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Abstract—This paper presents a systematic tuning approach 

for Model Predictive Control (MPC) parameters’ using an 

original LabVIEW-implementation of advanced metaheuristics 

algorithms. Perturbed Particle Swarm Optimization (pPSO), 

Gravitational Search Algorithm (GSA), Teaching-Learning 

Based Optimization (TLBO) and Grey Wolf Optimizer (GWO) 

metaheuristics are proposed to solve the formulated MPC tuning 

problem under operational constraints. The MPC tuning strategy 

is done offline for the selection of both prediction and control 

horizons as well as the weightings matrices. All proposed 

algorithms are firstly evaluated and validated on a benchmark of 

standard test functions. The same algorithms were then used to 

solve the formulated MPC tuning problem for two dynamical 

systems such as the magnetic levitation system MAGLEV 33-006, 

and the three-tank DTS200 process. Demonstrative results, in 

terms of statistical metrics and closed-loop systems responses, are 

presented and discussed in order to show the effectiveness and 

superiority of the proposed metaheuristics-tuned approach. The 

developed CAD interface for the LabVIEW implementation of 

the proposed metaheuristics is given and freely accessible for 

extended optimization puposes. 

Keywords—Model predictive control; parameters tuning; 

advanced metaheuristics; MAGLEV 33-006; DTS200 three-tank 

process; LabVIEW implementation 

I. INTRODUCTION 

In recent decades, the Model Predictive Control (MPC) has 
emerged as a leading control strategy due to its effectiveness 
and robust performance on complex systems under operational 
constraints. Such a control approach is one of the most used 
and successfully implemented in a large variety of industrial 
applications. As an advanced robust control strategy, the MPC 
approach is used to drive renewable energy systems [1]. By 
controlling the bidirectional buck-boost converters of the PV-
battery based AC micro-grid system, the fluctuating output 
from the solar energy sources is smoothed. In [2], Rahimi & 
Moghaddam proposed an extended MPC approach for 
maximizing the absorbed power of a point absorber wave 
energy converter. In [3], a new information-theoretic based 
MPC approach has been developed and applied to autonomous 
vehicles in the aggressive driving around a dirt test track. 
Worthmann et al. [4] proposed a tailored nonquadratic stage 
cost-based MPC sheme is proposed to the steering problem of 

the nonholonomic unmanned ground vehicles. Other several 
various developments and applications of MPC appraoch can 
be found in [5-8]. 

In the MPC formalism, the tuning of effective design 
parameters, i.e. control and prediction horizons as well as the 
weighting matrices [6,7], remains a hard problem and a serious 
drawback. Indeed, the successful implementation of a MPC 
algorithm in practical applications requires appropriate tuning 
of the controller parameters which specify the performance of 
the closed-loop dynamics. This parameters’ tuning, difficult 
and not systematic, becomes more and more tedious and time-
consuming. To overcome such a problem, various techniques 
have been proposed and investigated. In [9], an intelligent 
deep-learning based mechanism is proposed for the 
implementation of a MPC algorithm for a mode-locked fiber 
laser system. The introduced recurrent neural network allows 
the classic MPC predicting of the birefringence and the laser 
states task. Yamashita, Zanin & Odloak [10] formulated the 
MPC tuning task as a mutli-objective optimization problem. 
Two methods based on the lexicographic and compromize 
optimization algorithms have been proposed and succesfully 
applied to a shell heavy oil fractionator benchmark. Another 
similar tuning approach based on the Pareto multi-objective 
optimization has been proposed for drinking water networked 
systems [11]. In [12], the authors present a reverse-engineering 
tuning method for the MPC strategy and applied for a binary 
distillation column system. In a pole placement framework, an 
analytical MPC tuning strategy has been proposed for a class 
of industrial systems described by first order plus dead time 
models [13]. Shah & Engell [14] present a semi-definite 
programming based approach to determine MPC parameters 
for MIMO systems thanks to a specification of the desired 
behavior of the closed-loop for small changes. 

