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The problem of discrete-time multi-agent systems governed by general MIMO dynamics is addressed. By employing a PID-like distributed protocol, we aim to solve two relevant consensus problems, namely the leaderless weighted consensus under disturbances and leaderfollower weighted consensus under time-varying reference state. Sufficient conditions for stability as well as a LMI approach to tune the controller gains are provided. The two consensus techniques are then applied to solve two issues concerning the wind farm (WF) power maximization problem under wake effect. Leaderless consensus aims at averaging out zero-mean wind disturbance effects on the optimal WF power sharing, while leader-follower control is employed to restore it in the case of power reference errors. Simulations are carried out on a small WF example, whose units are the NREL's CART wind turbines.

Introduction

In recent years much research effort has been devoted to the area of multiagent cooperative control because of its wide range of applications and potential benefits. Cooperation of a coordinated multi-agent network is sought via distributed algorithms as they present some interesting advantages over their centralized counterpart, e.g. avoiding single point of failure, reducing communication and computational burden, etc. The main problem in distributed coordination, known as consensus problem, is the one of achieving an agreement on some variables of interest, named coordination variables, of each agent via local interactions. These variables evolve according to a prescribed dynamics describing the physics of the problem, while interactions among agents are defined by a given communication graph. Finding a distributed protocol to solve the aforementioned problem has been extensively treated for single and double integrator dynamic agents, e.g. [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]. However, in a more general framework, general dynamics need to be considered in order to describe the agents behavior. The consensus problem for this latter case has been discussed for both continuous and discrete-time multi-agent systems. In addition, it can be further divided in two main classes of problems, namely leaderless and leader-follower ones. As far as the former is concerned, the most employed distributed protocol is given by a static state feedback law, also called P-like distributed control. One can cite, for instance, [START_REF] Xi | Consensus problems for high-order linear time-invariant swarm systems[END_REF][START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF][START_REF] Yang-Zhou | Partial stability approach to consensus problem of linear multi-agent systems[END_REF] for the continuous-time framework, and [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF][START_REF] You | Network topology and communication data rate for consensusability of discrete-time multi-agent systems[END_REF][START_REF] Su | Two consensus problems for discrete-time multi-agent systems with switching network topology[END_REF][START_REF] Ge | State consensus analysis and design for highorder discrete-time linear multiagent systems[END_REF] for the discrete one, where the consensus problem is led back to the one of simultaneously stabilizing multiple LTI systems. References [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF][START_REF] Su | Two consensus problems for discrete-time multi-agent systems with switching network topology[END_REF] also solve a leaderfollower problem where the leader has an autonomous time-invariant dynamics. Another interesting problem is the one of finding the optimal P-like protocol gain in order to improve consensus under system uncertainties, as in [START_REF] Li | Distributed robust control of linear multiagent systems with parameter uncertainties[END_REF], and disturbances as in [START_REF] Oh | Disturbance attenuation in a consensus network of identical linear systems: An approach[END_REF][START_REF] Li | On h∞ and h2 performance regions of multi-agent systems[END_REF], for continuous time systems, and [START_REF] Wang | H∞ consensus control for discrete-time multi-agent systems with switching topology[END_REF] for discrete-time ones. The proposed approaches usually make use of some H 2 or H ∞ constraints to be respected, and they are in general more involved than the one of simultaneously stabilizing multiple systems. For instance, [START_REF] Li | On h∞ and h2 performance regions of multi-agent systems[END_REF] provide necessary and sufficient conditions, for the continuous-time case to solve the consensus problem while guaranteeing some properties on the aforementioned norms. On the other hand, for discrete-time systems only sufficient conditions are provided using results from robust control as in [START_REF] Wang | H∞ consensus control for discrete-time multi-agent systems with switching topology[END_REF]. Dynamic distributed controllers are also proposed for consensus achievement based on local output measurements, e.g. [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]. In the continuous-time framework, [START_REF] Xi | Output consensus analysis and design for high-order linear swarm systems: partial stability method[END_REF] provide a controller with limited energy, while a general full order one is presented in [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: an h∞ approach[END_REF] to achieve some H ∞ performance. Other possible structures have been explored too. Indeed, given the common P-like controller, one can easily think of a more general PID-like structure. In continuous-time, for instance, [START_REF] Carli | A pi consensus controller for networked clocks synchronization[END_REF] propose a PI-like distributed algorithm for single integrator dynamic agents, and [START_REF] Ou | Distributed h∞ pid feedback for improving consensus performance of arbitrary-delayed multi-agent system[END_REF] provide a PID-like controller for general high-order SISO systems. Similar control design is applied to solve a leader-follower consensus under time-varying reference state, as in [START_REF] Ren | Multi-vehicle consensus with a time-varying reference state[END_REF], and in its sampled-data counterpart [START_REF] Cao | Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication[END_REF], where a PD-like protocol is given. Even though the presented literature review is nowhere near exhaustive, one can remark that poorer attention has been devoted to discrete-time dynamic protocols for general LTI MIMO systems, and this is on what we wish to focus our attention in the sequel. In this chapter our first contribution concerns the proposal of a PID-like distributed controller for the aforementioned systems, and we provide a possible way of tuning the controller parameters based on the solution of LMIs. The results here presented have been object of our previous work in [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF], where we treated the problems of leaderless consensus under the presence of disturbances, and leader-follower consensus under a time-varying reference state. Differently from the aforesaid work, here we propose a generalized control technique in order to treat weighted consensus problems, i.e. those multi-agent systems in which consensus has to respect predefined gains, which determine given distances among the coordination variables. Despite being similar to what we already presented, this additional step reveals to be necessary to tackle a great variety of real-world problems such as the one considered in this chapter, namely the wind farm distributed control problem.

Our second main scope of this work is indeed concerned with applying the proposed consensus techniques for the sake of controlling a wind farm. In particular, we focus on the issues related to the power maximization problem for those wind farms experiencing the so-called wake effect. In such case, it turns out that considering the aerodynamic coupling among the wind turbines (WTs) leads to potential power gains when maximizing the power production, (see e.g. [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF]), and justifies a growing interest in cooperative methods to control them. Typically the problem of power maximization under wake interaction is handled via a first step of optimization under the assumption of a static system. This approximation is mainly due to the high nonconvexity of the wake model that makes the problem hard to be treated directly under a control perspective. Here, cooperation is reached by considering a common WF optimization problem among the WTs rather than a more classic greedy WT optimization such as the maximum power tracking point (MPPT) operating mode. The overall WF control architecture thus exhibits a two-layer hierarchical structure, where the higher control level is concerned with providing optimal power references to the local WT controllers. These are then operated in decentralized mode, i.e. once received the power reference to track, no additional cooperation is performed among the WT controllers. In this chapter we claim that allowing additional cooperation also at the WT control level can lead to interesting benefits. In particular we show how cooperation at the lower level can be achieved via the consensus control techniques object of the first part of this chapter. Thus, the lower control considered in this work is thus said to be distributed. It is important to point out that wind farm power maximization can be alternatively seen as the problem of finding the optimal power sharing of the available wind source among the WTs. Similar power sharing problems for wind farms have been treated in [START_REF] Zhang | Fully distributed coordination of multiple dfigs in a microgrid for load sharing[END_REF][START_REF] Biegel | Distributed lowcomplexity controller for wind power plant in derated operation[END_REF][START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF]. Based on the common assumption that the available wind power is higher than the demanded one, and with no wake effect consideration, they employ different distributed control approaches to deal with the problem of meeting the desired WF power output. The distributed WF control approach here presented addresses the problem of allowing proper power sharing among the WTs, enhancing the respect of the imposed higher level power gains despite the system dynamics and the presence of wind disturbances. Even if it has some common ideas, it substantially differs from the mentioned references either in the problem addressed and in the control techniques proposed to tackle it. The developments here proposed have been suggested in our preliminary work of [START_REF] Gionfra | A distributed consensus control under disturbances for wind farm power maximization[END_REF]. Nonetheless, in this chapter, these are extended by considering new wind farm control applications and the theorems shown therein are here provided with the according proof. The remainder of the chapter is organized as follows. Sections 2 and 3 are devoted to the leaderless and leader-follower techniques respectively. The wind farm control problem is introduced in Section 4, while its control design is described in Section 5. Simulations are shown in Section 6. The chapter ends with conclusions and future perspectives in Section 7.

