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Multi-Head Attention for Joint Multi-Modal Vehicle Motion Forecasting

Jean Mercat1,2, Thomas Gilles1,3, Nicole El Zoghby1,
Guillaume Sandou2, Dominique Beauvois2, and Guillermo Pita Gil1

Abstract— This paper presents a novel vehicle motion fore-
casting method based on multi-head attention. It produces
joint forecasts for all vehicles on a road scene as sequences of
multi-modal probability density functions of their positions. Its
architecture uses multi-head attention to account for complete
interactions between all vehicles, and long short-term memory
layers for encoding and forecasting. It relies solely on vehicle
position tracks, does not need maneuver definitions, and does
not represent the scene with a spatial grid. This allows it to
be more versatile than similar model while combining many
forecasting capabilities, namely joint forecast with interactions,
uncertainty estimation, and multi-modality. The resulting pre-
diction likelihood outperforms state-of-the-art models on the
same dataset.

I. INTRODUCTION
Automation of driving tasks aims for safety and com-

fort improvements. For that purpose, Autonomous Driving
(AD) systems rely on the anticipation of the traffic scene
movements. Consequently, motion forecasting is used in AD
algorithms such as path planning and target selection. The
main obstacle in this task is the human driver behavior
that can neither be modeled nor predicted perfectly. It is
especially challenging in negotiating situations with many
participants where drivers interactivity plays a determinant
role. A technical challenge is to find a representation of the
road scene that allows forecasting algorithms to account for
interactions within a variable number of observed vehicles.
It should do so with an unevenly distributed observation
accuracy of a wide partially occluded surrounding area. With
the closely related topic of pedestrian motion forecasting, the
observation is not embedded in an element of the scene and
thus does not suffer from occlusions and uneven accuracy.
Two other important aspects are specific to vehicles and
should be considered: the importance of the road network
structure and of reaction time due to inertia. This requires
the understanding of the road network structure and longer
time and distance anticipation.

The unknown driver decisions and the perceptions inac-
curacies makes forecasting uncertainties unavoidable. In that
context, another objective is to control the uncertainties of
the motion forecasts. We classify the uncertainties in two

*This work was made in collaboration with L2S and Renault SAS
1 Department of data fusion, Technocentre Re-

nault, 78280 Guyancourt, France {Jean.Mercat,
Thomas.Gilles, Nicole.El-Zoghby,
Guillermo.Pita-Gil}@renault.com

2 Laboratoire des signaux et des systèmes, Centrale-Supélec, 91192
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3 École polytechnique, Route de Saclay, 91128 Palaiseau
Thomas.Gilles@polytechnique.edu

kinds. The first are local maxima of the Probability Density
Function (PDF) of future positions called modes. They stand
for occurrences of choices, for example, a driver chooses a
lane, or the perception system chooses a classification. The
second are deviations around each mode that represent the
continuous uncertainties. They are small errors made at each
step of the process such as perception, estimation, and some
model approximations. When considering multiple modes,
there is a challenging trade-off to find between anticipating
a wide diversity of modes and focusing on realistic ones. To
meet the need for anticipation in AD systems, forecasting
algorithms must control the two kind of uncertainties and
combine that with an interaction aware framework.

II. RELATED WORK

The road scene trajectory forecasting methods have
evolved from kinematic models with Kalman filters [1], to
hand-made human behavior models such as IDM [2] and
MOBIL [3] and currently learned models. They allow longer
forecasting horizons (5s) and handle more complex situations
with uncertainty assessment and greater accuracy.

Learned models for trajectory and maneuver forecast are
compared in the survey [4] with the most widely used models
being Hidden Markov Models and Support Vector Machines.
Since then, recurrent neural networks mostly using the Long
Short-Term Memory [5] (LSTM) architecture have become
the standard technology for statistical trajectory forecasting.
It has been used with the same kind of hand-crafted interac-
tion features than traditional models such as social force [6]
but it failed to generalize to complex situations. This was
overcome with the social pooling mechanism in [7]. It places
features computed with LSTMs on a coarse spatial grid
to allow spatially related sequences to share features. The
subsequent work [8], used as a baseline in our application,
uses convolutional social pooling on a coarse spatial grid.

