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Summary

In this technical report, we explain how our proposed sparse and low-rank matrix
decomposition method for hyperspectral target detection, provided in our work
«Automatic Target Detection for Sparse Hyperspectral Images [1]», can be extended
to the I, norm (0 < ¢ < 1). Since the use of the [; norm is still too far away from
the ideal lg norm, many non-convex regularizers, interpolated between the [ norm
and the /1 norm, have been proposed to better approximate the [y norm.
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Main Notations

Throughout this report, we depict vectors in lowercase boldface letters and matrices
in uppercase boldface letters. The notation (.)7 and Tr(.) stand for the transpose
and trace of a matrix, respectively. In addition, rank(.) is for the rank of a matrix.
A variety of norms on matrices will be used. For instance, M is a matrix, and

[M]. ; is the jth column. The matrix ly o and la 4 (0 < ¢ < 1) norms are defined by
(1/q)

. q .
IMlyo = #{5 : [V, # 0}, and M],, = (z, |V, [2) , vespectively.
j
The Frobenius norm and the nuclear norm (the sum of singular values of a matrix)

7an) (172 :
are denoted by |[M|| and M|, = Tr (M M) , respectively.



1 Main contribution

Consider the following minimization problem:
2
min {Trank (L) + A Il + [D - L - (AtC)THF} , (1)

where D, L, (AtC)T € RP A, € RPNt C € RMX¢ 1 controls the rank of L, and )
the sparsity level in C.

We relax the rank term and the Iy norm to their convex proxies [II, 2, B, 4, [5]. More

precisely, we use the nuclear norm ||L||, as a surrogate for the rank(L) term, and the ls;
norm [|Cl|,, as a surrogate for the lyo norm [|C|l, .

win {7 LIl + A [Cllo, + [P - L - (AC) [} . (2)

Problem can be re-written as

min(e, p) e 9
wmin { > o (L) +A Y [CLyll,+ |D-L- <Atc>THF} , (3)
’ i=1 =1
where {o;}™?) are the singular values of L.

Extension to the [, norm (0 < ¢ <1)

We replace the nuclear norm and the ly; norm by their ¢ - norm proxies in Eq. (2)), with
0 < ¢ < 1. More precisely [6l, [7, §]

min(e, p) e 2
min { > <ai<L>+e>q+AZH[CJ:JH%HD—L—<AtC>THF}a 4
' i=1 Jj=1

where 0 < € < 1. Problem is recasted into two sub-problems, and thus, at each

iteration k& we have
+r Y (o (L)+6)q} ; (5a)

min {HL _ (D . (Atc<k—1>)T> ) >

g {H(D—L““’)T A

2 min(e, p)

F j=1

+A DT 13 } (5b)

1.1 Providing an optimal solution to sub-problem

T
For ease of notation, we consider the matrix E¢-D = (At C(k_l)) . Let us suppose

6:(L) = oi (L) + ¢, [(g(L) = (03 (L) + )%, and h(ly) = (g — (dony — €li;")),
with i € [1, min(e, p)], 7 € [1, €], and m € [1, p].



The function f (g; (L)) is concave, and thus, —f (g; (L)) is convex. According to the
definition of the subgradient of a convex function, we can write [6], [7], §]

— g (L) = —f (g (LED)) + (™Y, gs (L) — g (LE) ) (6)

with —wgkfl) =0 (—f (gi (L(k_l))» or wz(k*l) = -0 (—f (gi (L(k_l)»).
We can re-write Eq. (] as

fla(L) < f (gi (L(k_l))) + <w£k_1)7 9i (L) — gi (L(k_1)> > . (7)

The loss function & (l,, ;) has a Lipshitz continous gradient, and thus, we can surrogate
it as

B L) < B (I9550) 4 (VR (1550) Ly — 1550 ) + % (L — zfj;;”f : (8)

with © > 0. By combining Egs. and , the sub-problem is approximated as
min(e, p)
Him {7’ > [(O’i (L(kfl)) + e)q + <w§k71), o; (L) — o; (L(kfl)) >}

i=1
857 4 () a5+ a5

D5

m=1j=1




Let us consider that X*~1) = L(:-1 — % (L(kfl) — (D — E(kfl))). Given X*=1) ¢ Rexp,
)<t < < ulld)
“unique” solution (if X*~1 has a unique singular value decomposition (SVD)) to the
above optimization problem @D is given by the adaptive SVD soft-thresholding operator

<L<k) =8, oy (XED) = UE-DS ooy (2<’€—1>) V<'f—1>T>

m

)» and according to Theorem 2.3 in [9], the global optimal

with X(=1) = k-1 k-1 yvk-DT apq
FwE—1) . .
SL}’E—” (E(k‘—l)) Dlag{( (XUC 1)) “)+ , 1 € [1, min(e, p)]}

Proof. Let g = {gz}mm “?) — g(L). According to Theorem 2.3 in [9], the optimization
problem @D can be equlvalently written as

min(e, p)

. : Hole (k—1)2} -1 .
oo L%ﬁp{z\@ XEV[ e Yl e (o)
o(L)=g

For the inner minimization, we have the inequality
H HL X (b~ 1)H M Tr {(L _ X(k—l)) (L _ X(k—l))T}

