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Abstract: 

This paper presents a control-oriented reduced-order building model intended for optimal 
management of space-heating demand in district heating systems. The model is designed 
in accordance with the conclusions drawn from a preliminary study, also presented 
hereby, evaluating the impact of internal mass and the heating circuit inertia on short-
term buildings thermal dynamics. The model parameters identification is carried-out 
using a hybrid Particle Swarm Optimization – Hooke-Jeeves search algorithm, for three 
buildings of different energy classes. The algorithm searches for an optimal set of 
parameters that minimizes the error between the model’s output and historical data 
generated using a higher order building simulator written in Modelica language. Data 
used for the identification process is exclusively non-intrusive to the building indoors, 
and relies solely on measurements available at the substation level. We assess the quality 
of the identifications per building type. Results showed that the identified models have 
high prediction ability of the building indoor temperature dynamics, with a maximum 
absolute error less than 0.7°C. Implementation of optimal predictive space-heating 
control based on the identified models is in prospect. 
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1. Introduction 
District heating has long been known as an efficient and sustainable mode for space-heating and 
domestic hot water preparation in dense areas. Optimal management of space-heating demand in 
district heating systems (DHSs) with prominent attention to buildings’ thermal inertia is seen as a 
promising technique to shift and shave peak loads, therefore reduce reliance of fossil fuels [1–3]. 

Model-based optimal predictive control strategies require a reliable building model able to assess and 
exploit space-heating energy demand flexibility, defined in [4] as the building’s “ability to adapt the 

energy profile without jeopardizing technical and comfort constraints”. Several studies suggested 
that thermal demand flexibility is inherently provided within buildings elements, and it is first and 



foremost influenced by the envelope insulation level and heat storage capacity [5]. Thus, energy 
signature models derived from a steady-state energy balance where the building’s space-heating 
demand is directly correlated with weather conditions without accounting for the thermal capacitance 
of its envelope [6] are not suitable for optimal control applications. Moreover, in [7], authors 
concluded that indoor mass is highly influential on buildings thermal dynamics and can increase their 
time constant by 40%, 25% of which is due to interior partition walls and the remaining 15% is caused 
by the furniture. Similar conclusions are reported in [8] from a numerical simulation study: addition 
of furniture to the indoor environment of a lightweight-structure building impacted its transient 
thermal behaviour and increased its time constant by 43%. On the other hand, heating systems with 
considerable thermal inertia (radiators, underfloor heating) may as well significantly influence 
buildings demand flexibility, as demonstrated in [9]. Besides being representative of the building 
thermal flexibility, a model suitable for optimal control applications at a DHS level needs to be easily 
derived from non-intrusive, easily accessible data and without detailed description of the buildings 
geometry, composition or construction materials, for such information is rarely available at a large 
scale. Therewith, the model shall be control-oriented. Referring to [10,11], a control-oriented model 
is one with the ability to predict the system’s measured output as a function of its input control 
variables, as well as its exogenous input signals. Also, all internal states of monitoring interest, for 
instance the internal air temperature as a comfort indicator in the case of building modelling, must be 
represented by a model variable. It should efficiently interface with an optimization solver and for an 
online optimization problem, a control-oriented model should be computationally fast.  

Based on the above requirements, we gravitate towards lumped-capacitance Reduced-Order building 
Models (ROMs). Those are physical models: they are made out of a reduced number of physics-based 
equations with a few physically interpretable parameters – as opposed to empirical or black-box 
models. The main assumption behind these models is that several elements of the building system 
may be aggregated or lumped into a single node and therefore have a uniform temperature. A wide 
variety of lumped-capacitance ROMs of various orders may be found in the literature [12–16]. The 
aim of our work is to develop and validate a control-oriented ROM, identifiable at a DHS scale and 
taking into account all elements that might impact buildings space-heating demand flexibility. 

This paper is structured as follows. Section 1 introduced the problematic of building modelling for 
optimal control of space-heating demand at a DHS scale. In section 2 we investigate, via building 
thermal dynamic simulation, the influence of internal mass and the heating system on space-heating 
demand flexibility of three buildings from different energy classes commonly found in French DHSs. 
We present in section 3 a reduced-order modelling methodology, starting by setting-up the model 
structure based on the preliminary study, and then carrying out parameters identification by 
minimizing the error between the models output and the output of higher order building simulators 
using a metaheuristic search algorithm. Application and assessment of the approach’s robustness are 
presented in section 4. Section 5 concludes the paper. 