Spatial grids are representation spaces that are able to
account for a variable number of input vehicle without
ordering. They are used with an attention mechanism along
with Generative Adversarial Networks (GAN) in [9], [10],
and [11]. Generative models such as GANs and Variational
Auto-Encoders (VAE) are able to describe complex distri-
butions. However, they are only able to generate the output
distribution with sampling and do not express the PDF. An
extension of the convolutional social pooling made in [12]
uses non-local multi-head attention over spatial grids to
account for long distance interdependencies. Spatial grid
representations limit the field of view to a predefined fixed
size and the spatial relation precision to the grid cell size.



Moreover, with the exception of occupancy grids, the same
features are stored in the grid cells matching empty space
than grid cells matching unobserved areas. For pedestrian ap-
plications, the limitation of the field of view and unobserved
areas are not a problem because the preception system is a
camera filming a scene from above that already limits the
field of view and that has almost no occluded area. How-
ever, this affects vehicle applications that use an embedded
perception system. Occupancy grids, as used in [13], solve
the occlusion problem but they need fine grids with a lot of
cells to keep enough spatial precision. Because of the high
number of cells, each one can only store a few features.
This only allows simplistic hidden representations of each
vehicle and still requires heavy computations. Considering
these drawbacks, direct agent to agent attention not relying
on spatial grids should be used.

Social attention using a graph representation of vehicles
neighbors is produced in [14]. However it only account
for local interactions among vehicles within a hand-defined
distance threshold. A dot product attention mechanism is
produced in [15]. It is inspired from the attention mecha-
nism first developed in [16] for sentence translation. This
mechanism allows joint forecast of every vehicle in the
observed scenes without spatial limitations. It accounts for
long range interactions within a varying number of vehicles
and does not require the ordering of the vehicles tracks it
takes as input. In [15], this dot product attention is used
within a spatio-temporal graph representation of the scene
developed in [17]. This representation combines spatial and
temporal dependencies that rely on positions, pedestrian
relative positions, and time step translations as features. Each
are embedded with LSTMs before using the dot product
attention for social interactions. This identifies important
relations to neighbors to be considered for interactions
and combines the pedestrian feature representation with the
feature representation of relations. In this work we use
the multi-head extension of this attention mechanism, also
from [16], with a different road scene representation. We
do not rely on spatio-temporal graphs but on a simple tem-
poral embedding followed by social interactions that allows
interactions between more complex feature representations
than only temporal and relative dynamics. We show in the
application section VII that different heads specialize to
different and interpretable interaction patterns. Our network
outputs a mixture of bivariate Gaussians that is more fit to
describe the expected distribution than the simple bivariate
Gaussians from [15] and we show that it produces diversified
multi-modal forecasts.

Multi-modal forecasts are expressed as predictions with
local probability maxima. Mixture Density Networks defined
in [18] are used in [8] that predefines driving maneuvers
as prediction modes. Each maneuver mode is matched with
one Gaussian component of the mixture and a conditional
predictor is trained along with a maneuver classifier. As
shown in [19], the various modes in the trajectory data are
very complex and numerous. Thus, capturing them with a
few predefined maneuvers is not enough. Using Gaussian

mixture does not necessarily produce diversified modes. A
solution to obtain diverse predicted modes without pre-
defining them is proposed in [20]. However, it changes
the optimized objective that no longer maximize the fore-
cast likelihood. In [21], another solution that preserves the
forecast statistics while producing diversified predictions is
proposed. However, both methods rely on VAEs that generate
prediction samples but not the PDF. In [22], a Multiple-
Trajectory Prediction (MTP) loss is used to produce multi-
modal trajectory predictions without the need for sampling.
However, as in [20], this modifies the objective function and
alters the forecast likelihood.
To the best of our knowledge, our added contributions are:

• The use of multi-head attention for trajectory prediction
leading to specialized interactions.

• The Combination of long range attention with joint and
multi-modal forecasts.

• Diversified multi-modal predictions while directly max-
imizing the forecast likelihood leading to a significant
improvement of the forecast likelihood.

III. INPUTS OUTPUTS

The inputs are sequences of all vehicle (x, y) positions
in a road scene. At each time t0, we consider an observation
history with a fixed observation frequency and a fixed
number of observations nhist. The past trajectory is written
{(x, y)k}k=−nhist+1,0. The coordinate system is centered on
the ego vehicle position at t0.

