
HAL Id: hal-02668283
https://centralesupelec.hal.science/hal-02668283

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving Properties of Discrete-Valued Functions Using
Deductive Proof: Application to the Square Root

Vassil Todorov, Safouan Taha, Frédéric Boulanger, Armando Hernandez

To cite this version:
Vassil Todorov, Safouan Taha, Frédéric Boulanger, Armando Hernandez. Proving Properties of
Discrete-Valued Functions Using Deductive Proof: Application to the Square Root. Modeling and
Analysis of Information Systems, 2019, 26 (4), pp.520-533. �10.18255/1818-1015-2019-4-520-533�. �hal-
02668283�

https://centralesupelec.hal.science/hal-02668283
https://hal.archives-ouvertes.fr

Proving properties of Discrete-Valued Functions
using Deductive Proof:

Application to the Square Root

Vassil Todorov1,2, Safouan Taha1, Frédéric Boulanger1, Armendo Hernandez2

1Université Paris-Saclay, LRI, CentraleSupélec 2Groupe PSA

For many years, automotive embedded systems have been validated only by testing. In
the near future, Advanced Driver Assistance Systems (ADAS) will take a greater part in the
car’s software design and development. Furthermore, their increasing critical level may lead
authorities to require a certification for those systems. We think that bringing formal proof
in their development can help establishing safety properties and get an efficient certification
process. Other industries (e.g. aerospace, railway, nuclear) that produce critical systems
requiring certification also took the path of formal verification techniques. One of these
techniques is deductive proof. It can give a higher level of confidence in proving critical
safety properties and even avoid unit testing.

In this paper, we chose a production use case: a function calculating a square root
by linear interpolation. We use deductive proof to prove its correctness and show the
limitations we encountered with the off-the-shelf tools. We propose approaches to overcome
some limitations of these tools and succeed with the proof. These approaches can be applied
to similar problems, which are frequent in the automotive embedded software.

1 Introduction and Motivation

Today, the automotive industry relies mostly on a model-based approach
for developing embedded software. It consists in connecting common library
blocks (operators) to design and simulate a model of the behavior to be
produced. It uses a higher level of abstraction than the code. Code with the
behavior of the model is then produced automatically. The most commonly
used tools for software design are Simulink, from the MathWorks, and Scade,
from ANSYS.

The main advantage of this approach is that models can be simulated
and debugged before code generation. Thus, some of the errors are found
and fixed earlier in the design process. On the other hand, simulation shares

This work was supported by the Groupe PSA, a French multinational manufacturer
of automobiles and motorcycles sold under the Peugeot, Citroën, DS, Opel and Vauxhall
brands.

1

V. Todorov, S. Taha, F. Boulanger

many common points with testing and cannot prove that the calculation is
correct. Furthermore, the implementation of a model on a specific hardware
can bring behaviors that have not been seen before at design stage.

For the rest of our study we take as example a function calculating a
square root. During the design stage, the simulation can use a standard im-
plementation of this function. However, in the implementation, we replace it
with an optimized version because of hardware constraints. Fig. 1 shows this
approach. Our example is a discrete-valued function implementing the square
root calculation, which uses a linear interpolation table. In automotive appli-
cations, as on-board computers have limited power, discrete-valued functions
are frequently used in the implementation to avoid complex calculations.

Figure 1: Complex functions for simulation vs. discrete-valued ones for im-
plementation

In the near future, we expect that authorities will require a certification
for highly critical software in self-driving cars. Our motivation is to provide
proofs of correctness for production code using formal methods.

In a previous paper [29], we summarized some experiments about apply-
ing tools that use formal methods to industrial software. In this paper, we
give details about the application of deductive proof to production code, the
problems we encountered with off-the-shelf tools, and some approaches to
solve this type of problems. Our function has been implemented in C and
we used Frama-C WP [16] for proving its correctness. As some of the goals
were impossible to prove with Frama-C and its solvers we implemented it
in SPARK (based on Ada) to prove it with GNATprove [7]. We discuss the
results as well as how other methods such as Abstract interpretation can be
combined with deductive proof.