2. Preliminary study of buildings thermal demand flexibility 

2.1. Case-study building simulators 

The preliminary study, carried out by thermal dynamic simulation and presented hereby, aims at 
quantifying the impact of the internal mass and the heating system on space-heating demand 
flexibility for three buildings of different energy classes. The buildings are simulated in Modelica 
language. Interested readers may refer to [17] for details about the simulated phenomena and 
modelling assumptions depicted in Figure 1. In this study the building simulators are parameterized 
to have the same external geometry. Each simulator covers a 10.85� × 28.21� rectangular footprint 
area and has only one 2.5� height storey discretized into four thermal zones with surface fractions 
as shown in Table 1. The building simulators are East – West oriented with 	 = � 2⁄ . We assume 
square-shaped windows, their areas as well as those of opaque constructions per facade are reported 
in Table 2. This difference between the three building simulators is made through their envelope 



construction materials and air renewal rate summarized in Table 3. We relied on Tabula [18], a 
statistical study on the French residential stock, to set the characteristics of our building simulators. 

 

Figure 1. Spatial discretization of one floor (top view) showing the modelled elements and the thermal 

phenomena considered in the building thermal dynamic simulator. 

Table 1. Common parameters to all building simulators: 

Percentage of the zones areas to the total floor area. 

Night zone Kitchen Day zone Bathroom 
35% 15% 40% 10% 

Table 2. Common parameters to all building simulators:  

Areas of opaque constructions and windows per façade. 

 East facade South facade West facade North facade 
Opaque area (m²) 54.30 17.09 45.84 23.60 
Glazed area (m²) 16.22 10.04 24.68 3.53 

Table 3. Case-study buildings characteristics making them belong to different energy classes. 

Building 
simulator 

Envelope Glazing system Number of air 
renewal per 
hour 

Sizing 
heating 
power (kW) 

2012 Concrete, exteriorly insulated 
with 16 cm of expanded 
polystyrene  

Double-glazed 
with 16 cm of 
argon  

0.3 8.6 

1975 Cinderblock, exteriorly 
insulated with 4 cm of 
expanded polystyrene  

Double-glazed 
with 6 cm of air  

0.4 18.5 

1915 Stone (40 cm-thick), 
uninsulated  

Single-glazed  0.5 35 

 

To represent internal mass, we added four furniture-equivalent slabs inside each zone with properties 
shown in Table 4. This material assumption is based on [19], a survey on the internal mass and its 
equivalent heat capacity found in residential and single office buildings in Denmark. The parameter 
of internal mass per zone area (m in �/��) of each slab is the key parameter in the simulator that 
allows variation of internal thermal mass level. For this study, we consider three internal mass levels:  

� No internal mass (empty zones). 



� Light internal mass with a total of 47.5�/��. 

� Heavy internal mass with a total of 95�/��. 

Table 4. Properties of the internal mass equivalent slabs: Thermal conductivity (k), Specific heat 

capacity (c), Density (ρ), Mass per zone area (m) and thickness (ε). 

Material k �W m ∙ K⁄ � 
c �J kg ∙ K⁄ � 

ρ �kg m�⁄ � 
m �kg m�⁄ � 

ε �mm� 
Metal 60 450 8000 25 3 
Wood / Plastic 0.2 1400 800 25 18 
Ceramic / Glass 1.25 950 2000 5 10 
Light material 0.03 1400 80 15 120 
Light partition walls 0.015 1150 384 25 100 

 

Two classes of heating systems are modelled and can be connected to the building’s thermal zones. 
The first is an airborne-like system consisting of a direct heat source with an ideal regulation of the 
internal air temperature constantly maintaining it at its set-point. The second class is a radiator heating 
system equipped with a thermostatic valve and connected to a centralized production unit. In the case 
of a building connected to a DHS, this production unit is a substation. In order to assess the impact 
of the heating system water temperature on buildings short-term thermal dynamics, we consider 
medium and low temperature radiators. Therefore this study encompasses three heating system:  

� Airborne. 

� 50°! radiators. 

� 70°! radiators. 