All these related works lack the systematic aspect and 
simplicity of the MPC parameters tuning. Indeed, most of these 
techniques are restrictive, and/or time-consuming in real-world 
implementation scenarios. Far from these analytical and 
restrictive tuning methods, the use of soft computing concepts, 
in particular the optimization by metaheuristics algorithms, 
seems a promising solution for this kind of hard problems, 
often non-convex and non-smooth [15-17]. Up to date, there 
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have been a few research works that successfully integrated the 
metaheuristics-based optimization and MPC approach. Most of 
these given works use classic and old metaheuristics such as 
the Genetic Algorithms (GA), standard Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO) and so 
on [18-23]. Unfortunately, all these algorithms for the 
formulated problems present limitations in terms of premature 
convergence and unbalanced exploitation/exploration 
mechanism. These drawbaks affect the quality and optimality 
of the found solutions. 

Recently, many advanced and global metaheuristics have 
been proposed in the literature with easier to implement 
algorithms and less control parameters in comparison with the 
old ones. The perturbed Particle Swarm Optimization (pPSO) 
[24], Gravitational Search Algorithm (GSA) [25], Teaching-
Learning Based Optimization (TLBO) [26] and Grey Wolf 
Optimizer (GWO) [27] are have attracted considerable interest 
due to their effectiveness and wide range of applicability. Their 
suitability to solve the MPC parameters’ tuning, formulated as 
a constrained optimization problem, presents a promising 
alternative for reducing the complexity of the MPC strategy. In 
this paper, an original LabVIEW-based implementation of 
these advanced metaheuristics algorithms is investigated. The 
tuning stage of all effective MPC parameters, i.e. weighting 
filters and prediction/control horizons, is formulated as a 
nonlinear optimization problem under operational constraints. 
Numerical validation and comparison studies are given for two 
different benchmarks process such as the suspended sphere 
MAGLEV-33-006 and the DTS200 three interconnected tanks 
DTS200 systems. All the proposed metaheuristics have been 
firstly experimented and validated on a benchmark of standard 
test problems [15,16]. 

The main contributions of the paper are, on the one hand, 
the development of a systematic metaheuristics-based method 
of easy and fast tuning of the MPC parameters’ for dynamical 
systems. The classical trials-errors methods are no longer used 
and the design time is further reduced. On the other hand, a 
software CAD interface for the implementation of the proposed 
metaheuristic algorithms, in particular for the resolution of the 
MPC tuning problem, is developed under the LabVIEW 
graphical programming environment. Such a software tool is 
freely accessible. 

The remainder of this paper is organized as follows. In 
Section II, a preliminary survey on the MPC approach is firstly 
presented. The effective control parameters’ tuning problem is 
formulated as a constrained optimization problem. Section III 
presents a theoretical background of the proposed pPSO, GSA, 
TLBO and GWO metaheuristics as well as their original 
implementation under the graphical programming LabVIEW 
software. All given algorithms are numerically validated 
through various test functions from the optimization literature. 
Section IV is dedicated to the application of the proposed 
metaheuristics-tuned MPC approach for the position control of 
a suspended sphere in the didactic MAGLEV-33-006 
benchmark as well as the level control of the three DTS200 
plants. All demonstrative simulation results are presented and 
discussed. Section V concludes this paper. 

II. TUNING PROBLEM FORMULATION 

A. Formalism and basic Concepts 

In the MPC framework, the human behavior is reproduced 
according to which it is a question of selecting control actions 
for the system to be controlled on a finite horizon [5-7]. To 
achieve the control performances under operational constraints, 
a digital model of the plant is used and decisions are constantly 
updated as depicted in Fig. 1. 

In Fig. 2, both prediction and control horizons, denoted as 

pN  and cN , respectively, are shown as ones of the main and 

effective design parameters of the MPC approach. The 
discrete-time control signals, system outputs and reference 
trajectories are u , y , and r , respectively. The MPC algorithm 

assumes that    1 1cu k i u k N      for c pN i N  . 