Leaderless Consensus Under the Presence of Disturbances

Problem Formulation

In the sequel, the reader may refer to Appendix 1 for basic notions and definitions concerning graph theory. We consider N identical agents governed by general discrete-time linear dynamics, according to

x + i = Ax i + B 2 u i + B 1 ω i , i = 1, . . . , N y i = Cx i (1) 
where

A ∈ R n×n , B 2 ∈ R n×l , B 1 ∈ R n×h , C ∈ R m×n , x i x i (k) ∈ R n and x + i x i (k + 1) ∈ R n
are respectively the agent state at the current step k, and at the next step k + 1, u i u i (k) ∈ R l is the agent control, ω i ω i (k) ∈ R h its disturbance, and y i y i (k) ∈ R m is the measured output and the variable on which agreement among the agents is sought. Moreover we require the system to satisfy l ≥ m, i.e. to have a greater or equal number of inputs with respect to its outputs. For the sake of leaderless consensus, a priori we do not require A to be Schur stable. Indeed, as shown in [START_REF] Ge | State consensus analysis and design for highorder discrete-time linear multiagent systems[END_REF], A has a role in determining the consensus function to which the agents converge under proper control. Here it can be thought to be assigned by a previous control design step. The agents can communicate on an undirected connected graph whose Laplacian matrix L has positive minimum nonzero and maximum eigenvalues respectively equal to λ L , and λL . Thus, we can address the problem of finding a distributed control law for u i such that yi /χi -yj /χj is minimized for i, j = 1, . . . , N with respect to the disturbance ω col(ω 1 , . . . , ω N ), and where weight χ i ∈ R + , i = 1, . . . , N , i.e. for the sake of simplicity of analysis we associate the same scalar weight to the whole controlled output vector. If error yi /χi -yj /χj = 0, i, j = 1, . . . , N , then we say that weighted consensus is achieved. By naming D diag( 1 /χ1, . . . , 1 /χ N ), we additionally define matrix L DL, which satisfies Lemma 3 in Appendix 1, and whose positive minimum nonzero and maximum eigenvalues are respectively λ L, and λ L. In this work we focus on local controllers of the form

x + ci = A c x ci + B c s i , i = 1, . . . , N u i = C c x ci + D c s i (2) 
where x ci x ci (k) ∈ R 2l is the agent controller state, and

A c = I l I l 0 l×l 0 l×l 2l×2l B c = (K i -K d ) K d 2l×m C c = I l 0 l×l l×2l D c = [(K p + K i + K d )] l×m (3) 
where

K p = [k p,ij ], K i = [k i,ij ], K d = [k d,ij
] ∈ R l×m are gain matrices to be tuned, and where s i s i (k) ∈ R m is defined as

s i N j=1 a ij y i χ i - y j χ j (4) 
Thus the closed-loop system for agent i has dimension n n + 2l. As shown by [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF], system (2) is a state representation of the discrete-time PID MIMO controller, whose z-transform between s i and u i is the transfer matrix

K p + K i z z-1 + K d z-1
z , where its generic element at position (i, j) is a PID whose gains are k p,ij , k i,ij , k d,ij . The problem can be now restated as the one of finding matrices B c , and D c such that the effect of disturbance ω on the weighted consensus is minimized.

Fast Weighted Consensus

In our previous work of [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF], we provided two possible ways to tune the distributed PID controller, the first of which being based on imposing a given H ∞ constraint via LMIs on the closed-loop multi-agent system in order to minimize the additive disturbance effect on weighted consensus. In this work though we only focus on the second proposed possible way of tuning, which is concerned with achieving a multi-agent system fast response with respect to exogenous signals, such as disturbances, to reach weighted consensus. The two tuning techniques are quite similar, and the reader may refer to the mentioned reference for further details on H ∞ consensus design. Let us introduce the following Definition 1. System (1) is said to achieve fast weighted consensus with performance index τ ∈ R + if for ω = 0, and any initial condition, lim k→∞ yi /χiyj /χj = 0 for i, j = 1, . . . , N , and (1 -e -1 )% of consensus is achieved in a maximum number of steps equal to τ .

Note that the same kind of definition can be considered for sampled-data systems, by saying that system (1) achieves fast weighted consensus with a time constant inferior to τ T s , where T s is the system sampling time. The following result is based on Theorem 4 of [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF] shown in the Appendix 2.

Theorem 1. Given the system described by [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], where N agents can communicate on an undirected connected graph; consider the distributed protocol of equations (2),(3),(4); then the systems achieve fast weighted consensus with performance index τ = -1 /log(ψ), where ψ ∈ R : 0 ≤ ψ < 1, if there exist two symmetric positive definite matrices P , P ∈ R n×n such that the LMI conditions of Theorem 4 are simultaneously satisfied for two LTI systems whose dynamic, input, and output matrices are respectively (A, B 2 , λ LC ), and (A, B 2 , λ LC ), and where the real constants (a, b) to be set in Theorem 4 are chosen to be (a, b) = (0, ψ).

Proof. In the sequel, the cited lemmas are shown in Appendix 1. The closed-loop dynamics for the generic agent i, by using (1), [START_REF] Xi | Consensus problems for high-order linear time-invariant swarm systems[END_REF], and by defining the augmented state

ξ i col(x i , x ci ) ∈ R n, and matrices C [C 0 m×2l ], B B 1 0 h×(2l) is given by      ξ + i = Âξ i + B N j=1 a ij ξ i χ i - ξ j χ j + Bω i y i = Cξ i where  = A B 2 C c 0 A c , B = B 2 D c C B c C (5)
By naming ξ col(ξ 1 , . . . , ξ N ), y col(y 1 , . . . , y N ), gathering together the closed-loop agents dynamic, and performing the change of coordinates ξ = (D ⊗ I n)ξ, it yields

ξ+ = I N ⊗ Â + DL ⊗ B ξ + I N ⊗ B ω ȳ = I N ⊗ C ξ (6) 
where we named ω (D ⊗ I h )ω, ȳ (D ⊗ I m )y, and we used point (i) of Lemma 6. Similar to [START_REF] Liu | Dynamic output feedback control for consensus of multi-agent systems: an h∞ approach[END_REF][START_REF] Wang | H∞ consensus control for discrete-time multi-agent systems with switching topology[END_REF], we define ζ i ȳi - 

δ + = L ⊗ I n I N ⊗ Â + L ⊗ B ξ + L ⊗ I n I N ⊗ B ω = L ⊗ Â + L L ⊗ B δ + 1 ⊗ 1 N N k=1 ξk + L ⊗ B ω = L ⊗ Â + L L ⊗ B δ + L ⊗ B ω
where we used points (i) of Lemma 2, 3, and 6. According to the (ii) point of Lemma 2, we employ the orthogonal matrix U ∈ R N ×N to define the change of coordinates: δ

U ⊗ I n δ, ω U ⊗ I h ω, ζ U ⊗ I m ζ
, so that the system equations in the new coordinates are given by

             δ+ = U ⊗ I n L ⊗ Â + L L ⊗ B (U ⊗ I n) δ + U ⊗ I n L ⊗ B ω = Λ ⊗ Â + ΛU LU ⊗ B δ + Λ ⊗ B ω ζ = U ⊗ I m I N ⊗ C (U ⊗ I n) δ = I N ⊗ C δ (7)
As shown in Lemma 2, and 3, being the last row and column of Λ zeros, and the last column of U LU zero, we can split [START_REF] Ge | State consensus analysis and design for highorder discrete-time linear multiagent systems[END_REF] in two by dividing the system variables as δ = col( δ1 , δ2 ), ω = col(ω 1 , ω2 ), and ζ = col( ζ1 , ζ2 ). It follows that, to conclude on system stability, we can study the reduced order system described by δ+

