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Comments on «Automatic Target Detection for Sparse Hyperspectral Images [1]» by

In this technical report, we explain how our proposed sparse and low-rank matrix decomposition method for hyperspectral target detection, provided in our work «Automatic Target Detection for Sparse Hyperspectral Images [1]», can be extended to the l q norm (0 < q ≤ 1). Since the use of the l 1 norm is still too far away from the ideal l 0 norm, many non-convex regularizers, interpolated between the l 0 norm and the l 1 norm, have been proposed to better approximate the l 0 norm.

Main Notations

Throughout this report, we depict vectors in lowercase boldface letters and matrices in uppercase boldface letters. The notation (.) T and Tr(.) stand for the transpose and trace of a matrix, respectively. In addition, rank(.) is for the rank of a matrix. A variety of norms on matrices will be used. For instance, M is a matrix, and [M] :,j is the jth column. The matrix l 2,0 and l 2,q (0 < q ≤ 1) norms are defined by M 2,0 = # j : [M] :,j 2 = 0 , and M 2,q = j [M] :,j q 2

(1/q)

, respectively.

The Frobenius norm and the nuclear norm (the sum of singular values of a matrix) are denoted by M F and M * = Tr M T M

(1/2)

, respectively.

Main contribution

Consider the following minimization problem: min

L,C τ rank (L) + λ C 2,0 + D -L -(A t C) T 2 F , (1) 
where D, L, We relax the rank term and the l 2,0 norm to their convex proxies [START_REF] Bitar | Automatic Target Detection for Sparse Hyperspectral Images[END_REF][START_REF] Bitar | Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection[END_REF][START_REF] Bitar | Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery[END_REF][START_REF] Bitar | Simultaneous sparsity-based binary hypothesis model for real hyperspectral target detection[END_REF][START_REF] Bitar | Sparsity-Based cholesky factorization and its application to hyperspectral anomaly detection[END_REF]. More precisely, we use the nuclear norm ||L|| * as a surrogate for the rank(L) term, and the l 2,1 norm C 2,1 as a surrogate for the l 2,0 norm C 2,0 .

(A t C) T ∈ R e×p , A t ∈ R p×Nt , C ∈ R Nt×e ,
min

L,C τ L * + λ C 2,1 + D -L -(A t C) T 2 F . ( 2 
)
Problem ( 2) can be re-written as min

L,C    τ min(e, p) i=1 σ i (L) + λ e j=1 [C] :,j 2 + D -L -(A t C) T 2 F    , (3) 
where

{σ i } min(e, p) i=1
are the singular values of L.

Extension to the l q norm (0 < q ≤ 1)

We replace the nuclear norm and the l 2,1 norm by their q -norm proxies in Eq. ( 2), with 0 < q ≤ 1. More precisely [START_REF] Wang | Visual data denoising with a unified Schatten-p norm and l q norm regularized principal component pursuit[END_REF][START_REF] Canyi | Proximal Iteratively Reweighted Algorithm with Multiple Splitting for Nonconvex Sparsity Optimization[END_REF][START_REF] Canyi | Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm[END_REF] min

L,C    τ min(e, p) i=1 (σ i (L) + ) q + λ e j=1 [C] :,j q 2 + D -L -(A t C) T 2 F    , ( 4 
)
where 0 < 1 . Problem (4) is recasted into two sub-problems, and thus, at each iteration k we have

min L    L -D -A t C (k-1) T 2 F + τ min(e, p) i=1 (σ i (L) + ) q    , ( 5a 
) min C    D -L (k) T -A t C 2 F + λ e j=1 [C] :,j q 2    . ( 5b 
)
1.1 Providing an optimal solution to sub-problem (5a)

For ease of notation, we consider the matrix The function f (g i (L)) is concave, and thus, -f (g i (L)) is convex. According to the definition of the subgradient of a convex function, we can write [START_REF] Wang | Visual data denoising with a unified Schatten-p norm and l q norm regularized principal component pursuit[END_REF][START_REF] Canyi | Proximal Iteratively Reweighted Algorithm with Multiple Splitting for Nonconvex Sparsity Optimization[END_REF][START_REF] Canyi | Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm[END_REF] -

E (k-1) = A t C (k-1) T . Let us suppose g i (L) = σ i (L) + , f (g i (L)) = (σ i (L) + ) q , and h (l m,j ) = l m,j -d m,j -e (k-1) m,j
f (g i (L)) ≥ -f g i L (k-1) + -w (k-1) i , g i (L) -g i L (k-1)
, [START_REF] Wang | Visual data denoising with a unified Schatten-p norm and l q norm regularized principal component pursuit[END_REF] with -w