= gTr [LL” — LX*-7 - XG-DL7 4 XE-DK0-D7]

=Cm (L) + St (X(’“ DX®-UT) — Ty (X-DLT)
min(e ,p) min(e,
=< Zle g9 + g ; o (XBD) — p Tr (XE-DLT)
> mi§p) g+ 5 Z(: "ot (X*Y) = u mi§p) gioi (X*D) .
=1 =1 =1

min
g: ng"'zgmin(e, p) >0

<ggf + 5o (XO) = pgioy (XE) 7w gi) :

min
g: ng"'ZQmin(e, p) 20

z:lp < [ foi (X(k_l)) +Tw(k 1)] gi + g ?(X(k_l))) '

(11)

By computing the derivative w.r.t. g; and setting it to zero, we have
HGi — L0 (X(k_1)> +rw* =0,

and thus, the optimal solution to Eq. is given by

(k=1)

. ( (xw—w)fwi) |
K +



Hence, the global optimal unique solution to the optimization problem @D is given
by L® = U*-1 Diag ({(a’ (X0 — Wi’j%}) VDT and which concludes the

proof.
[ |

1.2 Providing an optimal solution to sub-problem

can be solved by various methods, among which we adopt the alternating
direction method of multipliers (ADMM) [10]. More precisely, we introduce an auxiliary
variable F into sub-problem and recast it into the following form

(C(k),F(k)) = argmln {H D L* ) —A,C

s.t. C=F

e ilnmz,jng} o

Problem is then solved as

T 2 pk-D) 2
C® = argmin H (D - L(k)) -AC| + HC —Fkl yAGS)) , (13a)
¢ F plk=D) F
k - plk—) k 1 )
Fk) — arg;ﬂnin A CIFEL N8 + 5 HC( ) _F + pG=y 7,(k=1) : (13b)
=1 F
Z®) = zk-1) 4 pk=1) (C(k) _ F(’f)) ) (13c)

where Z € RV*¢ is the Lagrangian multiplier matrix, and p is a positive scalar.

1.2.1 Solving sub-problem (|13a)

1
—2AT ((D—L(k))T—AtC)+pk D (c L (= )z<k—1>> -0,
p
T (k—1) _(k=1) (k—1) (k—1) T N\ T
= (2A7 A+ p* 1) € = p*-VFRD — 20D L 9 AT (D - LW)

This implies:

Gﬂk (2A7 A, +p01) (p(k_l) F-D — 70 4 9 AT (D - LUf))TD

1.2.2 Solving sub-problem ((13b))

According to Lemma 3.3 in [11] and Lemma 4.1 in [12], problem ({13b)) admits the following
closed-form solution:

B = max ([0 + ks (2157

AP > [01“% i 2157V

2 gpD? Z] (k—1)H2*f1
p(k 1) nJ 2




Proof. At the jth column, sub-problem (13b)) refers to

—-1) 1 B 2
FIY) = g { [ H[c]g? - [Pl + e (217 } |
By finding the derivative w.r.t [F].; and setting it to zero, we obtain
1 A9 ([, )
_ (k=1) (k) _ L k-1
(1018 =191, + e 1)+ S 0
1 20 ([F1,,[,)
(k) (k=1) _ B llo
= [C]:,j + p(k—l) [Z]:,j = [F]:,j + W . (14)

Let [F ] = [fij, -, th,j]T € R™. We have

5 1/2\ 4

Oft; H[F]:’jH2 Ofs (<;|fSJ|2> )
a/2

— o (Szlusm)

q—2

q (& A 2
H(S0R) g (S

q 21,

5 ((Z‘fle) ) X Z <2|fs,j‘ X 8f J‘fw’)

—q ), zuwwst fw = q |1, x £
I (7 s tEL N
7 1.,
. : q [Fl. ;
This implies a[FL]:J_ H[F]]H2 W Hence, Eq. (14) is re-written as
1 _ A [F].
c|® + z)* Y = [F). .+ . . 15
0 + e VS =L e "
By computing the ||.|2  norm of (T3], we obtain
2—q
(k) k-v| " _ = A
& 28] = (16)
From Eqgs. and , we have
1 _
€l + pl—D) 215" [F]., (17)
k 1 k— e F,»ziq‘
H[C]:(,j) gy [Z)" , L1,




Counsider that

- [F].;
[Fl.y = ]l % ot (18)
R W
F].;
By replacing H[F]:J-Hg_q from Eq. into Eq. (18), and H[F[‘]]"’gq from Eq. into
sill2
Eq. (18)), we conclude the proof. [ |

1.3 Some Initializations and Convergence Criterion

We initialize L = 0, F(© = C® = Z©® = 0, p(® = 107* and update p*) = 1.1 pk-1.
2

The criteria for convergence of sub-problem ([5b)) is HC(’“) — F(k)HF <1076,

For Problem , we stop the iteration when the following convergence criterion is
satisfied:

T T
HL(k) _ L(kfl)H H(At C(’“)) _ (At C(k—1))
o, - ™ T £,

where € > (0 is a precision tolerance parameter.
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