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 2

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

2 Deductive methods

2.1 Preliminaries

The foundations of the proof of logical properties on an imperative language
program were put forward by C. A. R. Hoare [15] in 1969. Based on the
precise semantic of a computer program, Hoare proposed to prove certain
properties by mathematical deductive reasoning, generally at the end of the
program.

He introduced a notation called the Hoare triple, which associates a pro-
gram Q, start hypotheses P, and expected output properties R:

P {Q} R

The logical meaning of this triple corresponds to: if P is true, then after
executing program Q, R will be true if Q terminates. The calculus of Hoare’s
triples is, in general, undecidable.

The proving by application of Hoare’s rules is an intellectual process
and is not tool driven. It is up to the author of the proof to define the
correct properties between each instruction of the program and to establish
its demonstration by applying the different theorems. This activity is not
adapted to process thousands of lines of code in an acceptable time.

An initial automation of the process of proving programs was brought
by the calculation of the WP (Weakest Precondition) from Dijkstra [10].
The principle consists in automatically calculating the most general property
WP(S,P) holding before a statement S such that property P holds after the
execution of S :

WP (S, P) {S} P

The calculus of WP is defined for each instruction. The proof process
consists in calculating WP by going backward from the end of the program
for which we want to prove P, up to the beginning. For full correctness, S
must terminate.

The returned predicate from the WP calculation can rapidly become
rather complex. Efficient (quadratic instead of exponential) verification con-
dition generation (including WP generation) were proposed in the following
papers [27, 3, 13]. In order to automate the process, all modern tools based
on WP are using automatic theorem provers as back-end. We can cite, for
example Alt-Ergo [8], Colibri1, CVC4 [4], Yices2 [11], Z3 [9].

1Colibri: http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 3

http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf
https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

2.2 Tools for deductive reasoning

As we are interested in tools used by the industry, we present here only
those that are mostly used today: Atelier B2, Caveat [22], Frama-C WP and
GNATprove.

2.2.1 Atelier B

Atelier B is a tool supporting the B method, which is a formal methodology to
specify, build and implement software systems. The B method was originally
developed in the 1980s by Jean-Raymond Abrial [2] and is based on first-
order logic, set theory, abstract machine theory and refinement theory. This
method is suitable for a new development. As we reused existing C code, we
did not use this method.

2.2.2 Caveat and Frama-C WP

Caveat and Frama-C WP are tools for deductive reasoning on C programs.
Caveat was introduced at Airbus in 2002 to replace unit tests by unit proof
and thus obtain a cost reduction and quality improvement over this part of
the development process. The tool with its back-end Alt-Ergo were certified
and recognized by the aviation certification authorities. Caveat analyzed C
programs (with some restrictions in terms of language constructs) and had
its own specification language based on a first order logic.

Frama-C is the academic open source tool developed by the same team
as Caveat. Its WP module verifies properties written in the ACSL3 language
in a deductive manner. It implements the Weakest Precondition calculus and
targets multiple automatic solvers via the Why3 platform4.

2.2.3 GNATprove

GNATprove is a tool for deductive reasoning over SPARK (based on Ada)
programs. Like Frama-C, it uses the Why3 platform but SPARK supports
bit-vector data types. A bit-vector is an array data type for compactly storing
bits. Most modern SMT-solvers support a theory of bit-vectors, which can
help solving problems using this data type. Furthermore, for properties that
are not valid, GNATprove can obtain a counterexample from the SMT solver.