The outputs are npred sequences of Gaussians mix-
tures for each vehicle. It is expressed with a sextuplets
(x̂, ŷ, σx, σy, ρ, p) for each vehicle, at each forecast step
and for each mixture component. It defines a Gaussian
component (N ((x̂, ŷ),Σ), p) with

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
the covariance matrix, and p the mixture weight such that
for nmix components,

∑nmix

m=1 pm = 1.
The forecasting model is a set of functions predθ :

inputs→ outputs. The inputs and outputs sets are defined
with the cartesian products:

inputs ∈
(
R2
)nhist×nveh

outputs ∈
((

R2︸︷︷︸
x̂,ŷ

× R2
+︸︷︷︸

σx,σy

× [−1, 1]︸ ︷︷ ︸
ρ

)nmix

×∆nmix︸ ︷︷ ︸
p

)npred×nveh

∆nmix is the nmix elements simplex:

∆nmix =
{

(p1, . . . , pnmix) ∈ Rnmix

∣∣∣ nmix∑
m=1

pm = 1, pm ≥ 0 ∀m
}

The predθ function set is defined as a neural network with
weights θ. predθ is equi-variant with permutations along the
vehicle axis and it is defined for all numbers of vehicles nveh
and forecast steps npred.



IV. MODEL ARCHITECTURE

This model uses an encoder-decoder structure. It is based
on LSTM networks for encoding and forecasting. We pro-
pose to add two multi-head self-attention layers to this archi-
tecture to account for interactions. The first attention layer is
added after encoding to incorporate current time interactions.
The second attention layer is added after forecasting time
unrolling. This allows the forecast position sequences to
remain coherent with each other.

A. Global architecture
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Fig. 1: Block representation of our forecasting model. In-
puts are the sequence of past observations of each vehicle.
Outputs are the Gaussian mixture forecasts.

The figure 1 breaks the model in four parts: Encoder, Self-
Attention, Predictor, and Decoder. The two self-attention lay-
ers have similar architectures with different weights whereas
the encoder, predictor, and decoder are the same for every
input.

B. Encoder

The encoder acts as a current state estimation for each
vehicle using the past observation sequences. This state is an
intermediary vector of the neural network and is difficult to
interpret. However, since it should encode the current state
with at least the information of position, kinematic state,
and interaction features, it should have a sufficient dimen-
sion, we chose 128. The input (x, y) position sequences
are fed to a one dimensional convolutional layer with a
kernel of size 3 sliding over the time dimension that creates
sequences of 128 features for each vehicle. This first layer
increases the number of features in the vector used for the
following computations. A convolution allows this first layer
to compute derivatives, smoothed values and other kind of
features extracted from positions. Then each feature sequence
is encoded with a Long Short-Term Memory (LSTM) [5] into
a vector of 128 features for each vehicle.

C. Self-attention

The multi-head self-attention layers allow vehicle inter-
actions while keeping independence from their number and
ordering. This mechanism is described in [16] where it is
applied on sentence translation. In this section we explain
its use for vehicle interactions. The computations made by
each attention head is represented on figure 2 and are detailed
below.

Each vehicle should pay attention to specific features from
a selection of the other vehicles. This is made with four steps:
pulling together specific features, identifying these feature
collections, enquiring among identifiers, and gathering the
results. Each head produces a different selection of features
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Fig. 2: Schematic representation of one attention head com-
putations. Blocks Lq , Lv , Lk are matrix multiplications of
the input vectors.

using a linear projection of the input tensor resulting in the
value tensor V . To identify these features, a key tensor K
is associated to each value. Then, each vehicle must select
which other vehicle to pay attention to. For that purpose, a
query Q is produced to find a selection of keys. The match
score between a key and a query is their dot product, it is
scaled with the square root of the key dimension

√
dk and

normalized with a softmax. This produces an attention matrix
that contains coefficients close to 1 for matching queries and
keys and close to 0 otherwise. The attention matrix is square
of size nveh, each coefficient (i, j) is the attention coefficient
of vehicle i on vehicle j. Finally, this matrix is used to gather
the values from V . Thus, the self-attention computation for
each head is written:

output = Softmax
dim=last

(
QKT

√
dk

)
︸ ︷︷ ︸

attention matrix

V (1)

The outputs from all heads are concatenated and combined
with a linear layer. The resulting tensor is then added to the
input as in residual networks.

D. Predictor and decoder

Tensors produced with the self-attention layer are repeated
npred times to be fed as time sequences into a second
LSTM layer called predictor. This produces intermediary
time sequences with some interaction awareness. Within the
feature sequences, vehicle interactions may depend on time.
Thus, we placed a second multi-head self-attention layer
before feeding the output to the decoder.