2.2. Experimental protocol and thermal demand flexibility index 

We first define three mean temperatures: 

� The building mean air temperature: 

� The building mean walls surface temperature: 

"#$%&'()********** = ∑ ,-#$%& ∗ "#$%&/#$%& ∑-#$%&  (2) 

� The building mean perceived temperature, also called operative temperature in [20]: 

"0)%()12)3************ = "'1%***** + "#$%&'()**********
2  (3) 

The experimental protocol consists of maintaining the building under constant thermal conditions:  

� Constant external temperature ")56 = −11°!. 

� Constant internal air set-point temperature "'8%#)6 = 19°! in case of an airborne heating system 
and "'8%#)6 = 20°! in case of a radiator heating system. The reason for this distinction is to get 
closely comparable "'1%***** in all cases. In fact a thermostatic radiator valve acts like a 
proportional controller, in steady-state conditions, if "'8%#)6 = 20°!, "'1%***** will be less than 20°!, 
around 19°!,  to allow a constant and stable water mass flow rate through the valve.  

� No solar radiation. 

"'1%***** = ∑ �-:;<) ∗ "'8%:;<)�:;<)#∑ -:;<):;<)#  (1) 



� No internal heat gain. 

Then the heating power is cut-off and we observe the system’s free response. For study-cases with 
airborne heating system (Figure 2 (a)), the heating power is directly cut-off at the zones air node, 
whereas in case of a radiator heating system (Figure 2 (b)), it is shut-down at the substation level. All 
three mean temperatures are monitored and the time delays for a 1°! drop in each of these 
temperatures are registered. 

The time delay for 1°! drop in "0)%()12)3************, denoted =>?, is the building thermal demand flexibility 
index: a larger =>? means that the heating power may be shut-down for a longer period before 1°! 
drop is perceived by the consumers, which implies a larger flexibility. 

2.3. Results and conclusions 

Looking at Figure 2, three observations can be noted: 

� Within the few minutes following the power cut-off, the air temperature drop is remarkably 
sharper than the surface temperature drop. This is due to the relatively low thermal inertia of 
internal air compared to that of the envelope and the internal constructions. Whereof we infer 
that a ROM of at least second order is required to distinguish these two dissimilar dynamics. 

� After a few minutes, the surface temperature crosses over the air temperature. Heat transfer is 
now reversed, given-off by the walls surfaces to heat-up the internal air. This phenomena is 
sometimes called activation of building thermal mass short-term heat storage [9,21,22]. Notice 
how air temperature drop gets smoother from this point forward. The drop velocity of air, surface 
and their average perceived temperature becomes uniform and only on the long run the building 
system seems to behave as a first-order system.  

� When comparing airborne to radiator heating systems, we observe that the heating power from 
the latter decreases gradually after the cut-time, owing to the thermal inertia of the heating system 
itself (piping and heating water). This leads to overall slower temperature drops. 
 

Results of =>? are displayed in Figure 3. They allow a quantitative comparison of all 27 cases: 

� In the well-insulated building with heavy internal mass, an airborne heating system yielded 
longer =>? than radiator heating systems in the equivalent empty building, contrary to the two 

Figure 2. 2012 lightly furnished building’s thermal response following space-heating power cut-off: 

(a) case of airborne heating system, (b) case of 70°C radiator heating system. 



other building classes. Therefore we conclude that internal mass is particularly influential on 
short-term thermal dynamics of buildings with high thermal insulation levels. 

� On average, buildings with 70°! radiators had 35% longer =>? than those with 50°! radiators. 
The lower the insulation level, and the lower the internal mass level, the higher is the sensitivity 
towards heating water temperatures. 

� From a control point of view, we recall that =>? give an order of magnitude of how long the 
heating system could be set-back before the 1°! drop is perceived by a consumer, in extreme 
conditions (−11°!). Interestingly, according to our simulator, average values of these =>? are: 

▫ More than an hour for a well-insulated building (2012). 

▫ 20 minutes for a building of medium insulation level (1975). 

▫ 10 minutes for an uninsulated building (1915). 

� We simulated again all cases to find out the amount of energy that would have been consumed 
during =>? but without the power cut-off. Despite the large difference in =>? among buildings 
from different energy classes, energy savings turned out to be quite comparable (Figure 4). 

 

 

Figure 3. 1°C drop delays in perceived temperature,  =>? (min). 

Figure 4. Energy savings made during the 1°C drop delays in perceived temperature (MWh). 
 