A MPC algorithm leads to compute the control laws 

  1 , 1,2, , cu k i i N   where only the first element  *u k

of such an optimized control sequence is applied to the system. 

These control laws are updated at each sampling time k  in 

order to minimize the cost function (1) under various 
operational constrains [5,6,23]: 
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where  |r k i k ,  |ˆ    y k i k  and  |u k i k  denote 

respectively the setpoint trajectories, predicted outputs and 
increments of control laws at the time k i , given all 

measurements up to and including those at sampling-time k . 

The terms 0T Q Q  and 0T R R  are the weighting 

matrices of the MPC technique, and      ˆ .   .ˆ   .e y r  . 

 

Fig. 1. Model Predictive Control Structure. 

  

Fig. 2. Prediction and Control Horizons in MPC Framework. 
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Such an optimization process is repeated at the next 

sampling-time based on the measured system state  x k  and 

under operational constraints specified on the control actions, 
plant output signals and states as follows: 

 

 

 

 

min max

min max

min max

min max

u u k u

u u k u

y y k y

x x k x

 

    

 

 
               (2) 

B. Optimization Problem Formulation 

Since the operational constraints of the MPC are specified, 
the effective design parameters, i.e. prediction/control horizons 

( pN  , cN ) and the weighting matrices ( Q , R ), need to be 

tuned appropriately to improve the performances and 
robustness of the predictive controllers. In this paper, all these 
control parameters are considered as decision variables of the 
following formulated optimization problem: 
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where   is the simulation time. 

Schematically, the principle of the proposed metaheuristics-
tuned MPC parameters’ is illustrated in Fig. 3. 

The problem formulation (3) takes into account the 
operational constraints given by Equation (2). The prediction 

horizon pN  is always higher than the control one cN . For 

simplicity purposes, only constraints on the control laws are 
considered as follows: 

  max
0
max u u



 

              (4) 

where maxu  is the maximum value of the control signal. 

 

Fig. 3. Proposed Metaheuristics-based MPC Tuning Approach. 

Since the optimization problem (3) is constrained, the 
following static penalty-based method is proposed to handle 
with the inequality type of operational constraints: 
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III. PROPOSED METAHEURISTICS 

A. Perturbed PSO Algorithm 

Originally proposed by Xinchao [24], the perturbed variant 
of the PSO algorithm, abbreviated pPSO, maintains a 

population of PARTn  particles in the D-dimensional research 

space. The ith particle of the swarm is characterized by its 
current position  ,1 ,2 ,, , ,i i i i D

t t t tx x xx  and velocity 

 ,1 ,2 ,, , ,i i i i D

t t t tv v vv  at the iteration  1, GENEt n . In the pPSO 

formalism, the trajectory of the ith particle is updated according 
to the following motion equations: 

1 1

i i i

t t t  x x v               (6)

   1 1 1, 2 2,
ˆi i i i i i g i

t t t t t t t tw c r c r     v v p x p x            (7) 

where w  is the inertia factor, 1c  and 2c  are the cognitive 

and social factors respectively, 
1,

i

tr  and 
2,

i

tr  are random 

numbers uniformly distributed in the interval  0,1 , and 
i

tp is 

the best previously position, obtained by the ith particle in the 

swarm and the global best position ˆ g

tp
 
 is now defined by: 

 ˆ ,g g

t t p pN               (8) 

where   is the degree of uncertainty about the optimality 

of the global best position 
g

tp  in the standard PSO algorithm. 

B. Gravitational Search Algorithm 

The Gravitational Search Algorithm (GSA), initially 
proposed by Rashedi, Nezamabadi & Saryazdi [25], considers 
agents as objects of different masses to solve difficult and hard 
optimization problems. Thanks to the gravity forces, each 
object will be influenced by their neighbors. Every object 
position is updated using the concepts of Newton’s laws of 
gravity and motion, as follows: 