2Atelier B: https://www.atelierb.eu
3ACSL specification language: https://frama-c.com/acsl.html
4Why3: http://why3.lri.fr/

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 4

https://www.atelierb.eu
https://frama-c.com/acsl.html
http://why3.lri.fr/
https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

Figure 2: Environment for deductive proof on C and SPARK code

3 Environment
We present in Fig. 2 our environment. We have C code, which is annotated
with contracts using the ACSL language. We use two different features of
Frama-CWP. First, we use it to parse and then transform the C code together
with the contracts into verification conditions (VCs) that are directly sent
to the SMT solvers. Second, we also use Frama-C WP to transform the
C code together with the contracts into WhyML language files. The Why3
framework then transforms the WhyML files into VCs and addresses the SMT
solvers. The main difference between these two approaches is that the direct
SMT-LIB output was initially developed for the Colibri SMT solver, which
does not support quantifiers. Thus, the direct SMT-LIB output provides a
set of quantifier-free formulas. The other way, through WhyML, allows for
richer theories and supports quantified formulas even within the specification
contracts.

We used GNATprove to prove the equivalent code written in SPARK. This
approach is similar to using Frama-C with WhyML and quantified formulas.
The advantage of SPARK for our use case is that we can use bit-vector types
for modular arithmetic and thus facilitate the proof.

Because we experienced some difficulties with the analysis of our C code,
we also analyzed it with an Abstract interpretation tool to get additional
confidence.

4 Experiment
We took the C code implemented in an on-board computer to prove its
correctness using deductive proof. The function calculates the square root Y
of X by linear integer interpolation between two known points (Xa, Ya) and
(Xb, Yb) using the following formula:

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 5

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

Y = Ya + (X −Xa)
(Yb − Ya)

(Xb −Xa)

This code is used in an implementation on an on-board computer, which
cannot use floating-point numbers. We calculate the square root for numbers
between 0.00 and 100.00 using an integer representation. We consider it as a
fix-point number (multiplied by 100 to have a precision of 2 digits after the
decimal separator), thus the input range is between 0 and 10000 (representing
0 and 100.00) and the returned result is a linearly interpolated value between
0 and 1000 (to be interpreted as a number between 0 and 10.00). We want
to prove that the calculation is correct for a given precision.

We proceeded in two steps. First, we proved a simplified version of the
code using only eight values in the interpolation table (Fig. 3) and limited
to the range [0, 1.00]. These values were a subset of the full table present in
the code, which contains 41 values. Then, we added the other values in the
table and updated the contracts to take into account the new bounds. To our
surprise, this did not scale up with Frama-C. We worked with the developers
of Frama-C to understand why (we explain it in Section 5).

The code of our main function is given in Fig. 4. This function takes a
number and returns its square root using a table for some known values or
interpolates a value when the number is between two known points. Using
the ACSL annotation language, we define two behaviors for this function:
whenever the number is less than 10000 the function is defined, otherwise it
returns the maximum value i.e. 1000. For more readability, we removed some

Figure 3: Square root calculation in [0, 1.00] by linear interpolation from
eight known values

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 6

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

intermediate values from the two tables.
As we have a loop, in formal verification we need to specify a loop in-

variant for it. A loop invariant is a predicate (condition) that holds for every
iteration of the loop (before and after the iteration). This predicate should be
strong enough and its automatic generation is generally a difficult problem.

With Frama-C we also need to define precisely which variables are mod-
ified (assigned) during the loop. In our example, i is incremented on each
iteration.

For the loop to be proved, we also need to write a variant function which is
a function whose value is monotonically decreased with respect to a (strict)
well-founded relation by the iteration of the loop. It is used to ensure the
termination of the loop.