Feature sequences are decoded with two linear layers
shared for each time step and ReLU activations. Finally, a last
linear layer produces the mixture of Gaussian coefficients.
The output is described in section III. Let oi be the ith

coordinate of the output tensor before the activation function.
To constraint it, the following activation function is applied



on each coordinate at every time steps:

{(x̂, ŷ, σx, σy, ρ, p)}m=1,nmix

= activation({o1, o2, o3, o4, o5, o6}m=1,nmix)

=
{

(o1, o2, e
o3
2 , e

o4
2 , tanh(o5),Softmax

m∈mix
(o6))

}
m=1,nmix

V. ARCHITECTURE DISCUSSION

A. Multi-head self-attention

The general idea of this architecture is to use the good
properties of the key-query self-attention layer to account
for interactions. This offers flexibility to the model allowing
powerful LSTM models to compute the features and predic-
tions with the fixed size inputs it demands while accepting
a varying number of interacting vehicles without ordering.
This allows the simultaneous forecast of each vehicle in the
scene with vehicle to vehicle interactions.

This method could be stated as computationally expensive
because attention over n objects relies on computations
involving an n × n attention matrix. However, in our use
cases, the number of objects is lower than n = 30 and most
of the time it remains around 10. This small number makes
global attention affordable in all of our test cases.

We show in the application section VII-B that multi-
head attention produces interpretable interactions with heads
specializing on different interaction patterns.

B. Maneuver free multimodal forecast

With the present model, after defining a constant number
of mixture components, they are diversified solely with the
loss minimization. The loss is only the NLL value averaged
over time. Thus, minimizing it pushes the predicted modes
toward those of the data distribution. What is forecast is not
a mixture of trajectory density functions but a sequence of
position mixture density functions. There is a dependency
between forecasts at time tk and at time tk+1 but no explicit
link between the modes at those times. To simplify, we
assume that mixture components centers define local maxima
of the probability distributions and can be tracked in time
by matching similar mixture coefficients. They are used
as forecast trajectories. Even if the human reasoning and
some performance indicators use trajectories, only position
probability density at each time steps are needed for the
applications such as path planning and safety assessment.

C. Hyperparameters

This model is defined with a few specific hyperparameters
that should be tuned: number of encoded features, num-
ber of embedding and decoding layers and their activation
functions, the number of heads in each self-attention layer,
the number of mixture component in the output distribution
and the error covariance clipping value. Other choices have
been made and should be questioned such as the data
normalization (none is used), the use of shortcut connections
without layer normalization, the use of LSTM layers and
some implicit choices may have been overlooked. Optimizing
the hyperparameters with a thorough process could bring
some improvements and help understand the model but is

not a part of the present study. In this work, only the general
concept was prioritized and the hyperparameters were chosen
from experience.

VI. LOSS AND PERFORMANCE INDICATORS

The model is trained with the Adam optimizer [23] that
minimizes the negative log-likelihood (NLL) loss. The usual
performance indicators for such forecasting models are root
mean squared error (RMSE), final displacement error (FDE),
and NLL. Only NLL accounts for the multi-modal aspect
of the forecast, others are merely computed with the most
probable forecast. None of the usual performance indicator
is able to judge the a trade-off between forecast accuracy and
diversity of the predicted modes. Thus they are not entirely
satisfactory and we also consider the Miss Rate (MR).

In the following equations, for the ith sequence at time
tk, we note (xik, y

i
k) the observed positions, (x̂ik, ŷ

i
k) the

most probable forecast positions, and (x̂∗k
i, ŷ∗k

i) the forecast
position that produces the minimum FDE. N is the number
of sequences in the subset of the database on which the
computation is made.
The RMSE computation is made with equation (2) with

RMSE(k) =

√√√√ 1

N

N∑
i=1

(xik − x̂ik)2 + (yik − ŷik)2 (2)

The FDE values are less sensitive to large errors than RMSE.
Its computation is made with equations (3).

FDE(k) =
1

N

N∑
i=1

√
(xik − x̂ik)2 + (yik − ŷik)2 (3)

The Miss Rate is the rate with which all proposed forecasts
miss the final position by more than 2m.