1 = I N -1 ⊗ Â + L1 ⊗ B δ1 + I N -1 ⊗ B ω1 ζ1 = I N -1 ⊗ C δ1 From Lemma 3, it exists an invertible matrix V ∈ R (N -1)×(N -1) : V -1 L1 V Λ = diag(λ 1 , . . . , λ N -1 ), where 0 < λ L ≤ λ i ≤ λ L for i = 1, . . . , N -1.
Thus we can define a further change of coordinates, such that δ1

V -1 ⊗ I n δ1 , ω1 V -1 ⊗ I h ω1 ,

and ζ1

V -1 ⊗ I m ζ1 . The latter yields

δ+ 1 = I N -1 ⊗ Â + Λ ⊗ B δ1 + I N -1 ⊗ B ω1 ζ1 = I N -1 ⊗ C δ1 (8) 
We can now separate [START_REF] Li | Distributed robust control of linear multiagent systems with parameter uncertainties[END_REF] in N -1 subsystems, each of them being governed by

     δ+ 1i = x+ 1i x+ 1,c i = (A + B 2 D c (λ i C)) B 2 C c B c (λ i C) A c x1i x1,c i + B 1 0 ω1i ζ1i = C x1i (9) 
System ( 9) can be equivalently seen as the closed-loop form of the two following systems

     x+ 1i = Ax 1i + B 2 ũi + B 1 ω1i ỹ1i (λ i C)x 1i ζ1i = C x1i , x+ 1,c i = A c x1,c i + B c ỹ1i ũi C c x1,c i + D c ỹ1i (10) 
where ỹ1i , and ζ1i are respectively the measured and controlled output variables of the controlled system. Thus, we can reformulate the problem as the one finding matrices B c , and D c such that for i = 1, . . . , N -1 the closed-loop system of ( 10) is Schur stable when ω 1i = 0. Moreover, since we are interested in speeding up consensus reaching with respect to exogenous signals, we want to push the overall closed-loop system eigenvalues closed to zero as much as possible. For this purpose we invoke Theorem 4, whose results can be directly applied to one generic system of the form of [START_REF] Li | On h∞ and h2 performance regions of multi-agent systems[END_REF]. Here it is shown that, given two constants a ∈ R, and b ∈ R + 0 , if there exists a symmetric positive definite matrix P i such that the given LMI condition in the theorem is satisfied, then system ( 10) is stable with all its eigenvalues laying in the complex plane region defined by

F D ( [λ], [λ]) : ( [λ] + a) 2 + [λ] 2 < b 2
where λ is the complex variable, (see Fig. 1). It is important to stress that the mentioned LMI conditions are affine in the system matrices, variables and matrix P i . We make use of this fact to provide sufficient conditions for which it exists a controller of the considered form such that the mentioned LMI is simultaneously verified for i = 1, . . . , N -1. Since the generic eigenvalue of L1 :

λ i is such that λ L ≤ λ i ≤ λ L, then it always exists α i ∈ R : 0 ≤ α i ≤ 1 so that λ i = α i λ L +(1-α i ) λ L.
Notice that the systems to be stabilized, appearing in the first set of equation in [START_REF] Li | On h∞ and h2 performance regions of multi-agent systems[END_REF], can be seen as one single system with an uncertain measurement matrix, whose parameter is λ i . In other words, C i λ i C, and ∃α i :

C i = α i C low + (1 -α i )C up ,
where C low λ LC , and C up λ LC , i.e. it can be written as a convex combination of the extreme matrices C low , and C up . Thus, as in [START_REF] Wang | H∞ consensus control for discrete-time multi-agent systems with switching topology[END_REF], we make use of classic results of robust linear control, and in particular by introducing an affine parameter dependent Lyapunov matrix P (α i ) α i P + (1 -α i ) P , where P , P are Lyapunov matrices solution of simultaneous LMI of Theorem 4 written for respectively C low , and C up . Thus, it is easy to show that if P , P exist, then the controller solves the problem ∀λ ∈ R : λ L ≤ λ ≤ λ L, and in particular for λ = λ i , for i = 1, . . . , N -1. Such a controller is easily found from the solution of the aforementioned LMI condition. Indeed among the LMI variables there are matrices B c , and D c , from which it is easy to deduce the PID gain matrices K p , K i , and K d by employing relations in [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]. Eventually, in order to place the closed-loop system eigenvalues closed to 0, we set a = 0, and b = ψ, where ψ : 0 ≤ ψ < 1. Thus, all system eigenvalues are guaranteed to have a module inferior to ψ. As a result, the system has the slowest time-constant inferior to -Ts /log(ψ). In terms of number of iterations, such performance is equal to a maximum value -1 /log(ψ) of iterations.

Remark 1. If the mentioned LMI has a solution, then the closed-loop multi-agent system is guaranteed to be stable. In addition, having employed a PID structure for the distributed controller may suggest that consensus should be reached for any constant disturbance vector ω. Unfortunately, this is not automatically guaranteed in the MIMO case by the mentioned LMI conditions, and in this framework it is only verified a posteriori. Note that the MIMO PID controller is not block diagonal. Nonetheless, if such LMI has a solution then, according to the well-known Francis equations, a necessary condition for the proposed controller to reject constant exogenous signals is that l ≥ m. Remark 2. If the mentioned LMI has a solution and consensus is reached, still the disturbance has a role in determining the common function to which the agents converge, called consensus function.

3 Leader-follower Consensus with Time-varying Reference State

Problem Formulation

The results shown in Section 2 can be easily applied to solve the following leaderfollower problem. Consider N + 1 discrete-time linear agents, whose dynamics are described by

x + 0 = Ax 0 + B 1 u 0 y 0 = Cx 0 , x + i = Ax i + B 2 u i , i = 1, . . . , N y i = Cx i ( 11 
)
where

A ∈ R n×n , B 1 ∈ R n×h , B 2 ∈ R n×l , C ∈ R m×n , x 0 x 0 (k) ∈ R n
is the state of the N + 1 agent, called leader, y 0 y 0 (k) ∈ R m is its measured output and the variable on which we want the follower measured and controlled outputs y i to converge, and u 0 u 0 (k) ∈ R h is a time-varying unknown control acting on the leader dynamics. We additionally suppose that l ≥ m. Concerning the remaining N follower agents, system description equivalent to (1) holds. The followers are assumed to communicate on an undirected connected graph whose Laplacian matrix is L. The leader can pass information to a subset of followers. If agent i receives information from the leader, then we set a i0 to 1, and 0 otherwise. Thus we can define M L + diag(a 10 , . . . , a N 0 ), which is symmetric and positive definite. Differently from the leaderless consensus case, without loss of generality we consider A to be Schur stable. The aim of the present problem is indeed not the one of stabilizing each single agent, but rather to steer the follower agents state to the leader one despite the presence of u 0 , which makes the leader dynamics time-varying. Moreover, as done for the leaderless case, we consider the general case of weighted consensus. In other words we aim at finding a distributed control law to minimize yi /χi -y0 /χ0 for i = 1, . . . , N , where χ i , χ 0 ∈ R + . In order to accomplish such objective we aim to employ the controller of form (2), ( 3), where we consider a modified variable s i to take into account the communication with the leader agent, according to

s i = N j=1 a ij y i χ i - y j χ j + a i0 y i χ i - y 0 χ 0 (12) 
Eventually, by using D, which we recall to be D = diag( 1 /χ1, . . . , 1 /χ N ), we can additionally define M DM, which satisfies Lemmas 4, and 5, and it has minimum and maximum positive real eigenvalues equal to λ M, and λ M respectively.

Fast Weighted Leader-follower Consensus

Similar to Definition 1, we provide the following Definition 2. System ( 11) is said to achieve fast weighted leader-follower consensus with performance index τ ∈ R + if for any initial condition, lim k→∞ yi /χi-y0 /χ0 = 0 for i = 1, . . . , N , when u 0 = 0, and (1-e -1 )% of consensus is achieved in a maximum number of steps equal to τ .

The following result, similar to Theorem 1, is based on Theorem 4 of [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF] in the Appendix 1.