Then we rewrote the function in SPARK5 to see whether it would scale
better. Fig. 5 presents the SPARK code. The main difference between C and
SPARK is that we can specify a bit-vector data type in SPARK, which is

5Special thanks to Yannick Moy from AdaCore

/*@ assigns \nothing;
behavior in_range:
assumes number <= 10000;
ensures number-30 <= (\result)*(\result)/100 <= number+10;

behavior out_of_range:
assumes number > 10000;
ensures \result == 1000;

complete behaviors in_range, out_of_range;
disjoint behaviors in_range, out_of_range;
*/
uint16 IntSqrt(uint16 number) {

uint8 i = 0;
uint16 TabX[41] = {0,5,10,25,40,...,7500,8000,8600,9200,10000};
uint16 TabY[41] = {0,22,32,50,63,...,866,894,927,959,1000};
/*@ loop invariant 0 <= i <= 40 && number >= TabX[i];
loop assigns i;
loop variant 40-i; */
for (i = 0 ; i < 40 ; i++) {

if ((number >= TabX[i]) && (number <= TabX[i+1])) {
return(LinearInterpolation(TabX[i], TabY[i], TabX[i+1],

TabY[i+1], number));
}

}
return TabY[40];

}

Figure 4: Annotated square root function for Frama-C WP automatic proof

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 7

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

then communicated to the SMT solver via Why3. For our use case, it helped
the solver to reason using modular arithmetic. Most SMT solvers used as
back-end of Why3 have a theory of bit-vectors. If we do not use bit-vectors,
the SMT solver is reasoning by default using non-modular arithmetic.

The proof of the simplified code succeeded on both Frama-C and SPARK.
However, when using the full table of 41 values, Frama-C failed where only
SPARK succeeded.

We also analyzed our complete C code with Astrée [18] from AbsInt, a
static analysis tool using abstract interpretation, to prove some difficult goals.
The abstract interpretation results can be used as assumptions for Frama-C
WP or bring more confidence for certification if Frama-C can reason on them.

type Unsigned is mod 2**32;
subtype uint16 is Unsigned range 0 .. 65535;
type UINT16_ARR is array (Positive range <>) of uint16;
Max : constant := 10_000;
function LinearInterpolation(Xa, Ya, Xb, Yb, X : uint16) return uint16 is

Result : uint16;
begin

if Xa /= Xb then
Result := Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa);

else
Result := Ya;

end if;
return Result;

end LinearInterpolation;
function IntSqrt(number : uint16) return uint16

with Global => null, Contract_Cases =>
(number <= Max => IntSqrt’Result * IntSqrt’Result / 100 + 30 >= number

and number+10 >= IntSqrt’Result * IntSqrt’Result / 100, number >
Max => IntSqrt’Result = 1000) is

TabX : UINT16_ARR(1 .. 41) := (0,5,10,25,40,...,8000,8600,9200,10000);
TabY : UINT16_ARR(1 .. 41) := (0,22,32,50,63,...,894,927,959,1000);

begin
for I in 1 .. 40 loop

pragma Loop_Invariant (for all J in 1 .. I => number >= TabX(J));
if number in TabX(I) .. TabX(I+1) then

return LinearInterpolation (TabX(I), TabY(I), TabX(I+1),
TabY(I+1), number);

end if;
end loop;
return TabY(41);

end IntSqrt;

Figure 5: SPARK code for automatic proof with GNATprove

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 8

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

We discuss the results in the next section.

5 Results

In this section, we explain the results and why Frama-C failed to scale-up
from 8 to 41 values, and what should be done to cope with this type of
problems.

5.1 From Frama-C to the SMT solver

To understand the reason why automatic proof failed for the full table, we
have to detail the transformations between the C code through Frama-C,
Why3 and the solvers. First, Frama-C transforms the C code and its ACSL
contracts using the weakest precondition calculus into verification conditions
(VC) in the WhyML language. It also introduces additional goals to verify
the absence of runtime errors such as overflows. The WhyML output con-
tains all the theories necessary for the proof and is sent to Why3. Then
Why3 transforms it into the language of the chosen prover. For our use case,
the WhyML transformation contained quantified formulas and had redefined
some operators such as division using uninterpreted functions.

5.2 The difficult goal

There were 51 goals (verification conditions) to be proved and two of them
were not proven. The most difficult goal was about proving that the con-
tract of the post condition in the linear interpolation function had the same
behavior as the code. We show it in Fig. 6.