(k-1) i = ∂ -f g i L (k-1)
or w

(k-1) i = -∂ -f g i L (k-1)
. We can re-write Eq. ( 6) as

f (g i (L)) ≤ f g i L (k-1) + w (k-1) i , g i (L) -g i L (k-1) . ( 7 
)
The loss function h (l m,j ) has a Lipshitz continous gradient, and thus, we can surrogate it as

h (l m,j ) ≤ h l (k-1) m,j + ∇h l (k-1) m,j , l m,j -l (k-1) m,j + µ 2 l m,j -l (k-1) m,j 2 , ( 8 
)
with µ > 0. By combining Eqs. ( 7) and ( 8), the sub-problem (5a) is approximated as

min L    τ min(e, p) i=1 σ i L (k-1) + q + w (k-1) i , σ i (L) -σ i L (k-1) + p m=1 e j=1 h l (k-1) m,j + ∇h l (k-1) m,j , l m,j -l (k-1) m,j + µ 2 l m,j -l (k-1) m,j 2    , =⇒ min L    τ min(e, p) i=1 w (k-1) i , σ i (L) + µ 2 p m=1 e j=1 l m,j -l (k-1) m,j - 1 µ ∇h l (k-1) m,j 2    , =⇒ min L    τ min(e, p) i=1 w (k-1) i , σ i (L) + µ 2 p m=1 e j=1 l m,j -l (k-1) m,j - 2 µ l (k-1) m,j -d m,j -e (k-1) m,j 2    , =⇒ min L    τ min(e, p) i=1 w (k-1) i , σ i (L) + µ 2 L -L (k-1) - 2 µ L (k-1) -D -E (k-1) 2 F    , (9) 
with w

(k-1) i = -∂ -σ i L (k-1) + q = q σ i L (k-1) + q-1 = q (σi(L (k-1) )+ ) 1-q .
Let us consider that

X (k-1) = L (k-1) -2 µ L (k-1) -D -E (k-1) . Given X (k-1) ∈ R e×p , 0 ≤ w (k-1) 1 ≤ • • • ≤ w (k-1)
min(e, p) , and according to Theorem 2.3 in [START_REF] Chen | Reduced rank regression via adaptive nuclear norm penalization[END_REF], the global optimal "unique" solution (if X (k-1) has a unique singular value decomposition (SVD)) to the above optimization problem ( 9) is given by the adaptive SVD soft-thresholding operator

L (k) = S τ w (k-1) µ (X (k-1) ) = U (k-1) S τ w (k-1) µ Σ (k-1) V (k-1)T
with X (k-1) = U (k-1) Σ (k-1) V (k-1)T , and

S τ w (k-1) µ Σ (k-1) = Diag σ i X (k-1) - τ w (k-1) i µ + , i ∈ [1, min(e, p)] .
Proof. Let g = {g i } min(e, p) i=1

= σ(L). According to Theorem 2.3 in [START_REF] Chen | Reduced rank regression via adaptive nuclear norm penalization[END_REF], the optimization problem ( 9) can be equivalently written as

min g: g 1 ≥•••≥g min(e, p) ≥0      min L∈R e×p σ(L)=g µ 2 L -X (k-1) 2 F + τ min(e, p) i=1 w (k-1) i g i      . ( 10 
)
For the inner minimization, we have the inequality

µ 2 L -X (k-1) 2 F = µ 2 Tr L -X (k-1) L -X (k-1) T = µ 2 Tr LL T -LX (k-1)T -X (k-1) L T + X (k-1) X (k-1)T = µ 2 Tr LL T + µ 2 Tr X (k-1) X (k-1)T -µ Tr X (k-1) L T = µ 2
min(e ,p) i=1 1) .

g 2 i + µ 2 min(e, p) i=1 σ 2 i X (k-1) -µ Tr X (k-1) L T ≥ µ 2 min(e, p) i=1 g 2 i + µ 2 min(e, p) i=1 σ 2 i X (k-1) -µ min(e, p) i=1 g i σ i X (k-
The optimization problem ( 10) is re-written as min g:

g 1 ≥•••≥g min(e, p) ≥0 min(e, p) i=1 µ 2 g 2 i + µ 2 σ 2 i X (k-1) -µ g i σ i X (k-1) + τ w (k-1) i g i , min g: g 1 ≥•••≥g min(e, p) ≥0 min(e, p) i=1 µ 2 g 2 i + -µ σ i X (k-1) + τ w (k-1) i g i + µ 2 σ 2 i X (k-1) . ( 11 
)
By computing the derivative w.r.t. g i and setting it to zero, we have

µ g i -µ σ i X (k-1) + τ w (k-1) i = 0 ,
and thus, the optimal solution to Eq. ( 11) is given by

g i =   σ i X (k-1) - τ w (k-1) i µ   + .
Hence, the global optimal unique solution to the optimization problem ( 9) is given by L

(k) = U (k-1) Diag σ X (k-1) -τ w (k-1)
µ + V (k-1)T , and which concludes the proof.