Theorem 2. Given the system described by [START_REF] Wang | H∞ consensus control for discrete-time multi-agent systems with switching topology[END_REF], where N follower agents can communicate on an undirected connected graph, and one leader can communicate with a non-empty subset of followers; consider the distributed protocol of equations (2),(3), [START_REF] Xi | Output consensus analysis and design for high-order linear swarm systems: partial stability method[END_REF]; then the systems achieve fast leader-follower consensus with performance index τ = -1 /log(ψ), where ψ ∈ R : 0 ≤ ψ < 1, if there exist two symmetric positive definite matrices P , P ∈ R n×n such that the LMI conditions of Theorem 4 are simultaneously satisfied for two LTI systems whose dynamic, input and output matrices are respectively (A, B 2 , λ MC ), and (A, B 2 , λ MC ), and where the real constants (a, b) to be set in Theorem 4 are chosen to be (a, b) = (0, ψ).

Proof. The proof is similar to the one of Theorem 1. By defining error e i x i -x 0 χi /χ0, ξ i col(e i , x ci ), and ζ i Ce i the closed-loop system for the generic follower agent i is given by

     ξ + i = Âξ i + B N j=1 a ij ξ i χ i - ξ j χ j + a i0 ξ i χ i + χ i Bu 0 ζ i = Cξ i
where Â, B, C are defined in [START_REF] You | Network topology and communication data rate for consensusability of discrete-time multi-agent systems[END_REF], and B [-B 1 /χ0 0 h×2l ] . Defining u 0 1 N ⊗ u 0 , and u 0 (D ⊗ I n) ũ0 ,we then gather the N agent equations together

ξ + = I N ⊗ Â + MD ⊗ B ξ + I N ⊗ B ũ0 ζ = I N ⊗ C ξ (13)
We consider the change of coordinates ξ (D⊗I n)ξ, and define ū0 (D⊗I n) ũ0 , ζ (D ⊗ I n)ζ , system (13) can be rewritten in the new coordinates as

ξ+ = I N ⊗ Â + M ⊗ B ξ + I N ⊗ B ū0 ζ = I N ⊗ C ξ
From the definition of M, there exists an orthogonal matrix U : U MU Λ = diag(λ 1 , . . . , λ N ), where λ i ∈ R : λ i > 0 for i = 1, . . . , N , so that we can define the change of coordinates ξ (U

⊗ I n) ξ, ũ0 (U ⊗ I h )û 0 , ζ (U ⊗ I m ) ζ.
By applying similar calculation as in the previous sections, the global system in the new coordinates is

ξ+ = I N ⊗ Â + Λ ⊗ B ξ + I N ⊗ B û0 ζ = I N ⊗ C ξ ( 14 
)
Splitting [START_REF] Carli | A pi consensus controller for networked clocks synchronization[END_REF] in N subsystems yields the following equation for subsystem i

     ξ+ i = (A + B 2 D c (λ i C)) B 2 C c B c (λ i C) A c ξi + -B1 /χ0 0 û0 ζi = C êi (15) 
where ξi col(ê i , xci ). System (15) can be equivalently described as the connection of the two following systems

     ê+ i = Aê i + B 2 ûi -B1 /χ0 û0 ŷi (λ i C)ê i ζi = C êi , x+ ci = A c xci + B c ŷi ûi C c xci + D c ŷi ( 16 
)
The rest of the proof is similar to the last part of the one of Theorem 1. In particular, since system (15) can be seen as one system with uncertain parameter

λ i ∈ [λ M, λ M],
we make use of LMI conditions of Theorem 4, and we impose them to be simultaneously satisfied for two systems at the vertexes of the polytope having matrices (A, B 2 , λ MC ), and (A, B 2 , λ MC ). The proof is concluded as for Theorem 1.

Remark 3. A similar remark to the one of Remark 1 holds for the leader-follower consensus case too. In particular, having imposed a PID structure for the distributed controller is not sufficient to guarantee rejection of constant u 0 vectors in the MIMO case. A necessary condition though is given by l ≥ m.

Wind Farm Control Problem

Wind Turbine Model

The wind turbine model describes the conversion from wind power to electric power. The wind kinetic energy captured by the turbine is turned into mechanical (a) CART power coefficient.

K r D s K s J r T r ! r T ls T hs K g J g ! g

Generator side side

Rotor energy of the turbine rotor, turning at an angular speed ω r and subject to a torque T r . In terms of extracted power, it can be described by the nonlinear function P r = ω r T r = 1 /2ρπR 2 v 3 C p (λ, ϑ), where ρ is the air density, R is the radius of the rotor blades, ϑ is the pitch angle, v is the effective wind speed representing the wind field impact on the turbine, λ is the tip speed ratio given by λ = ωrR v . C p , nonlinear function of the tip speed ratio and pitch angle, is the power coefficient. This is typically provided in turbine specifications as a look-up table. As far as the turbine parameters are concerned, in this work we make use of the CART (Controls Advanced Research Turbine) power coefficient shown in Fig. 2a. This turbine is located at NREL's National Wind Technology Center. Nonetheless, we employ a polynomial approximation of the latter for the purpose of the synthesis of the controller. Referring to a two-mass model as in [START_REF] Boukhezzar | Nonlinear control of variable speed wind turbines for power regulation[END_REF], and as shown in Fig. 2b, then, the low speed shaft torque T ls acts as a braking torque on the rotor, the generator is driven by the high speed torque T hs , and braked by the generator electromagnetic torque T em . The drive train turns the slow rotor speed into high speed on the generator side, ω g . Finally J r is the rotor inertia, K r , and K g damping coefficients, n g the gear ratio, and J g the generator inertia. The dynamics of the WT is thus described by J r ωr = T r -K r ω r -T ls , and J g ωg = T hs -K g ω g -T em . In this paper we also consider a first order system to model the pitch actuator, endowed with a sigmoid function σ : R → [ϑ min , ϑ max ] to model the pitch saturation. In addition, for ease of further development we can bring the system equations back on the low speed side, obtaining the simplified overall model

       τ ϑ θs = -ϑ s + ϑ r ϑ = σ(ϑ s ) J t ωr = P r (ω r , ϑ, v) ω r -K t ω r -T g (17) 
where

T g n g T em , J t J r + n 2 g J g , K t K r + n 2 g K g ,
and where we used the relation n g = ωg /ωr = T ls/T hs . Eventually, neglecting the generator losses, the electric power delivered to the grid is P = T g ω r . The system inputs are T g , and ϑ r , while the wind speed v acts as a disturbance. The feasible domain of the state variable is X

(ω r , ϑ) ∈ R 2 : ω r ∈ [ω r,min , ω r,max ], ϑ ∈ [ϑ min , ϑ max ] .

Problem Statement

In the sequel, for consistency of notation, we add the index i to the WT variables described in the previous subsection when referring to turbine i variables, and we drop it when the results hold for any WT. At low wind speed, WTs are usually operated according to the well-known MPPT algorithm. The maximum power that a WT can extract from the wind is thus attained for a constant value of ϑ, named here ϑ o , depending on the turbine C p , and by controlling the WT to track the optimal tip speed ratio value

λ o arg max λ P r (v, ϑ o , λ) = arg max λ C p (λ, ϑ o ). We name C o p C p (λ o , ϑ o ), and P o (v) P r (v, ϑ o , λ o ).
For the considered CART turbine λ o ∼ = 8. Nonetheless, when considering the wake effect in the optimization step of a farm of N WTs, the optimal value of C p related to the generic turbine i is such that C p,i ≤ C o p . As a matter of fact, this implies that a turbine i should track an optimal power reference P i (v i ) that satisfies P i (v i ) ≤ P o i (v i ), i.e. it has to be deloaded if maximum wind farm power is seek. The reader may refer to the works of e.g. [START_REF] Gebraad | A model-free distributed approach for wind plant control[END_REF][START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF] to see how values C p,i can be computed. According to the usually employed wake models, as well as the following

Assumption 1 For i = 1, • • • , N , v i is such that P i (v i ) < P n
, where P n is the nominal WT power.

Then, the static optimization step needs to be run only when the wind direction changes, as optimal values C p,i do not depend on the wind speed value, [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF].

Assumption 2

The average wind direction is considered to be slowly varying with respect to the system dynamics. Thus, it is considered to be constant.