Actually, contracts use mathematical arithmetic (without overflow), but
code uses modular arithmetic, where overflows may occur. For our use case,
we used a 16-bit unsigned integer to store the returned value of the interpo-
lation.

5.3 Direct proof with SMT-LIB

Since 2 goals were not proven with the official Frama-C version, we obtained
a new version that could address directly SMT solvers using the SMT-LIB
standard [5]. We proved our goals with Colibri, CVC4 and Yices2. We re-
marked that the SMT-LIB file did not contain quantifiers and did not rede-
fine operators such as division. We concluded that this approach scaled and
worked better for problems with nonlinear arithmetic such as interpolation

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 9

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

functions. Furthermore, some SMT solvers such as Yices2 do not support
quantification.

5.4 Experience with the Why3 SMT output files

We wanted to understand what was the impact of the redefined division using
uninterpreted functions and of quantified formulas, so we modified manually
the SMT request sent to the solver. First, we removed the specific functions
about division and used the standard SMT-LIB div operator. Then, the
proof succeeded with CVC4 but only if using nonlinear logic containing bit-
vectors. Disabling bit-vectors from that logic resulted in a failure to prove
the formula. On the other hand, the quantifier-free SMT output did not need
bit-vector logic to be proved.

5.5 Abstract interpretation

Because it is difficult to understand how the SMT solvers proved the difficult
goal, we used Astrée to prove the absence of overflow in the returned value of
the linear interpolation function. This proof can then be used as hypothesis
in Frama-C WP. Astrée could find the dependency between Yb and Ya and

typedef unsigned short uint16;
typedef unsigned char uint8;
/*@

requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;
requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;
requires Yb > Ya && Xb >= Xa;
requires Xa <= X <= Xb;
ensures Xa != Xb ==> \result == (Ya + (X - Xa) * (Yb - Ya) / (Xb -

Xa));
ensures Xa == Xb ==> \result == Ya;
assigns \nothing;

*/
uint16 LinearInterpolation(uint16 Xa, uint16 Ya, uint16 Xb, uint16 Yb,

uint16 X)
{

if (Xa != Xb) {
return(Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));

} else {
return(Ya);

}
}

Figure 6: Annotated interpolation function for Frama-C WP automatic proof

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 10

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

Figure 7: Methodology for proving Discrete-Valued Functions

estimate a precise interval for (Yb − Ya). The same was done for (Xb − Xa)
and (X − Xa). Thus a precise interval was calculated for Y in [0, 10000],
which fits in a 16-bit unsigned integer without overflow.

6 Methodology

In this section, we propose a methodology based on our experience to solve
problems using discrete-valued functions such as linear interpolation. Our
use case is a simple one and we could have tested it for each value in the do-
main of validity of the function. However, in practice, there are more complex
discrete-valued functions implemented with linear interpolation tables called
lookup tables. These functions are often called by other discrete-valued func-
tions. The number of cases to test can be the product of the cardinalities of
the domains of the individual functions. We propose to use the methodology
shown below in Fig. 7 in order to prove those functions.

First, we need to isolate all the functions we want to prove together
and annotate the code with contracts specifying the behavior expected from
each function. Then, we can try to prove it in Frama-C via Why3. If the
proof succeeds, we can stop. Otherwise, we can try to use the direct SMT-
LIB output of Frama-C WP with the SMT solvers. As we have seen, this
approach removes quantifiers and uses native mathematical operators. If it
does not succeed, for some goals (VCs) we can try to prove them using
abstract interpretation tools. If this method does not succeed, we need to
use a proof assistant to prove the difficult goals.