Providing an optimal solution to sub-problem (5b)

Eq. (5b) can be solved by various methods, among which we adopt the alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF]. More precisely, we introduce an auxiliary variable F into sub-problem (5b) and recast it into the following form

C (k) , F (k) = argmin s.t. C=F    D -L (k) T -A t C 2 F + λ e j=1
[F] :,j

q 2    . ( 12 
)
Problem ( 12) is then solved as

C (k) = argmin C D -L (k) T -A t C 2 F + ρ (k-1) 2 C -F (k-1) + 1 ρ (k-1) Z (k-1) 2 F , (13a) F (k) = argmin F    λ e j=1 [F] :,j q 2 + ρ (k-1) 2 C (k) -F + 1 ρ (k-1) Z (k-1) 2 F    , (13b) 
Z (k) = Z (k-1) + ρ (k-1) C (k) -F (k) . ( 13c 
)
where Z ∈ R Nt×e is the Lagrangian multiplier matrix, and ρ is a positive scalar.

Solving sub-problem (13a)

-2 A T t D -L (k) T -A t C + ρ (k-1) C -F (k-1) + 1 ρ (k-1) Z (k-1) = 0 , ⇒ 2 A T t A t + ρ (k-1) I C = ρ (k-1) F (k-1) -Z (k-1) + 2 A T t D -L (k) T .
This implies:

C (k) = 2 A T t A t + ρ (k-1) I -1 ρ (k-1) F (k-1) -Z (k-1) + 2 A T t D -L (k) T

Solving sub-problem (13b)

According to Lemma 3.3 in [START_REF] Yang | A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration[END_REF] and Lemma 4.1 in [START_REF] Liu | Robust Recovery of Subspace Structures by Low-Rank Representation[END_REF], problem (13b) admits the following closed-form solution:

[F] (k) :,j = max [C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j 2-q 2 -λ q ρ (k-1) , 0    [C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j [C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j 2-q 2   
Proof. At the jth column, sub-problem (13b) refers to

[F] (k) :,j = argmin

[F] :,j    λ [F] :,j q 2 + ρ (k-1) 2 [C] (k) :,j -[F] :,j + 1 ρ (k-1) [Z] (k-1) :,j 2 2    .
By finding the derivative w.r.t [F] :,j and setting it to zero, we obtain

-ρ (k-1) [C] (k) :,j -[F] :,j + 1 ρ (k-1) [Z] (k-1) :,j + λ ∂ [F] :,j q 2 ∂ [F] :,j = 0 ⇒ [C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j = [F] :,j + λ ∂ [F] :,j q 2 ρ (k-1) ∂ [F] :,j . ( 14 
) Let [F] :,j = [f 1,j , • • • , f Nt,j ] T ∈ R Nt . We have ∂ ∂f t,j [F] :,j q 2 = ∂ ∂f t,j   Nt s=1 |f s,j | 2 1/2   q = ∂ ∂f t,j Nt s=1 |f s,j | 2 q/2 = q 2 Nt s=1 |f s,j | 2 q-2 2 × ∂ ∂f t,j Nt s=1 |f s,j | 2 = q 2   Nt s=1 |f s,j | 2 1/2   q-2 × Nt s=1 2|f s,j | × ∂ ∂f t,j |f s,j | = q [F] :,j q-2 2 × Nt s=1 |f s,j | δ s,t f s,j |f s,j | = q [F] :,j q-2 2 × f t,j = f t,j q [F] :,j 2-q 2 , t ∈ [1, N t ] . This implies ∂ ∂[F] :,j [F] :,j q 2 = [F] :,j q [F] :,j 2-q 2 
. Hence, Eq. ( 14) is re-written as

[C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j = [F] :,j + λ [F] :,j q ρ (k-1) [F] :,j 2-q 2 . ( 15 
)
By computing the . 2-q 2 norm of (15), we obtain (18)

[C] (k) :,j + 1 ρ (k-1) [Z] (k-1) :,j 2-q 2 = [F] :,j 2-q 2 + λ q ρ (k-1) . ( 16 
By replacing [F] :,j 2-q 2 from Eq. ( 16) into Eq. (18), and [F] :,j [F] :,j 2-q 2 from Eq. (17) into Eq. ( 18), we conclude the proof.

Some Initializations and Convergence Criterion

We initialize L (0) = 0, F (0) = C (0) = Z (0) = 0, ρ (0) = 10 -4 and update ρ (k) = 1.1 ρ (k-1) . The criteria for convergence of sub-problem (5b) is C (k) -F (k) 2 F ≤ 10 -6 . For Problem (4), we stop the iteration when the following convergence criterion is satisfied:

L (k) -L (k-1) F D F ≤ and 
A t C (k) T -A t C (k-1) T F D F ≤ ,
where > 0 is a precision tolerance parameter.

  τ controls the rank of L, and λ the sparsity level in C.

2 ,

 2 with i ∈ [1, min(e, p)], j ∈ [1, e], and m ∈ [1, p].

  (k) :,j + 1 ρ (k-1) [Z] (k-1)