We can formulate the overall WF control problem in two subproblems, the first of which being Problem 1. Consider the system described by [START_REF] Cao | Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication[END_REF]. Given an effective wind speed signal v(t), and a time-varying reference trajectory P ref (t), verifying P ref (t) ≤ P o (t) ∀t ≥ 0, find the signals (ϑ r (t), T g (t)) ∀t ≥ 0 such that lim t→∞ |P ref (t) -P (t)| = 0 for every initial condition (ω r (0), ϑ(0)) ∈ X : P (0) ≤ P o (0).

Let us now assume that each local WT controller can measure, or estimate, the effective wind speed v m,i (t) such that v i (t) = v m,i (t) + v d,i (t) ∀t ≥ 0. Thus v d,i represents a nonmeasurable time varying disturbance for turbine i.

Assumption 3

We consider small zero-mean disturbances v d,i with respect to v m,i , and slowly-varying with respect to the dynamics of [START_REF] Cao | Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication[END_REF].

Each WT can compute its power reference, as described in [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF], from its maximum available power P o i , according to

P f w i P i (v m,i ) = C p,i C o p P o i (v m,i ) (18) 
which is optimal in nominal conditions, i.e.

P i (v i ) = C p,i C o p P o i (v i ) when v d,i ≡ 0.
We can additionally require the WTs to meet an optimal relative power sharing condition given by

P i χ i = P k χ k i, k = 1, • • • , N (19) 
Indeed, by naming P o ∞ the maximum power that a WT could extract from the wind if there was no wake effect, from [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF] we have that Pi /C p,i =

P o i /C o p = γ i P o ∞/C o p , i = 1, • • • , N , thus Pi /γiC p,i = P k/γ k C p,k , i, k = 1, • • • , N . We name χ i γ i C p,i ∈ R +
, and where γ i = P o i /P o ∞ = ( vi /v∞) 3 are constant values for any value of v ∞ according to Assumptions 1, and 2, being v ∞ the free stream wind speed. In the sequel, in order to make the difference with condition ( 19) clear, we will refer to (18) as the absolute power reference. This is optimal if the corresponding v d,i = 0. Despite being redundant information with respect to [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF] in nominal conditions, as it will be made clear in the sequel, condition [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF] provides additional signals that can be exploited when the system is subject to disturbances. We can now state the second subproblem.

Problem 2. Given N identical WTs, allowed to communicate on an undirected connected graph G; given optimal values C p,i , and χ i , i = 1, . . . , N ; find P ref i (t) ∀t ≥ 0, i = . . . , N such that each P i tracks [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF], while minimizing the error | Pi /χi -Pj /χj|, i, j = . . . , N , under the presence of v d,i (t).

The idea behind Problem 2 is to exploit additional information concerning optimal WTs relative power values in order to even out the system disturbances from the optimal power sharing defined by the higher optimization step.

Wind Farm Control Design

Wind Turbine Control for Deloaded Mode

According to the WF optimization problem, it turns out that every WT causing a reduction of available wind power of another one, is very likely to be subject to an optimal C p value such that C p,i < C o p , i.e. strictly inferior. Thus, WTs whose C p,i verifies C p,i = C o p should simply perform classic MPPT regardless the disturbances of the system and the other WTs operating points, and they can be controlled with classic local controllers. In the sequel we only consider WTs that have to be strictly deloaded with respect to their P o i . In this subsection we proposed an approximated asymptotic output tracking (AOT) technique to control a WT in deloaded mode, and it is based on the work of [START_REF] Boukhezzar | Nonlinear control of variable speed wind turbines for power regulation[END_REF]. However, differently from [START_REF] Boukhezzar | Nonlinear control of variable speed wind turbines for power regulation[END_REF], power tracking is here achieved by employing both the rotor angular speed and the pitch angle. The local WT controller is composed of a first loop to control ω r . We impose a first order dynamics to the rotor speed tracking error ε ω ω ref -ω r , i.e. εω + a 0 ε ω = 0 by choosing a 0 ∈ R + . If we name w a 0 ω ref + ωref , this is attained by using [START_REF] Cao | Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication[END_REF] as

T em = T r -(K t -a 0 J t )ω r -J t w (20) 
We choose to regulate the power output P by acting on the pitch angle, and by imposing a first order dynamics to the electric power tracking error ε p P ref -P , i.e. εp + b 0 ε p = 0 [START_REF] Biegel | Distributed lowcomplexity controller for wind power plant in derated operation[END_REF] where b 0 ∈ R + . This is attained via feedback linearization (FL) on ( 17) by choosing the feedback linearizing input

ϑ r = 1 β(ω r , ϑ s , v) Ṗ ref -ω r ∂T r ∂v v + ω r τ ϑ ∂T r ∂ϑ dσ dϑ s ϑ s + J t ẇω r + 2(K t -a 0 J t )ω r -T r + J t w -ω r ∂T r ∂ω r (-a 0 ω r + w) + b 0 ε p ( 22 
)
where ∂T r ∂ω r , ∂T r ∂ϑ , and ∂T r ∂v are functions of (ω r , ϑ, v), and

β ωr τ ϑ dσ dϑ s ∂T r ∂ϑ .
As pointed out in our previous work [START_REF] Gionfra | Combined feedback linearization and mpc for wind turbine power tracking[END_REF], there exist points in which β = 0, called singular points, i.e. points in which [START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF], feedback linearizing input with respect to output P , is not well-defined. These points are determined by the

solution of df rac∂C q ∂ϑ(ω r , ϑ, v) = ∂C q ∂ϑ (λ, ϑ) = 0, being C q C p λ , since β(ω r , ϑ s , v) = ωr 2τ ϑ ρπR 3 v 2 dσ dϑ s ∂C q ∂ϑ (ω r , σ(ϑ s ), v) ∼ = ωr 2τ ϑ ρπR 3 v 2 ∂C q ∂ϑ (ω r , ϑ, v) in
the domain of interest of ϑ, and ω r , v > 0. In Fig. 3a the white area represents

Λ = {(λ, ϑ) : (ω r , ϑ) ∈ X ∧ β < 0}.
If ω ref is chosen to let λ be in a neighborhood of λ o , and ϑ > ϑ o in order to deload the WT, where ϑ o 0 • for CART turbine, then it is clear that β is negative-valued in the points of functioning of interest. In order to ensure that the trajectories of the closed loop system, defined by ( 17), ( 20), [START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF], do not pass through singular points, we consider a modified FL function for ϑ r , by replacing the β function appearing in [START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF] with

β ω r 2τ ϑ ρπR 3 v 2 dσ dϑ s ∂C q ∂ϑ (λ, ϑ) -ε(λ, ϑ) ε(λ, ϑ)    max ∂C q ∂ϑ (λ, ϑ), 0 if ∂C q ∂ϑ (λ, ϑ) = 0 1 otherwise ( 23 
)
where 1 is a small positive value, and > 1 is a tunable parameter to let some margin to have β negative-valued in the system trajectories. Thus we obtain an expanded negative-valued area Λ = (λ, ϑ) : (ω r , ϑ) ∈ X ∧ β < 0 , shown in Fig. 3b. The idea is thus to perform an approximated FL only when the system trajectories come close to a singular point. Clearly, in this case, the chosen ϑ r no longer guarantees satisfaction of [START_REF] Biegel | Distributed lowcomplexity controller for wind power plant in derated operation[END_REF]. Nonetheless, under proper choice of ω ref , and deloading technique, approximation (23) may occur only during transients. We can summarize the results in this subsection by stating the following Theorem 3. Given system [START_REF] Cao | Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication[END_REF], controlled via [START_REF] Zhang | Fully distributed coordination of multiple dfigs in a microgrid for load sharing[END_REF], and [START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF], where the β function is replaced with [START_REF] Gionfra | A distributed consensus control under disturbances for wind farm power maximization[END_REF]. For any initial condition (ω r (0), ϑ(0)) ∈ Λ, the (a) Λ, white area, set of (λ, ϑ) such that β(λ, ϑ) < 0.