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 11

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

7 Related work

Our work concerns the formal verification of the square root function used for
embedded automotive applications and using fixed-point numbers. Embed-
ded software generally needs to be optimized because of the limited power of
the micro-controllers. We used deductive proof engines (Frama-C and GNAT-
prove) that create verification obligations discharged mostly automatically by
SMT solvers. For our application, we only need to calculate square root for
a predefined interval and the precision of our lookup table is enough to sat-
isfy the requirements. We could use other methods such as Newton method
but it would be more resources consuming. To the best of our knowledge,
a linearly-interpolated fixed-point square root algorithm has not been the
subject of formal verification work. In this section, we give a survey on some
related work about the correctness proof of square root algorithms for ma-
chine representation and for standard mathematical functions in general.

The problem of the specification and validation of standard functions is
also discussed in [17]. Even if a standard for representing floating-point num-
bers has been defined (IEEE 754), this standard does not provide require-
ments for the specification of standard functions. This paper is a systematic
presentation of ideas from other studies about the formal specification and
testing of standard mathematical functions. The author does not use auto-
matic proof assistance.

We think that the first floating-point algorithms verifications were mo-
tivated by some hardware bugs such as the Pentium FDIV bug discovered
in 1994. For example, in 1998 Russinoff used the ACL2 theorem prover to
verify the square root algorithm in the K7 microprocessor [24]. Later, in 1999
he also verified the square root microcode of the K5 microprocessor [23]. In
2000, researchers from Intel Corporation verified the square root algorithm
used in an Intel processor with the Forte system that combines symbolic
trajectory evaluation and theorem proving [1]. In 2002, IBM presented a
research paper about the formal verification of the IBM Power4 processor
that uses Chebyshev polynomials to calculate square root [25]. The team
used the ACL2 theorem prover to mechanically verify the square root algo-
rithm. In 2002, Bertot et al. verified the divide-and-conquer part of GMP’s
square root using the Coq proof assistant [6]. In 2003, Harrison published
his work about a square root algorithm verification using HOL Light [14].
This particular algorithm used for floating-point numbers was provided by
Intel for a new 64-bit architecture called Itanium to replace some less effi-
cient generic libraries. The main benefits of using theorem proving for the
verification of this algorithm were reliability and re-usability. Actually, its
proof involved Diophantine equations that were very tedious and error-prone

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 12

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

to do by hand. The author argues that all the proof process should be done
in the same tool – the proof assistant – because it uses a strict logical de-
duction process. In 2011, Shelekhov proposed a specification and verification
of square root using PVS [26]. The paper concludes that synthesis of pro-
grams of the standard functions such as floor, isqrt, and ilog2 is found to
be less tedious than the deductive verification of these programs. In 2016,
Oracle presented a research work about the formal verification of a square
root implementation [21]. They used ACL2 and interval arithmetic to verify
the low-level Verilog descriptions of the floating-point division and square
root implementations in the SPARC ISA, and discovered new optimizations
(lookup table reductions) while doing so. In 2018, Intel Corporation pre-
sented a research paper about the proof of correctness of square root using a
digit serial method (DSM) and a theorem prover (HOL-Light) [12]. A DSM
is an algorithm that determines the digits of a real number serially, starting
with the leading digit. In 2019, Melquiond et al. presented a paper about
the formal verification of the GMP library’s algorithm for calculating the
square root of a 64-bit integer using Why3 [19]. This algorithm can be seen
as a fixed-point arithmetic algorithm that implements Newton method. The
authors used the WhyML modeling language to implement GMP’s algorithm
together with its specification and then the Why3 tool to prove its correct-
ness automatically. The resulting proved WhyML model was then extracted
to correct-by-construction C code, which was binary compatible to the one
from GMP. The authors reported that this work took a few days. They also
used ghost code in WhyML to simplify the verification conditions.