MR(k) =
1

N

N∑
i=1

1√
(xi

k−x̂
∗
k
i)2+(yik−ŷ

∗
k
i)2<2

(4)

The 2m threshold is not met if maneuvers such as lane
changes are missed by all modes. Therefore, it gives an
indication on the efficiency of the modes diversification.
The NLL computation, at each forecast time tk, for each
Gaussian component centered on (x̂, ŷ), with the forecast
error d = (dx, dy) = (x − x̂, y − ŷ) and the forecast error
covariance defined with (σx, σy, ρ) is written:

NLL(dx, dy,Σ) =
1

2

1

(1− ρ2)

(
d2
x

σ2
x

+
d2
y

σ2
y

− 2ρ
dxdy
σxσy

)
︸ ︷︷ ︸

dk
T Σ−1

k dk

+ ln

(
2π σxσy

√
1− ρ2︸ ︷︷ ︸√
|Σk|

) (5)

The time index k is dropped to improve readability. The com-
putation of the overall NLL value for all mixture components
is written:

NLL(dx, dy,Σ, p) = − ln

(
nmix∑
m=1

pme
−NLL(dxm ,dym ,Σm)

)
(6)



TABLE I: Comparison of MNLL, RMSE, FDE and MR
results with baselines using the same dataset. *CSP(M)
results were recomputed with some minor modifications for
a fair comparison.

Time horizon 1s 2s 3s 4s 5s

MNLL
CV [25] 0.82 2.32 3.23 3.91 4.46
CSP(M) [8]* 1.78 3.35 4.24 4.88 5.47
SAMMP -0.25 0.95 1.72 2.30 2.78

RMSE
CV [25] 0.76 1.82 3.17 4.80 6.70
CSP(M) [8]* 0.57 1.25 2.10 3.17 4.49
GRIP [14] 0.37 0.86 1.45 2.21 3.16
SAMMP 0.49 1.10 1.83 2.76 3.93

FDE CV [25] 0.46 1.24 2.27 3.53 4.99
CSP(M) [8]* 0.37 0.89 1.52 2.32 3.30
SAMMP 0.31 0.76 1.32 2.00 2.86

MR CV [25] 0.02 0.20 0.44 0.61 0.71
CSP(M) [8]* 0.003 0.02 0.11 0.30 0.47
SAMMP NA NA NA NA NA

The mean NLL (MNLL) is the average of the NLL from 6
over the test set. Minimizing the NLL loss maximizes the
likelihood of the data for the forecast. However, it tends
to overfit part of its output. In [24], NLL overfitting has
degraded the results, making the NLL value unreliable as
a performance indicator. To avoid it, we clip the standard
deviations with a 10cm minimum value.

VII. APPLICATION

This model was implemented using the Pytorch library.
The NGSIM datasets US-101 and I-80 and its pre-processing
were taken from the published code accompanying the arti-
cle [8]. This also defines the dataset splitting into training,
validation, and test sets. Thus, a fair comparison with these
results is made. The dataset contains the tracks of all vehicle
position on a road segment observed from a camera. The pre-
processing produces data that simulates observations from a
given vehicle. Each vehicle is alternatively chosen as the
observing vehicle. Its surroundings in adjacent lanes and
within a 60m road segment are recorded to produce a local
road scene centered on the observing vehicle. This road scene
is tracked to produce 8 seconds sequences with all positions
being recorded at a 5Hz frequency. The 3 first seconds are
used as past observations and the 5 next seconds are used as
forecast supervision.

A. Global performance indicators

Table I reports results using the performance indicators
defined in section VI. All compared models except for
GRIP [14] were trained and computed on the same dataset
and evaluated with the same functions. Since CSP(M) only
forecasts the observing vehicle trajectory, only the errors for
this vehicle are being compared.

Baselines:
Constant velocity (CV): We used a constant velocity

Kalman filter with optimized parameters for forecasting on
the same data as described in [25].

Convolutional Social Pooling (CSP(M)): We retrained the
model from [8]. It uses a maneuver classifier trained with
preprocessed data that conditions a predictor for multimodal
forecasts. A forecast of the center vehicle trajectory is

made with information from its social environment using the
convolutional social pooling mechanism.

Graph-based Interaction-aware Trajectory Prediction
(GRIP): We took the published results from [14]. It uses
a spatial and temporal graph representation of the scene to
make a maximum likelihood trajectory prediction simulta-
neously fol all vehicles in the scene. They obtain the best
results in term of RMSE but it does not account for error
estimation nor multimodality.

Social Attention Multi-Modal Prediction (SAMMP): The
model described in this article.