(b) Λ, white area, set of (λ, ϑ) such that β(λ, ϑ) < 0. system trajectories are bounded if parameters b 0 , 1 , and are chosen such that

1 > 0 is sufficiently small, > 1, and b 0 > -1-. In addition, if ∃ t ≥ 0 such that ∂C q ∂ϑ (λ(t), ϑ(t)) < 0 ∀t ≥ t, then lim t→∞ |P ref (t) -P (t)| = 0.
Proof. First of all, initial conditions in Λ imply β(0) < 0, then 1 > 0, > 1 allow β(t) < 0 ∀t ≥ 0. In particular β(t) = 0 ∀t ≥ 0, thus ( 22) is well-defined. Note that initial conditions considered in Problem 1 satisfy β(0) < 0, belonging to Λ shown in Fig. 3b. The system dynamics in closed loop is given by εp

= -b 0 + 1 - β β + β ε ε p + 1 - β β + β ε ϕ(ς) (24) 
where we named β ε β -β, and ϕ(ς) the function composed of all the terms appearing in the right factor of ( 22) deprived of the term b 0 ε p , and being

ς (ω r , v, ϑ s , v, w, ẇ, Ṗ ref ). The term 1 - β β + β ε ϕ(ς)
is bounded in the trajectories thanks to the choice of β , and being ϕ a continuous function on a compact set. The latter is compact because the wind is limited, w, ẇ, Ṗ ref are chosen to be so, ω r is bounded thanks to [START_REF] Zhang | Fully distributed coordination of multiple dfigs in a microgrid for load sharing[END_REF], and term dσ dϑ s ϑ s is bounded.

Thus it will be considered as a bounded input of [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF] to simplify the analysis.

Finally system [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF] with ϕ(ς) ≡ 0, given by εp =

           -b 0 + 1 - 1 1 ε p if β = 0 -b 0 + 1 - 1 1 - ε p if β > 0 -b 0 ε p otherwise ( 25 
)
is stable if, for instance, we choose b 0 > -1 -, and 1 < 1. This can be proved by choosing V (ε p ) 1 2 ε 2 p as a common Lyapunov function for the family of systems ( 25), (see [START_REF] Liberzon | Switching in systems and control[END_REF]). Eventually, if for some t ≥ 0 : ∂C q ∂ϑ < 0 ∀t ≥ t, then [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF] reduces to εp = -b 0 ε p , thus P → P ref for t → ∞.

Remark 4. Concerning ω ref , we make the choice to use the MPPT signal

ω o r = λ o v
R sufficiently filtered of its high frequency components. There are different motivations to support this choice. First of all, if v varies rapidly so it does ω o r , then if we consider ω ref = ω o r , its variation would directly effect ϑ r via [START_REF] Baros | Distributed torque control of deloaded wind dfigs for wind farm power output regulation[END_REF], and in turns ϑ. This fact risks to make ϑ hit the saturation constraints of the sigmoid function, and more in general, to not let the constraints on θ be respected, as in this framework they are only verified a posteriori. Secondly, if ω ref varies too rapidly, by empirical results it turns out that the closed-loop system trajectories are more likely to approach singular points, letting the activation of ε(λ, ϑ) defined in [START_REF] Gionfra | A distributed consensus control under disturbances for wind farm power maximization[END_REF], and not allowing satisfaction of [START_REF] Biegel | Distributed lowcomplexity controller for wind power plant in derated operation[END_REF]. On the other hand, filtering ω o r let ( 22) be defined, i.e. it fulfils the requirement of tracking the desired deloaded power reference. The physical explanation of this fact is that for a given deloaded P ref there exist infinite pairs (ω r , ϑ) ∈ X that let a WT track it, (see e.g. [START_REF] Yingcheng | Review of contribution to frequency control through variable speed wind turbine[END_REF][START_REF] Žertek | Optimised control approach for frequencycontrol contribution of variable speed wind turbines[END_REF]), and by filtering ω o r , we are simply considering another possible choice of couples (ω r , ϑ) than the one in which ω r = ω o r .

Disturbance Effect and Additional Local Control Settings

Assumption 4 Trajectories of the closed-loop system described by ( 17), (

verify ∂C q ∂ϑ < 0.

As previously mentioned, we assume that turbine i local controller is able to measure v m,i such that v i = v m,i + v d,i . The effect of v d,i on the closed loop dynamics can be thus approximated as

εp,i = -b 0 ε p,i + µ 1 ( ζi )v d,i + µ 2 ( ζi )v 2 d,i + µ 3 ( ζi ) vd,i (26) 
obtained via first order Taylor expansion of the functions depending on v i , in

a neighborhood of v m,i , e.g. T r (v i ) ∼ = T r (v m,i ) + ∂T r ∂v (v m,i )v d,i
, and where ζi (ω r,i , ϑ i , v m,i , vm,i ). Functions µ 1 , µ 2 , µ 3 are not reported here for the sake of brevity. According to Assumption 3 we neglect µ 3 ( ζi ) vd,i . Moreover, by numerical simulation, the contribution of term µ 2 v 2 d,i can be neglected with respect to µ 1 v d,i . On the compact set on which µ 1 is defined, the function satisfies µ 1,min ≤ µ 1 ≤ 0, thus in the sequel we treat µ 1 as a parametric uncertainty, and we drop its dependency on ζi for ease of notation. Being interested in a discrete-time communication set-up among the WTs we shall consider system (26) discretized at sampling time T s , given by

ξ i (k + 1) P i (k + 1) = 0 0 -1 (1 -T s b 0 ) ξ i (k) P i (k) + 1 (1 + T s b 0 ) P ref i (k) + 0 µ 1 T s v d,i (k) (27) 
where we used Euler approximation,

Ṗ ref i ∼ = (P ref i (k) -P ref i (k -1)) T s
, and we 27) is required to track the optimal power reference provided by the higher optimization step according to [START_REF] Gionfra | A distributed pid-like consensus control for discrete-time multi-agent systems[END_REF]. For the moment, let us assume that P f w i , i = 1, . . . , N are not affected by wind measurement error, i.e. P f w i (v i ). Because of the presence of v d,i in [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF], affecting the controlled WT dynamics, simply setting P ref i = P f w i does not guarantee P i to asymptotically converge to P f w i , nor the satisfaction of relationship ( 19), describing the optimal relative power sharing values among the WTs. Under the assumption of communicating WTs on an undirected connected graph G, whose associated Laplacian matrix is L, one could think to exploit the leaderless PIDlike distributed protocol developed in Section 2 to reduce the effect of v d on the weighted consensus among the WTs, by acting on P ref i . Nonetheless, as pointed out in Remark 2, still the consensus function to which the system converges depends in the disturbance signals. As a result, even if relative distances on power values according to [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF] are respected thanks to consensus control, there is no general guarantee for the power values to reach P f w i . This is why before continuing our analysis on WF consensus control, we introduce an additional local PI loop to system [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF] to let convergence to the absolute power value P f w i . Note that the two integral actions, namely the internal loop one controlling P i to P f w i , and the distributed control one controlling P i to satisfy condition [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF], are not in contradiction if P f w i are measurement error free. Indeed, by naming P f w col(P f w 1 , . . . , P f w N ), then by construction, LDP f w = 0, where recall

named ξ i (k) P ref i (k -1). System (
D diag( 1 χ1 , • • • , 1 χ N )
, which is exactly the weighted consensus condition seek by the distributed protocol. As a consequence, in such case of perfect information on P f w i , the distributed consensus is not necessary to let condition (19) be satisfied, as it is already ensured by the internal PI. However, even in this case, consensus control can be employed to enhance closed-loop performance. The above discussion holds for the case in which the wind disturbance v d,i only affects the system equations as shown in [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF]. However, v d,i has also a role in the computation of P f w i , since in reality we have P f w i (v m,i ). In this case, condition LDP f w = 0 generally does not hold, i.e. the power references provided to the local WT controller may not let satisfaction of the optimal relative power sharing. Under these circumstances, the distributed PID does have a role in forcing weighted consensus among the WTs. Moreover, the two integral actions may come to a conflict. In the following we decide to give priority to consensus seeking by allowing the distributed control action modify the local error P f w i -P i . This is achieved by considering the dashed arrow shown in the control scheme of Fig. 4, where the overall WT control is illustrated. The idea behind this choice is that zero-mean disturbances on the local power references P f w i can be globally evened out by enforcing relative power distances among the network of wind turbines. By naming K l I , and K l P respectively the integral, and proportional gains of the PI, we can write [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF] in closed-loop as x i (k + 1) = Ax i (k) + B 2 u i (k) + 

B f w P f w i (k) + B w v d,i (k), where A     1 0 -K l I T s 1 0 -K l P (1 + T s b 0 ) -1 (1 -Tsb0 -K l P (1 + T s b 0))     , B w   0 0 µ 1 T s   B 2   K l I T s 1 (1 + T s b 0 )   , B f w   K l I T s K l P (1 + T s b 0 )K l P   (28) 
and where we named x i col(δ i , ξ i , P i ), being δ i the state of the local integral action, P f w i a forward signal, and u i is left as a degree of freedom to let distributed control. Note that other choices for the introduction of u i in the internal WT control loop would have been possible.