, ,

2

,

.
. ;    

i j i
a t p tij i t

t t t i

ij t t

G
 

  
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m m F
F a

r m
            (9) 

where 
ij

tF  denotes the gravitational force between two 

entities, tG  is the gravitational constant, 
,

i

a tm  is the active mass 

and 
,

i

p tm  is the passive mass, ,ij tr  is the distance between the ith 

and jth entities, and 
i

tF , 
i

ta  and 
i

tm  represent the force applied 

to the ith particle, its acceleration and mass, respectively. 
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C. Teaching-Learning based Optimization Algorithm 

Introduced Rao, Savsani & Vakharia [26], the Teaching-
Learning Based Optimization (TLBO) method is based on the 
influence effect of a teacher on the output of learners, i.e. the 
potential solutions of the optimization problem. The TLBO 
algorithm is divided in two phases: teaching and learning. In 
the first stage, the teacher tries to bring his learners up to his 
level in terms of knowledge. The new vector of decision 
variables is updated as follows: 

tDifference_Mean i i

t+1 tx x
          (10) 

where tDifference_Mean  denotes the difference between 

the existing and new means tM  and 1tM  , computed as 

follows: 

 1t t t F tDifference_Mean rand M T M 
         (11) 

where trand  is a random number in the interval  0,1  and 

FT  is the teaching factor that selects the value of mean as 

follows: 

 1 0,1FT round rand              (12) 

In the second phase, the increasing knowledge is done 
randomly through the interaction between learners using the 
following computation steps: 

If 
   f fi j

t t
x x

, then 
 trand  i i i j

t+1 t t t
x x x x

, else 

 trand  i i j i

t+1 t t t
x x x x

          (13) 

D. Grey Wolf Optimizer Algorithm 

Recently proposed by Mirjalili, Mirjalili & Lewis [27], the 
Grey Wolf Optimizer (GWO) tries to mimic the social 
hierarchy and behavior of wolves where the fittest solution, 
denoted as  , is the leader of the troupe. Subsequently, the 

second and third best solutions are named as  and  , 

respectively. All remaining candidate solutions are presumed 
to be  . The related algorithm has the following four phases: 

 Encircling prey sub-model: 
i i p i

t t t t D C x x             (14) 

1

i p i i

t t t t  x x A D             (15) 

where 
p

tx  is the prey position, and 
i

tx  indicates the 

position of a grey wolf, i

tA  and i

tC  are control parameters 

defined as: 

1,2i i

t t t ta a A r             (16) 

2,2i i

t tC r
            (17) 

where ta  are linearly decreasing in the interval [2, 0] and 

1,

i

tr  and 
2,

i

tr  are random vectors in  0,1 . 

 Hunting sub-model: 
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1, 2, 3,

1
3

i i i

t t ti

t

 


x x x
x            (20) 

 Attacking prey step: this is done by decreasing ta  over 

the course of iterations which enhances the exploitation 
capacity of the algorithm. 

 Search for prey: this is done by giving i

tA  random 

values greater than 1 or less than -1 which enhances the 
exploration mechanism. 

E. Numerical Experimentation and Analysis 

All proposed pPSO, GSA, TLBO and GWO metaheuristics 
algorithms are graphically implemented and executed under 
LabVIEW software in such a manner to insure modularity and 
scalability using the Sub-Virtual Instruments (VIs) formalism 
(see Fig. A1 and A2 of Appendix A). All these algorithms have 
been coded in MATLAB 7.8 and executed on a PC computer 
with Core 2 Duo-2.20 GHz CPU and 2.00 GB RAM. After the 
software implementation phase, various optimization tests are 
used to compare the obtained results with the published ones. 
To do so, the optimization test functions of Appendix B have 
been implemented as new libraries in the LabVIEW Functions 
palette. 