In [8], the model CSP with unimodal forecast gives
better RMSE results than the multi-modal forecast CSP(M).
The GRIP model gives the best RMSE results for one
trajectory forecasting but other metrics were not produced
and it should be extended for multi-modal forecasting. The
MNLL value is relative to the whole distribution and is the
preferred performance indicator for our goal. We chose six
mixture components to match the CSP(M) model and have
a fair comparison. A higher number of components usually
produce more diversified modes but lower performances on
the usual indicators. TODO: update CSP(M) and SAMMP
values, comment the comparison.

TODO: update images with ones produced by the 6
mixture components model

B. Attention interpretation

The attention matrices give insights about the importance
of some interactions. Some of the head roles can be rational-
ized by looking at the attention matrix it produces in different
contexts. For example, after every tested trainings of the
model, one of the heads had specialized for front vehicle
attention such as the one in figure 3a. The main attention
link always goes from one vehicle to the vehicle in front of
it, or to itself if there is no front vehicle.

C. Multi-modal forecasting

On the figure 4, the vehicle 0 aggressively overtakes
the vehicle 3. In this situation, the future holds diversified
possibilities. The overtake could be aborted or be made less
aggressively, also the last observations of acceleration and
turning could be the results of perception errors.

The NLL loss training is enough to produce a multimodal
output matching those possibilities. Using the unmodified
NLL loss prevents biases in the forecast distribution that a
different loss function may cause and it indeed leads to much
lower NLL values than state-of-the-art results.

VIII. HOW TO EXTEND THIS?
The simplest extension is to add additional observations

on each vehicle such as velocity, orientation, size or blinkers.
Another simple extension is to match various object classes
such as cars, pedestrians and trucks with specific encoders,
predictors, and decoders to allow inter-class interactions.
These adaptations can easily be made because our forecasting
algorithm is model-free.

Our application and the one from [8] both work with
NGSIM US-101 and I-80 datasets. They are composed of
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(a) Head attending the front vehicle
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(b) Head attending mainly the next lane front vehicle

Fig. 3: A driving scene top view representation with all observed vehicles and the attention matrix for two heads of the first
attention layer. The attention that vehicle i is giving to j is drawn as an arrow from i to j, and a circle when i = j with
widths proportional to the attention coefficient and a color varying with the arrow angle. Attention is also visible as color
from purple to yellow in the i, j coefficient of the matrices on the left. Past positions are represented in gray.
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Fig. 4: Another driving scene top view representation. Su-
perposed forecast probability density functions of the ego
position are represented in blue shades in log scale. Ground
truth future positions are represented with a green line.

highway straight roads observed from above with a camera.
This simplistic configuration do not allow training nor testing
of the road network understanding. However, this is an
important challenge that our model can be extended to
consider.

In the present architecture, self-attention produces keys,
queries, and values from the same input to transform the
input value. The keys and values can be extended with
additional inputs. For example, lane center line discretized as
a sequence of position points. A bidirectional LSTM could
be a good encoder for this new kind of input. Then, each
head of the first attention layer would be extended with two
additional linear layers Lvext and Lkext, both producing the
same number of outputs and each with the same feature
dimension as the other linear layers from the attention head.
With this new input, extended keys and values would be
produced :

encodedext = extEncoder(inputext)

Vext = Lvext(encodedext)

Kext = Lkext(encodedext)

(7)

These new keys and values would simply be concatenated
to the head usual keys and values:

output = Softmax
dim=last

(
Q[K,Kext]

T

√
dk

)
[V, Vext] (8)

The output would match the vehicle features with an addi-
tional attention over the new input.

To improve the tracking of trajectories from our output, an
infinite number of trajectories may be defined as the optimal
transport path between the Gaussian mixture at time tk and
the one at time tk+1. A variable finite number of trajectories
would be produced as the optimal transport paths that pass
through local maxima.

IX. CONCLUSIONS

We proposed a road scene forecasting solution that pro-
duces multimodal probability function forecast simultane-
ously for each vehicle of the scene. Our method generates
interpretable social attention coefficients that will be ex-
tended to other road scene observations. Results from our
approach have outperformed state-of-the-art results with the
NLL indicator. This shows a good forecasting capacity as
well as a good uncertainty evaluation leading to a preferred
trade-off between accuracy and prediction diversity. Future
work will include attention of vehicles to lanes and be based
on the recently published Argoverse [26] dataset in urban
situations. We expect the urban conditions to cover more
complex and highly interactive scenes that are better suited
to show the interactive capacity of the proposed solution.
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