The studies about standard mathematical functions and in particular
square root specification and validation cited above are all platform-dependent.
A new approach proposed by Shilov et al. consisted in a platform-independent
verification of standard mathematical functions. In [28], this approach was
applied to the square root function and combines a manual (pen-and-paper)
verification of a base case that proves the algorithm’s correctness with real
numbers to provide a proof-outline for the verification of the algorithm for
machine numbers. The function implements Newton method and uses a
lookup table for initial approximations. The specification is done in terms
of total correctness assertions with use of precise arithmetic and the mathe-
matical square root and the verification is done in Floyd-Hoare style. A proof
of correctness of the algorithm is given for a fixed-point arithmetic and for a
floating-point arithmetic. The primary purpose of the paper is to make ex-
plicit the properties of the machine arithmetic that are sufficient to perform
the verification presented in the paper. Computer-aided implementation and
validation of the proof using ACL2 was partially done, the complete ACL2
implementation was left for future studies.

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 13

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

8 Conclusions

In this paper, we have presented our experiments with automatic deductive
proof of correctness of a discrete-valued function calculating a square root by
interpolation. We used Frama-C WP and GNATprove to prove the correct-
ness of the function, but we encountered some difficulties with the nonlinear
formula of the linear interpolation. Three non-standard approaches worked
well for us: the use of bit-vectors in SPARK, the direct SMT-LIB quantifier-
free output of Frama-C and the static analysis with Astrée. Bit-vectors are
well supported in most modern SMT solvers and are well suited for prob-
lems that involve modular arithmetic, but scaling is sometimes difficult. For
our use case, SMT requests without quantifiers performed and scaled better
because there was no need for bit-vectors. Abstract Interpretation analysis
gave more confidence in proving that there was no overflow in the linear in-
terpolation calculus. We have proposed a methodology to use a combination
of these different methods until the proof is done. We also show that using
industrial use cases with off-the-shelf tools does not always scale, but if we
work with researchers, we can find a solution and improve the tools.

Using deductive methods is very promising in an industrial context for
safety-critical applications. It can replace unit tests as shown in [20] and thus
decrease cost while increasing quality. It is also an intellectual activity that
brings more satisfaction for engineers compared to testing.

References
[1] Aagaard, M. D., Jones, R. B., Kaivola, R., Kohatsu, K. R., Seger, C.-J. H.:

Formal verification of iterative algorithms in microprocessors. Proceedings De-
sign Automation Conference (DAC 2000), pp. 201–206, (2000)

[2] Abrial, J.R.: The B-book: assigning programs to meanings (1996)

[3] Barnett, M., Leino, K.R.M.: Weakest-precondition of Unstructured Programs.
SIGSOFT Softw. Eng. Notes 31(1), 82–87 (2005)

[4] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.)
(CAV’11). LNCS, vol. 6806, 171–177. Springer (2011)

[5] Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D.,
Dutertre, B., Fontaine, P., Ganesh, V., Griggio, A., Grundy, J., Jackson, P.,
Oliveras, A., Krstić, S., Moskal, M., Moura, L.D., Sebastiani, R., Cok, T.D.,
Hoenicke, J.: The SMT-LIB Standard: Version 2.0. Tech. rep. (2010)

[6] Bertot, Y., Magaud, N., Zimmermann, P.: A Proof of GMP Square Root.
Journal of Automated Reasoning, vol. 29, no. 3–4, pp. 225–252, (2002)

[7] Chapman, R.: Industrial Experience with SPARK. Ada Letters XX(4) (2000)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 14

https://www.mais-journal.ru/jour/article/view/1274

Proving properties of Discrete-Valued Functions using Deductive Proof

[8] Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In:
SMT Workshop: International Workshop on SMT. Oxford, United Kingdom
(2018)

[9] De Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

[10] Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. ACM 18(8), 453–457 (1975)

[11] Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Veri-
fication. 737–744. Springer, Cham (2014)

[12] Ferguson, W. E. et al.: Digit Serial Methods with Applications to Division and
Square Root, IEEE Transactions on Computers, vol. 67, no. 3, p. 449?-456,
(2018)

[13] Flanagan, C., Flanagan, C., Saxe, J.B.: Avoiding Exponential Explosion:
Generating Compact Verification Conditions. SIGPLAN Not. 36(3), 193–205
(2001)