3. Reduced-order building modelling 

3.1. Model structure 

Based on the preliminary study, we propose the ROM structure given by the system of equations (4) 
through (10), also represented in Figure 5. 

The building itself is linearly modelled with three power balance equations ((4) to (6)) around three 
temperature nodes with associated thermal capacitances: one for the indoor air, another for the 
internal mass exchanging heat solely with the indoor air and, lastly, one for the external envelope 
exchanging heat with both the outdoor and the indoor air. Additionally, direct ventilation and 
infiltration heat losses to the exterior are accounted for in the indoor air power balance equation. Solar 
gain is also linearly modelled and injected into each of these nodes. The building model, apart from 
the solar gain model, is quite similar to the one investigated in [14] which proved to be sufficiently 
accurate, with a slight difference: the indoor air temperature node in [14] is assumed to be capacitance 
free. Indeed, its capacitance is rather negligible relatively to the two other capacitances in the model. 

The heating system model (equations (7) and (8)), operating in closed loop, is non-linear and features 
two temperature nodes with associated thermal capacitances: one for the emitter delivering heat to 
the indoor air and another for the heating circuit drawing heat from the substation. The non-linearity 
appears in the heat exchange between these two nodes resulting from the product between the mass 
flow rate and their temperature difference. Equations (9) and (10) are the closed loops proportional 
regulation equations, with saturation (BCDE? means the bounded value of C between 0 and 1).  

Thus, the model has 5 states (temperatures at the nodes) and 2 outputs, calculated at each time step 
by solving the 7-equations system. From a DHS operator point of view, the only controllable input to 
this model is "(8%#)6 ("'8%#)6 being controlled by the consumers). The measured outputs at the substation 
are ΦGGH and �I . They will be used to identify the 16 model parameters, marked in a bold font.  

JKLM ∙ N"'8%NO = PQ ∙ �")56 − "'8%� + PL ∙ �")<2 − "'8%� + PR ∙ �"S'## − "'8%� + PT ∙ �")S − "'8%� + UKLMV ∙ W#;X  (4) 

JYZQ ∙ N")<2NO = P[ ∙ �")56 − ")<2� + PL ∙ �"'8% − ")<2� + UYZQV ∙ W#;X (5) 

JRKVV ∙ N"S'##NO = PR ∙ �"'8% − "S'##� + URKVVV ∙ W#;X  (6) 

J\LM ∙ N"(8%NO = Z] ∙ ΦGGH + �I ∙ ^0 ∙ �")S − "(8%� (7) 

JYR ∙ N")SNO = �I ∙ ^0 ∙ �"(8% − ")S� + PT ∙ �"'8% − ")S� (8) 

ΦGGH = ΦGGHS'5 ∙ _`\LMa ∙ �"(8%#)6 − "(8%�bc?  (9) 
�I = �I S'5 ∙ _`KLMa ∙ �"'8%#)6 − "'8%�bc?  (10) 

 

Figure 5. Schematic representation of the proposed reduced-order model structure. 

Solar gain model

Heating system model

Heat flow

Mass flow

Signal flow



3.2. Parameters identification 

Given the ROM structure, parameters identification aims at finding the optimal set of 16 parameters 
that minimizes the objective function d formulated in (11). d is the integral over the training period 
(December 12th to the 31st) of the weighted quadratic errors between the ROM outputs (�I efgand ΦGGHefg) and those of the higher order building simulator (�I #8Sand ΦGGH#8S), both subject to the same 
inputs (")56, W#;X, "'8%#)6 and "(8%#)6). The building simulator data is generated at a sampling time of 5 
minutes under the following conditions: 

� "(8%#)6 is linked to ")56 with a heating curve and it is reduced during night-time as a form of power 
set-back to stimulate the thermal dynamics of the heating system and therefore enhance the 
identifiability of its parameters. The settings of the heating curve depend on the building energy 
class: the lower the energy consumption, the lower is the heating water temperature. 

� "'8%#)6 = 20°! in all zones, at all times. In fact, "'8%#)6 is not a controllable input and its value might 
be variable. However, the building simulator includes a stochastic internal gain model which is 
assumed to aggregate all the uncertainties of the building system. 