A benchmark of eight standard test functions [15-17], with 
various properties for the optimization framework, is adopted 
for the numerical experimentation stage. Each of these 
functions has a different set of features representative of a 
different class of single-objective optimization problems. All 
proposed metaheuristics algorithms have been evaluated and 
validated thanks to this benchmark. The related statistical 
results in terms of the best, mean and worst cases of the 
optimization as well as the standard deviation (STD) are 
summarized in Table I for independent 30 runs. From Table I, 
the validity of the LabVIEW-based implementation is checked. 
The convergence of all algorithms is usually guaranteed in a 
reasonable computation time and with remarkable superiority. 
Roughly, the STD metric has a small value which means that 
the according algorithms are repeatable over the independent 
30 runs, especially for the GWO one. From such a graphical-
based implementation of advanced metaheuristics, it is 
observed that there is no algorithm that excels in solving all 
considered functions. This is already mentioned by the well-
known “No Free Lunch” theorem which stipulates that “for any 
algorithm, any elevated performance over one class of 
problems is offset by performance over another class”. 
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TABLE I.  NUMERICAL OPTIMIZATION RESULTS OVER 30 RUNS 

Function   pPSO GSA TLBO GWO 

1f  

Best 5.55e-06 1.30e-16 1.45e-06 1.44e-30 

Mean 7.50e-06 4.03e-16 1.75e-04 1.07e-27 

STD 8.97e-07 3.97e-16 3.69e-04 1.10e-27 

Median 7.48e-06 2.51e-16 3.75e-05 5.92e-28 

2f  

Best 1.09e-02 4.48e-08 1.85e-06 1.07e-17 

Mean 6.87e-01 1.13e-01 4.74e-04 1.08e-16 

STD 1.51e+00 3.77e-01 1.30e-03 7.59e-17 

Median 9.39e-02 9.27e-08 3.54e-05 7.56e-17 

3f  

Best 3.75e-03 4.62e+02 5.44e+01 9.02e-09 

Mean 9.69e-01 1.02e+03 2.42e+02 1.26e-05 

STD 1.29e+00 3.22e+02 2.14e+02 2.98e-05 

Median 3.82e-01 1.01e+03 1.78e+02 1.34e-06 

4f  

Best 1.82e+01 2.74e+01 1.28e+01 2.64e+01 

Mean 2.70e+01 4.24e+01 1.08e+02 2.81e+01 

STD 3.37e+00 2.95e+01 3.86e+01 7.61e-01 

Median 2.68e+01 3.00e+01 9.45e+01 2.81e+01 

5f  

Best 1.00e+00 0.00e+00 4.20e+01 0.00e+00 

Mean 2.57e+01 1.32e+01 1.59e+02 0.00e+00 

STD 3.07e+01 2.57e+01 1.14e+02 0.00e+00 

Median 1.65e+01 4.00e+00 1.26e+02 0.00e+00 

6f  

Best 3.87e-03 4.05e-02 2.33e-02 6.76e-04 

Mean 1.11e-02 8.19e-02 5.59e-02 2.12e-03 

STD 3.62e-03 3.26e-02 2.52e-02 1.08e-03 

Median 1.05e-02 8.04e-02 5.13e-02 1.96e-03 

7f  

Best 4.08e+01 1.49e+01 1.79e+01 0.00e+00 

Mean 8.82e+01 2.93e+01 2.80e+01 3.44e+00 

STD 2.69e+01 8.62e+00 4.88e+00 3.70e+00 

Median 8.61e+01 2.59e+01 2.74e+01 2.21e+00 

8f  

Best 2.38e-07 1.74e+01 1.54e-06 0.00e+00 

Mean 1.21e-02 2.74e+01 8.59e-02 3.37e-03 

STD 1.50e-02 6.97e+00 1.15e-01 7.33e-03 

Median 7.40e-03 2.60e+01 3.95e-02 0.00e+00 

IV. APPLICATIONS TO THE CONTROL OF DYNAMIC SYSTEMS 

A. Case-Study 1: Magnetic Levitation System 

The magnetic levitation system MAGLEV 33-006 from the 
Feedback Company (see Fig. 4) is a SISO process example 
used to validate the proposed metaheuristics-tuned MPC 
approach. Demonstrative results and analyses are given and 
discussed through this subsection. 

 

Fig. 4. Schematic Set-up of the MAGLEV 33-006 System. 