[14] Harrison, J.: Formal Verification of Square Root Algorithms. Formal Methods
in System Design 22(2), p. 143–153, (2003)

[15] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming (1969)
[16] Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-

C: A software analysis perspective. Formal Aspects of Computing 27(3) (2015)
[17] Kuliamin V.V.: Standardization and testing of implementations of mathemati-

cal functions in floating point numbers. Programming and Computer Software
33(3), pp.154–173, (2007)

[18] Mauborgne, L.: Astrée: Verification of Absence of Runtime Error. In: Jacquart,
R. (ed.) Building the Information Society: IFIP 18th World Computer
Congress Topical Sessions 22–27, Toulouse, France, pp. 385–392. Springer
(2004)

[19] Melquiond, G., R. Rieu-Helft: Formal Verification of a State-of-the-Art Integer
Square Root. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH),
Kyoto, Japan, 2019, pp. 183–186

[20] Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or For-
mal Verification: DO-178C Alternatives and Industrial Experience. IEEE Soft.
30(3) (2013)

[21] Rager, D.L., Ebergen, J., Nadezhin, D., Lee, A., Chau, C.K., Selfridge, B.:
Formal verification of division and square root implementations, an Oracle
report. 16th Conference on Formal Methods in Computer-Aided Design, pp.
149–152, (2016)

[22] Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J.,
Schoen, D.: Applying Formal Proof Techniques to Avionics Software: A Prag-
matic Approach. In: Proceedings of the Wold Congress on Formal Methods in
the Development of Computing Systems. Springer-Verlag, London (1999)

[23] Russinoff, D. M.: A Mechanically Checked Proof of Correctness of the AMD
K5 Floating Point Square Root Microcode. Formal Methods in System Design
14(1), pp.75–125, (1999)

[24] Russinoff, D. M.: A Mechanically Checked Proof of IEEE Compliance of the
Floating Point Multiplication, Division, and Square Root Algorithm of the
AMDK7 Processor. J. Comput. Math. (UK), 1, (1998)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 15

https://www.mais-journal.ru/jour/article/view/1274

V. Todorov, S. Taha, F. Boulanger

[25] Sawada J., Gamboa R.: Mechanical Verification of a Square Root Algorithm
Using Taylor’s Theorem. Lecture Notes in Computer Science. Vol. 2517. pp.
274–291, (2002)

[26] Shelekhov, V. I.: Verification and synthesis of addition programs under the
rules of correctness of statements. Automatic Control and Computer Sciences,
vol. 45, no. 7, pp. 421–427, (2011)

[27] Shilov, N.V., Anureev, I.S., Bodin, E.V.: Generation of correctness conditions
for imperative programs. Programming and Computer Software 34(6), 307–
321 (2008)

[28] Shilov, N.V., Kondratyev, D.A., Anureev, I.S., Bodin, E.V., Promsky, A.V.:
Platform-independent Specification and Verification of the Standard Mathe-
matical Square Root Function. Modeling and Analysis of Information Systems
25(6): 637-666, in Russian, (2018)

[29] Todorov, V., Boulanger, F., Taha, S.: Formal Verification of Automotive Em-
bedded Software. In: Proceedings of the 6th Conference on Formal Methods in
Software Engineering. pp. 84–87. FormaliSE’18, ACM, New York, USA (2018)

Modeling and Analysis of Information Systems. Vol. 26, No 4 (2019) 16

https://www.mais-journal.ru/jour/article/view/1274

	Introduction and Motivation
	Deductive methods
	Preliminaries
	Tools for deductive reasoning
	Atelier B
	Caveat and Frama-C WP
	GNATprove

	Environment
	Experiment
	Results
	From Frama-C to the SMT solver
	The difficult goal
	Direct proof with SMT-LIB
	Experience with the Why3 SMT output files
	Abstract interpretation

	Methodology
	Related work
	Conclusions
	References