Wind Farm Distributed Protocols

Leaderless Consensus As previously mentioned, consensus control over the WF can be employed to let satisfaction of relationship [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF] over a set of N controlled WTs of the form of ( 28). This can be done by making use of the tools concerning leaderless consensus shown in Section 2. This is simply obtained by choosing as A, B 2 the matrices of ( 28), C = [0 0 1], i.e. P i is the measured and controlled output, and B 1 = [B f w B w ], i.e. P f w i , and v d,i are both considered as disturbances with respect to the weighted consensus. P f w i would be in average different from the optimal one. Unfortunately under these circumstances, there is no hope for the optimal absolute power sharing to be satisfied by the only means of consensus control, even if optimal relative power sharing condition [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF] is satisfied. This is due to the fact that in a network of agents communicating on an undirected graph, each of them has a role in determining the consensus function to which they converge. Thus, WTs affected by nonzero-mean wind disturbance would make the whole network deviate from the optimal absolute power values in average.

Leader-follower Consensus

Since leaderless consensus technique fails to restore optimal absolute power references when some WTs in the wind farm are subject to nonzero-mean wind measurement errors, if the WTs being affected by nonzero-mean wind disturbances can be detected and isolated then, for instance, the leader-follower techniques developed in Section 3 can be employed to restore the optimal power references in the concerned WTs. This could be achieved by letting the faulty WTs be follower agents, and the unfaulty WT network serve as a leader. If, for the sake of simplicity, we consider only one WT not to be affected by absolute power reference error, and we thus let it be the only leader in the WF, then Theorem 2 can be applied by choosing A, B 2 the matrices of ( 28), C = [0 0 1], and B 1 = B f w . In addition to what shown in the leader-follower development of Section 3, in this case either the followers and the leader are additionally subject to disturbances via matrix [B f w B w ], i.e. P f w i , and v d,i are both considered as disturbances with respect to the weighted consensus.

Simulation

In the following we propose some numerical simulations to show the overall WF control performance in both leaderless and leader-follower modes. In the considered simulation test, the system is subject to two sources of model-plant mismatches. The first one is caused by differences between the polynomial C p approximation used for the AOT-based controller design and the CART power coefficient given as a lookup table, and shown in Fig. 2a. The second one is given by the way v d,i acts on WT i. Indeed, each v d,i affects the according WT i dynamics via the mechanical power P r . This causes an additional mismatch as recall that v d,i effect was approximated in Subsection 5.2, leading to the approximated model of system [START_REF] Gionfra | Hierarchical control of a wind farm for wake interaction minimization[END_REF]. We consider a WF composed of N = 6 WTs aligned one after the other according to the wind direction. We suppose the 6-th WT to be the last one of the row according to the wind direction. Thus it is required to always operate in classic MPPT mode. In the following tests, it is supposed to not intervene in the consensus control, and its power signals will not be reported. Concerning leaderless control, the remaining WTs are supposed to communicate on the undirected graph shown in Fig. 6a. The free stream wind speed v ∞ blowing in front of WT 1 is chosen to have the profile of Fig. 5a. The other wind speed signals v i , i = 2, . . . , 5 are obtained from v ∞ according to the wake model, (e.g. see [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF]). The local WT PI gains are set equal to K l P = 0.2, and K l I = 0.8, while the PID gains for the aforementioned multi-agent system found via Theorem 1 are K p = 0.0072, K i = -0.0638, K d = 0.0013, and they allow weighted consensus achievement with performance index τ = 24.5. The disturbance v d col( d,1 , . . . , d,5 ) affecting the system is chosen to be the one shown in Fig. 5b. In this case P f w is computed on the available measurements v m,i . Thus, they are corrupted by measurement error, and they do not respect the optimal relative power sharing condition [START_REF] Park | Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[END_REF]. For this simulation we show signals LDP , DP , and P , where P col(P 1 , . . . , P 5 ). Indeed consensus is reached when LDP = 0, which can be alternatively seen as weighted power signals DP reaching a common value, or as power signals P reaching defined constant relative distances. These are illustrated in Fig. 7, from which we can also notice that the aforesaid model-plant mismatches, as well as temporary dissatisfaction of Assumption 4, cause persistent small oscillations around the reached weighted consensus. For the sake of clarity, LDP , and DP are also shown in a zoomed window in Fig. 8. Eventually, we aim at showing how optimal absolute power references P i can be restored via leader-follower consensus when some WTs in the WF are affected by power reference error. In order to do, we consider a simple example in which the only first WT in the row is error-free, and thus acts as the leader. In such case, we consider the WF communication graph to be modified according to Fig. 6b, where the leader, WT 1, can communicate with WT 2 and WT 5 directly. The remaining WTs from 2 to 5 are followers and they can communicate on an undirected connected graph. We suppose the leader v d,1 to be equal to the one shown in Fig. 5b, whereas the followers wind disturbances are nonzeromean signals of the form of v d,i = vd,i + ṽd,i , where ṽd,i is a zero-mean signal, and vd,i a constant nonzero value. ṽd,i , i = 2, . . . , 5 are supposed to be equal to the corresponding i-th signal in Fig. 5b used in the previous simulation, while vd,i are such that P f w 2 = 80%P 2 , P f w 3 = 60%P 3 , P f w 4 = 30%P 4 , P f w 5 = 40%P 5 , i.e. without leader-follower control they would track a not optimal power reference. By employing fast leader-follower weighted consensus technique, the PID gains are K p = 0.0082, K i = -0.0656, and K d = -0.0028, and they allow a performance index equal to τ = 24.5. Simulation results are illustrated in Fig. 9, where the red dashed signals represent the original optimal power reference P i , and the blue solid line the obtained power output via consensus control. We are able to conclude that consensus control shows good performance in restoring the optimal absolute power values. Small persistent errors are due to modelplant mismatches, by the fact that the PID structure cannot reject general timevarying reference state, and because wind disturbance ṽd,i also affect the system consensus function.

Conclusion

We presented a PID-like distributed protocol for general LTI MIMO discretetime agents. By employing LMIs we showed how the controller gains can be tuned to solve two different, yet similar, problems, namely a leaderless under system disturbances and a leader-follower under time-varying reference state weighted consensus problem. The distributed control approaches were then applied to treat some issues concerning the wind farm power maximization problem under wake effect. In order to do so, first an approximated AOT control technique allows a WT to track a general deloaded power reference by acting on both the rotor speed and the pitch angle. Leaderless control technique was then used to average out zero-mean wind disturbances from the optimal WF power sharing, while we showed how leader-follower control can be applied to restore the optimal power sharing in the case of power reference errors. In the near future it would be interesting to consider other LMI approaches, such as H ∞ loop-shaping, to tune a distributed controller that could take into account prior knowledge about system disturbances for a better rejection on consensus reaching. Concerning the wind farm control problem, consensus control represents a fairly new approach, and ti may lead to a great variety of other applications, such as the distributed estimation of the wind filed within a wind farm.

with associated eigenvector 1; (ii) consider the orthogonal matrix U ∈ R N ×N defined in Lemma 2, then U LU = L1 0 (N -1)×1 * 0

where * indicates a generally nonempty row, L1 ∈ R (N -1)×(N -1) 0, and its eigenvalues are real.