Unlike other works [12,14,16], the parameters identification objective function d does not feature the 
internal air temperature signal, since we consider it to be intrusive and not guaranteed to be available 
at a DHS scale. Instead, we relied on �I  which is proportionally linked to the unmeasured "'8% in the 
ROM and therefore might be regarded as its image. To ensure that the ROM well-predicts "'8%, the 
error on �I  is double-weighted with respect to that on ΦGGH. 

The minimization of d is performed using the optimization software GenOpt [23]. GenOpt is 
conceived to optimize computationally expensive objective functions assessed by an external 
simulation tool. We used Dymola to implement the ROM model and calculate d, given the building 
simulator data and parameters that are iteratively tested by GenOpt, based on previous trails dictated 
by a search algorithm. We selected a hybrid metaheuristic algorithm that starts with a Particle Swarm 
Optimization on a coarse mesh of 150 generations of 150 particles each, and then refines the search 
results with a Hooke-Jeeves pattern search. The search is reasonably initialized by physically 
estimating the parameters, and normalized with respect to the initial values. The normalized search 
space is then limited between 1/3 and 3 for each parameter. 

4. Methodology application and assessment 
OOIn this section, we apply the parameters identification 
approach to infer a ROM for each of the three case-study 
buildings introduced in section 2.  

Beforehand, we generated two sets of data per building: 
the first is from December 12th to 31st for the training 
phase, and the second is from January 6th to 25th to assess 
the models prediction ability. A typical meteorological 
year weather file for the city of Grenoble is used during 
the simulations. The heating curves used during normal 
operation for the three buildings are plotted in Erreur ! 

Source du renvoi introuvable.. During the night-time, "(8%#)6 is limited to 35°!, 55°! and 75°! for the 2012, 
1975 and 1915 building, respectively. We recall that all 
buildings have different envelops with the same 

d = h i23 ∙ j�I #8S − �I efg
�I S'5 k� + 13 ∙ jΦGGH#8S − ΦGGHefg

Φ##6S'5 k�l3)(	�?#6
3)(	?�6n NO (11) 

Figure 6. Heating curves used to set the 

heating water temperature (out of night-

time set-back). 



geometry, the same amount of internal mass (heavy) and the same internal gain signal.  

GenOpt converges to the identified parameters listed in Table 5 after about 25k simulations, taking 
around 25 minutes on an 18-core, 36-thread processor machine. We notice that the minimal value of d for the 2012 building is the highest among the others. This is due to the sensitivity of this building 
class towards internal heat gain accounting for about 20% of its space-heating sizing power (Figure 
7), which is not modelled in the ROM. To compensate the effect of internal gain, the search algorithm 
might find biased parameters: over-estimated solar gain coefficients and under-estimated heat loss 
coefficients. This leads to larger errors in periods of low internal gain. 

Table 5. Identified parameters and minimal objective-function value for all case-study buildings. 

Identification results 2012 building 1975 building 1915 building JKLM Bo p⁄ D 2.88E+07 2.95E+07 1.78E+07 JYZQ Bo p⁄ D 9.60E+08 2.31E+08 1.95E+09 JRKVV Bo p⁄ D 1.94E+08 6.44E+05 1.50E+07 J\LM Bo p⁄ D 1.55E+04 1.22E+04 1.14E+04 JYR Bo p⁄ D 8.25E+03 2.25E+03 5.20E+02 PQ Bq p⁄ D 232.5 346.5 555 PL Bq p⁄ D 27.3 361.1 1125 P[ Bq p⁄ D 1720 960 1200 PR Bq p⁄ D 3510 2200 3360 PT Bq p⁄ D 375 505 450 UKLMV  B��D 14.1 7.20 13.2 UYZQV  B��D 14 4.83 1.75 URKVVV  B��D 6.5 2.95 2.9 Z] B−D 0.96 0.99 0.83 `\LMa  B1 p⁄ D 0.57 0.29 0.35 `KLMa  B1 p⁄ D 0.52 0.43 0.48 d B−D 3509.53 2444.47 1339.03 

 

Figure 7. Proportions of the internal heat gain and the substations space-heating power. 