The position dynamics of the metal sphere of MAGLEV 
system is modeled as follows [28, 29]: 

 

 

2 32
0

2 2

0

a

u id y
m mg K

dt y y

 



 


          (21) 

where y  is the voltage reflecting the distance between the 

coil and the metal sphere, 0  , 0  and K are the sensor 

gain, coil resistor and electromechanical conversion gain, 

respectively, 0y  and  0 0i   are the voltage and the offsets 

current, respectively, and ag  is the acceleration of gravity. 

Taking  
T

x y y as a state vector, the continuous-time 

state-space representation of the system is given by: 

 
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0

2 2

1 0
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x x

u i
x g K

m x y
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
 
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          (22) 

With a sampling period of 5ms and while using the numeric 
values of the physical model parameters, a discrete-time model 
of the MAGLEV 33-006 plant is derived as follows: 

 

1

1.0108 0.0050 0.0142

4.3185 1.0108 5.6779

1 0

k k k

k k

x x u

y x



    
     

   


         (23) 

Since that the MAGLEV 33-006 system is SISO type, the 
unknown weighting matrices Q  and R  of the MPC approach 

are scalars. Therefore, the formulated optimization problem (5) 

has four decision variables, i.e. two horizons ( ,p cN N ) and two 

weighting coefficients ( 1= qQ , 1= rR ). For all proposed 

pPSO, GSA, TLBO and GWO algorithms, a maximum number 
of iterations equal to 100 and a population size of 40 are 
considered as common control parameters. For the algorithms 
with specific control parameters, i.e. pPSO and Genetic 
Algorithm (GA), the following set of coefficients is used: 

 pPSO [24]: 1 0.5c 
; 2 0.3c 

; 0.9w ; max 0.15 
 

min 0.001 
 and 0.5  ; 

 GA [30]:  crossover probability 0.85; mutation rate 
0.005; Min mutation rate 0.0005 and Max rate 0.25. 
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TABLE II.  OPTIMIZATION RESULTS FOR THE MAGLEV SYSTEM OVER 30 

RUNS 

 
GA pPSO GSA TLBO GWO 

Best 1.95e+01 7.68e+00 7.68e+00 7.67e+00 7.67e+00 

Mean 3.02e+01 7.68e+00 7.68e+00 7.68e+00 7.68e+00 

STD 1.62e+01 9.33e-04 1.98e-03 1.35e-03 1.27e-03 

Median 2.37e+01 7.68e+00 7.68e+00 7.68e+00 7.68e+00 

Duration  01:53:14 06:10:42 00:44:00 01:30:55 02:20:54 

*

pN  2.00e+01 2.00e+02 8.30e+01 2.70e+01 2.60e+01 

*

cN  1.10e+01 5.20e+01 3.90e+01 1.40e+01 1.40e+01 

*

1= qQ  3.21e+00 1.85e+02 9.59e+01 5.77e+01 8.56e+01 

*

1= rR  2.57e+00 1.72e+02 8.92e+01 5.26e+01 7.74e+01 

maxu  2.29e+00 2.29e+00 2.29e+00 2.29e+00 2.29e+00 

The resolution of the constrained optimization problem (5) 
leads to the results of Table II. 

From a practical point of view, when exceeding the value

max 2.3 u V , the ball will stack immediately to the coil which 

creates a constraint on the control action. For all numerical 
experimentations, a comparison with the GA metaheuristic 
[30] is investigated. From these results, all metaheuristics 
improve high performances in terms of stability, trajectories 
tracking and handling of constraints. All proposed algorithms 
have almost reached the same solutions quality in terms of time 
computation and optimality, except the GA one. The plant 
output and control action signals have similar shapes and one 
representation is shown in Fig. 5 and Fig. 6, respectively. 

An evaluation of the time-domain performances of the 
metaheuristics-tuned MPC for the MAGLEV process is given 
in Table III. It is shown that the TLBO-based method leads to 
high performance in terms of fastness and damping responses 
as well as the precision of the steady-state dynamics. 

B. Case-Study 2: Hydraulic System 

As depicted in Fig. 7(a), the DTS200 three-tank system is 
used to validate the proposed metaheuristics-tuned MPC 
approach for MIMO systems. 

