

lighted that although Cariacica has no important contribution to the robust cluster,

it is the only station located in Cariacica municipality and, therefore, must be kept.

4 Conclusions

This article proposed and applied a grouping methodology to identify monitoring

stations that present similar behavior for a given pollutant. As a case of study, the

AAQMN of GVR (Brazil), which monitors the PM10 pollutant was considered in

order to enable better management of the local monitoring network.

The methodology proposed consists of the application of robust principal compo-

nent analysis and selecting the stations which presented higher contributions to the

chosen PCs. Then, a decision rule is to be applied to decide to keep the redundant

station in the same place or to move it to a new area.

In the case study, it was found the occurrence of possible outliers observations

during the descriptive analysis of the PM10 data, which justified the comparison

between the robust and standard PCA. It was found that Ibes, Enseada do Suá, and
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Fig. 4 The daily average of the PM10 data.
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Vitória Centro presented similar behavior and thus can be grouped. Also, Jardim

Camburi and Enseada do Suá form another group. Therefore, two stations, Ibes

and Enseada do Suá, are the candidates to be moved to a new site to enlarge the

monitored area.
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