The first criterion to assess the models reliability is its ability to fit certain variables of interest. Here 
we are interested in predicting the output signals and the indoor air temperature. We define the fit 
function of a variable C in (12) and evaluate its value over the training and the prediction periods. 
Note that for the variable "'8%,	"'8%#8S	is the mean zones temperature weighted by the zones floor area, 
it is denoted "'1%#1S******, and "'8%S'5 = "'8%#)6 = 20°!. Results are shown in Table 6. For all variables of all 
buildings, the fit is slightly deteriorated during the prediction phase, but remains acceptable. Besides, 
the error range of Tstu given in Table 7 shows that the maximum absolute error between the simulator 
and the model is less than 0.7°! for the 2012 building, and less than 0.5°! for the 1915 building 
during the prediction phase, making the models sufficiently reliable for control applications. 



Table 6. Assessment of the models variables fit during the training and the validation phases. 

Assessed variable  Phase 2012 building 1975 building 1915 building ΦGGH Training 93.75% 92.27% 93.64% 
Prediction 89.08% 87.78% 89.23% �I  Training 90.57% 94.95% 95.92% 
Prediction 83.20% 91.38% 87.75% "'8% Training 88.67% 83.56% 92.73% 
Prediction 80.73% 73.20% 82.70% 

Table 7. Assessment of the models "'8%.error ranges. 

Assessed variable  Phase 2012 building 1975 building 1915 building 
Error range of  ,"'8%efg − "'1%#1S******/ �°!� 

Training [-0.23, 0.33] [-0.52, 0.13] [-0.22, 0.22] 
Prediction [-0.35, 0.64] [-0.51, 0.26] [-0.46, 0.25] 

 

The second criterion is the physical relevance of the building equivalent heat loss coefficient which 
may be calculated from the identified parameters using (13), and estimated from the building sizing 

data using (14), with ")56#8:8<v = −11°! in Grenoble. Table 8 shows good consistency between w)x83)<6 
and w)x)#68S for all buildings. 

Table 8. Identified and estimated heat loss coefficients. 

Equivalent heat loss coefficient 2012 building 1975 building 1915 building w)x83)<6 Bq/pD 259.37 608.90 1135.65 w)x)#68S Bq/pD 277.42 596.77 1129.03 

5. Conclusion 
In this paper, we studied the influence of internal mass and heating systems on space-heating demand 
flexibility of buildings from different energy classes. We concluded that internal mass is mostly 
influential in well-insulated buildings and can stretch their temperature drop delay to over an hour. 
Poorly-insulated buildings are rather sensitive to the heating system temperature level and despite 
having shorter temperature drop delays, they offer considerable energy savings during brief power 
set-backs. We went on to designing a reduced-order building model featuring a thermal capacitance 
representing the internal thermal mass, with a non-linear heating system model. Then we proposed a 
parameters identification approach which aims at minimizing the non-intrusive model outputs found 
at the substation level using metaheuristic optimization, hence making the strategy applicable at a 
district heating scale. We applied the methodology on three case-study buildings. Assessment of the 
identification results and the models prediction ability showed that they are sufficiently reliable and 
may be used for space-heating optimal control applications in up-coming work. 

dyO�C� = j1 − �z{ j1, }Cefg − C#1S
CS'5 − C#1S}k******************************k × 100 (12) 

w)x83)<6 = w8 ∙ w; + w; ∙ w2 + w2 ∙ w8w8 + w;  (13) 

w)x)#68S = ΦGGHS'5
"'8%#)6 − ")56#8:8<v (14) 
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Nomenclature 
Acronyms 

DHS District Heating System 

ROM Reduced-Order Model 

Letter symbols ^0 specific heat capacity of the heating water, J/(kg K) 

J thermal capacitance, J/K `~ gain of a proportional temperature regulator, 1/K UV Solar gain coefficient, m² �I  mass flow rate, kg/s Z] efficiency coefficient of the heating system " temperature, K PT heat exchange coefficient between the indoor air and the heat emitters, W/K PL heat exchange coefficient between the indoor air and the envelope, W/K PR heat exchange coefficient between the indoor air and the internal mass, W/K P[ heat loss coefficient through the envelope, W/K PQ heat loss coefficient due to ventilation, W/K 

Greek symbols =>? space-heating demand flexibility index – Time delay for 1°! drop in "0)%()12)3************ 

W#;X global horizontal solar radiation flux, W/m² Φ��� space-heating power at the substation, W 

Subscripts      Superscripts �y� building indoor air   ��C maximum threshold ^y� heating circuit    ��O set-point temperature �� heat emitter    �y� thermal dynamic building simulator �{� building envelope ���� building internal mass 
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