 

Fig. 5. MAGLEV 33-006 System Response: TLBO-based Approach. 

 

Fig. 6. Metaheuristics-Tuned MPC Signal: TLBO-based Approach. 

TABLE III.  TABLE. PERFORMANCE EVALUATION OF THE TUNED MPC OF 

MAGLEV SYSTEM 

Algo. 
Settling time 

(ms) 
Overshoot (%) 

Steady-state 

error 

pPSO 135.00 10 0.00 

GSA 150.00 5 0.00 

TLBO 100.00 5 0.00 

GWO 120.00 8 0.00 

GA 090.00 12 0.00 

A simplified dynamic model for such a system is given as 
follows [31-33]: 

 

 

   
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1 1 1 3 1 3

2
2 3 2 3 2 3 2 2

3

1 1 3 1 3 3 2 3 2 3
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Q k h h sign h h

dt

dh
Q k h h sign h h k h
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dh
k h h sign h h k h h sign h h

dt


   




    



     
  (24) 

where 1h
, 2h

and 3h
 are the liquid heights inside the tanks. 

The interconnection parameters ik
 and iQ

 are defined as: 

'2
;  , 1,2,3 and 1,2

jn a

i i j

QS g
k a Q i j

A A
    

        (25)
 

where A  and nS  are the cross section of the tanks and the 

valves, respectively, ia  are the outflow coefficients, 1'Q and 

2'Q are the flow rates of the two pumps 1P  and 2P . 

A linearization of (24) around the point ( 1 0.4oph m
,

2 0.2oph m
, 3 0.3oph m

,
3

1' 32.24 6 / secopQ e m 
, 

3

2' 27.91 6 / secopQ e m 
) leads to the discrete-time model: 

1

0.9503 0.0012 0.0484 316.472 0.1359

0.0012 0.9065 0.0462 0.1359 309.2

0.0484 0.0462 0.9041 8.0659 7.7682

1 0 0

0 1 0

k k k

k k

x x u

y x



    
    

     
        


             (26) 
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To achieve a smooth pump control, the saturation behavior 

is avoided. The operational constraint 4 3

max 10  / secu m  is 

used as the maximum pumps flow rate. Since the DTS200 is a 
MIMO system, the decision variables Q  and R of problem (5) 

are matrices and chosen with the following expressions: 

11

22

0
0

0

q

q

 
  
 

Q

, 

11

22

0
0

0

r

r

 
  
 

R

         (27) 

So, the formulated MPC tuning problem for the system (24) 
is solved to optimize the following decision variables:  

  6

11 22 11 22, , , , ,
T

c pN N q q r r  x R
          (28) 

While using the same control parameters of the proposed 
algorithms, 30 independent runs of problem (5) lead to the 
statistical results of Table IV and dynamical responses of 
Fig. 7(b), Fig. 8 and Fig. 9. These demonstrative results show 
the superiority and effectiveness of the proposed metaheuristics 
in terms of damping responses, tracking capabilities and 
robustness under the operational constraints. All proposed 
algorithms have almost reached the same solution qualities. In 
the GA-based strategy, the MPC algorithm creates pump 

saturation, i.e. at pump 2, by reaching the constraint 
maxu as 

shown in Fig. 8 and Fig. 9. However, the GWO-based method 
achieves more efficient and smooth control without using an 
anti-windup mechanism. 

 
(a) Synoptic Schema of the DTS200 Three-Tank System. 

 

 

Fig. 7. (b) DTS200 Process Responses: GWO-based Approach. 

 

 

Fig. 8. DTS200 Process Responses: GA-based Approach. 

 

Fig. 9. Metaheuristics-Tuned MPC Signals: (a) GWO-based Approach and 

(b) GA-based Approach. 

The performances of the metaheuristics-tuned MPC for the 
DTS200 process are summarized in Table V. One can observe 
the superiority of the GWO-tuned MPC in terms of fastness 
and smoothness of time-domain responses. The steady-state 
errors remain null for all algorithms. For the GA-tuned MPC 
case, the predictive behavior of the control law is not observed. 
The system outputs’ variations are not smooth which presents a 
major drawback in the real-world implementation. In addition, 
the steady-state error for this tuning algorithm is not null in 
comparison with all others tuning metaheuristics. 

TABLE IV.  NUMERICAL OPTIMIZATION RESULTS FOR THE DTS200 

SYSTEM OVER 30 RUNS 

 
GA pPSO GSA TLBO GWO 

Best 5.51e+00 3.58e-02 2.85e-02 2.13e-02 2.13e-02 

Mean 5.95e+00 3.58e-02 4.50e-01 2.62e-02 2.81e-02 

STD 2.88e-01 7.69e-07 4.12e-01 3.37e-03 5.49e-03 

Median 5.98e+00 3.58e-02 2.50e-01 2.85e-02 2.85e-02 

Duration  04:47:28 03:38:04 04:11:17 10:02:29 04:52:11 

*

pN  1.00e+00 1.10e+01 6.00e+00 9.50e+01 1.00e+02 

*

cN  1.00e+00 1.00e+00 1.00e+00 2.80e+01 2.70e+01 

*

11q  5.27e+00 5.12e+01 4.64e+01 1.00e-08 3.14e-08 

*

22q  1.72e+00 7.88e+00 9.16e+01 1.00e-08 1.11e-07 

*

11r  9.04e+01 2.22e+01 4.21e+01 5.56e-01 1.66e+00 

*

22r  2.85e-02 4.88e+00 3.54e+01 1.56e-02 1.73e-01 

maxQ  1.00e-04 6.60e-05 8.35e-05 9.88e-05 9.88e-05 
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TABLE V.  TABLE. PERFORMANCE EVALUATION OF THE TUNED MPC OF 

DTS200 SYSTEM 

Algo. Settling time (sec) 
Overshoot 

(%) 

Steady-state 

error 

pPSO 98/T1; 27/T2 0 0.00 

GSA 60/T1; 52/T2 4 0.00 

TLBO 64/T1; 58/T2 5 0.00 

GWO 70/T1; 50/T2 1 0.00 

GA 92/T1; 23/T2 0 0.01 

V. CONCLUSIONS 

In this paper, an advanced metaheuristics-based approach 
for MPC parameters’ tuning has been proposed and 
successfully applied for SISO and MIMO systems. The 
proposed pPSO, GSA, TLBO and GWO algorithms are 
originally implemented under LabVIEW graphical software. 
These algorithms are firstly evaluated on a benchmark of 
standard test functions in order to be numerically validated for 
the formulated MPC tuning problems. All optimization results 
are discussed and compared in order to show the validity of 
such a LabVIEW-based implementation. The MPC tuning 
problem, involving the choice of the well-known prediction 
and control horizons as well as the weighting matrices, is 
formulated as a constrained optimization problem and solved 
using the proposed advanced metaheuristics. All demonstrative 
results are compared with those obtained by the classical GA-
based implementation. Applications to the position control of 
the MAGLEV system and level regulation of the three-tank 
DTS200 plants are successfully achieved. 

Future works deal with the real-world implementation of 
the metaheuristics-tuned MPC approaches using a compatible 
CompactRIO-RT board. The formulation of the proposed 
metaheuristics algorithms in an online tuning framework is 
also investigated for the hydraulic DTS200 process. 
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APPENDIX A: LABVIEW FRONT PANELS FOR MPC PARAMETERS’ TUNING 

 

Fig. A1  Advanced Metaheuristic Algorithms as Part of the Lab view Functions Palette. 

 

Fig. A2  Benchmark Functions as Part of the Lab view Functions Palette. 

APPENDIX B: BENCHMARK OF TEST FUNCTIONS 

All LabVIEW implementations of optimization functions are available for free access and download through the following National Instruments web site:  
HTTP://SINE.NI.COM/NIPS/CDS/VIEW/P/LANG/EN/NID/216789 
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