Proof. We have that DL = D 1 /2 (D 1 /2 LD 1 /2 )D -1 /2 , thus DL is similar to a symmetric semi-definite positive matrix, so its eigenvalues are positive real. L preserves the 0 eigenvalue, and its associated eigenvector 1, as DL1 = 0. 0 is a simple eigenvalue as D is nonsingular, and L has one simple 0 eigenvalue by hypothesis. The last column of U LU has all its entries equal to 0 because the last column of U is 1 / √ N . Being U LU block triangular, and similar to L, L1 has real strictly positive eigenvalues. Lemma 4. Given two symmetric matrices A, and B of equal dimension such that A 0, and B 0; then σ(AB) ⊂ C ≥0 .

Proof. It exists the symmetric matrix B 1 /2 : B 1 /2 B 1 /2 = B, where B 1 /2 0, and it exists B -1 /2 : B -1 /2 B 1 /2 = B 1 /2 B -1 /2 = I. We have that AB = AB 1 /2 B 1 /2 = B -1 /2 B 1 /2 AB 1 /2 B 1 /2 , thus σ(AB) ≡ σ(B 1 /2 AB 1 /2 ). Moreover B 1 /2 AB 1 /2 0 because A 0 and B 1 /2 is symmetric. Thus σ(B 1 /2 AB 1 /2 ) ⊂ C ≥0 . Lemma 5. Given two symmetric matrices A, and B of equal dimension; if A 0 then AB is diagonalizable in R.

Proof. It exists the symmetric matrix A 1 /2 : A 1 /2 A 1 /2 = A, where A 1 /2 0, and it exists A -1 /2 : A -1 /2 A 1 /2 = A 1 /2 A -1 /2 = I. We have A -1 /2 ABA 1 /2 = A 1 /2 BA 1 /2 , and the latter is symmetric. Thus AB is similar to a symmetric matrix, so it is diagonalizable in R.

We recall the following lemma on Kronecker product ⊗ Lemma 6. [START_REF] Graham | Kronecker products and matrix calculus with applications[END_REF] Suppose that U ∈ R p×p , V ∈ R q×q , X ∈ R p×p , and Y ∈ R q×q . The following hold: (i) (U ⊗ V ) (X ⊗ Y ) = U X ⊗ V Y ; (ii) suppose U , and V invertible, then (U ⊗ V )

-1 = U -1 ⊗ V -1 .
Appendix 2

In the following we report the cited theorem of [START_REF] Wu | Lmi-based multivariable pid controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors[END_REF]. Consider the system of equations

x + = Ax + Bu y = Cx ( 29 
)
where A ∈ R n×n , B ∈ R n×l , C ∈ R m×n , x x(k) ∈ R n and x + x(k + 1) ∈ R n are respectively the system state at the current step k, and at the next step k +1, 

  ζ i = Cδ i . Note that if ζ i = 0 for i = 1, . . . , N then ȳi = ȳj , i.e. weighted consensus is achieved. If we now name δ col(δ 1 , . . . , δ N ), and ζ col(ζ 1 , . . . , ζ N ), we have that ζ = I N ⊗ C δ, and δ = ξ -1 ⊗ 1 N N j=1 ξj = L ⊗ I n ξ, where L satisfies the conditions of Lemma 2. Thus ζ and ξ variables are linked by relationship ζ = I N ⊗ C L ⊗ I n ξ = L ⊗ C ξ. Considering the change of coordinates δ = L ⊗ I n ξ for system (6), it yields
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 1 Fig. 1. FD region in the complex plane defined via parameters (a, b).

  Two-mass model of WT mechanics.
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 2 Fig. 2. Wind turbine aerodynamics and mechanics.
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 3 Fig. 3. Singular points with and without β approximation.

Fig. 4 .

 4 Fig. 4. WT control scheme: the local control is composed of an AOT step and of a PI; the distributed control has a PID structure. Each WT i receives P values from its neighbors, i.e. WTs j ∈ Ni.

Remark 5 .

 5 The considered control approach relies on Assumption 3. In particular disturbances v d,i are supposed to be zero-mean signals. If there exist WTs for which v d,i has not zero mean, then the corresponding absolute power reference d2 v d3 v d4 v d5 (b) Wind disturbances speed.

Fig. 5 .

 5 Fig. 5. Wind signals.

Fig. 6 .

 6 Fig. 6. WF example communication graph.

  WT powers. They are expected to keep constant relative distances.

Fig. 7 .

 7 Fig. 7. Wind farm leaderless control.

  LDP signals. They are expected to reach the origin.

  DP signals. They are expected to reach a common value.

Fig. 8 .

 8 Fig. 8. Zoom on LDP and DP during WF leaderless control.

Fig. 9 .

 9 Fig. 9. Wind farm leader-follower control.

22 J 22 ∈

 2222 u u(k) ∈ R l is the control input, and y y(k) ∈ R m is the measured and controlled output. Define the matrices C cl C 0 r×(2l) , K D c B c , and à A BC c 0 2l×n A cwhere A c , B c , C c , and D c are defined in[START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]. Assuming B to be of full column rank without loss of generality, there exists an invertibleT b ∈ R n×n : T b B = 0 l×(n-l) I l×l . Finally define T T b 0 n×2l 0 2l×n I 2l×2lThus, we have the following theorem Theorem 4. Consider system[START_REF] Liberzon | Switching in systems and control[END_REF]. If there exists a positive definite matrix P ∈ R n×n , and a matrix J = J 11 0 (n-q)×3l J 21 J R 3l×3l , and X ∈ R 3l×m , and we further nameΩ 0 (n-3l)×n 0 (n-3l)×2l XC 0 3l×2lsuch that the following LMI has a solution bP * Ω + JT à + aJT b(JT + (JT ) -P ) > 0where * indicates the transposed of the opposite term with respect to the matrix diagonal, and if J is nonsingular, then by choosing K = J -1 22 X, the eigenvalues of the following matrix A cl (A + BD c C) B 2 C c B c C A c lie in the region F D ( [λ], [λ]) : ( [λ] + a) 2 + [λ] 2 < b 2 .
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Appendix

Appendix 1

A directed graph G, called digraph, is a pair (V, E), where V = {1, . . . , N } is the set of nodes, and E ⊆ V × V is the set of unordered pairs of nodes, named edges. Two nodes i, j are said to be adjacent if (i, j) ∈ E. In such case the communication is supposed to be directed from i to j. We additionally define N i to be the set of neighbors of node i, i.e. N i {j ∈ V : (j, i) ∈ E}. The weighted adjacency matrix A = [a ij ] ∈ R N ×N associated with the digraph G, is defined by a ii = 0, i.e. self-loops are not allowed, and

Typically, if the adjacency matrix is not weighted, then we simply assign a ij = 1 if (i, j) ∈ E. Moreover, under the assumption of undirected graph, (i, j) ∈ E implies that (j, i) ∈ E too. In this report an undirected graph is always considered to be not weighted. An undirected graph is connected if there exists a path between every pair of distinct nodes, otherwise it is disconnected. If there exist an edge between any two nodes, the graph is said to be complete. We provide the following useful lemmas. Lemma 1. [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF] The Laplacian matrix has the following properties: (i) if A refers to an undirected graph, then L is symmetric and all its eigenvalues are either strictly positive or equal to 0, and 1 is the corresponding eigenvector to 0; (ii) 0 is a simple eigenvalue of L if and only if the graph is connected. Lemma 2. [START_REF] Lin | Distributed leadless coordination for networks of second-order agents with time-delay on switching topology[END_REF] Let L = lij ∈ R N ×N be a Laplacian matrix such that lij = N -1 /N if i = j, and lij = -1 /N otherwise, then the following hold: (i) the eigenvalues of L are 1 with multiplicity N -1, and 0 with multiplicity 1. 1 and 1 are respectively the left and right eigenvector associated to eigenvalue 0; (ii) there exists an orthogonal matrix U ∈ R N ×N , i.e. U : U U = U U = I, and whose last column is equal to 1 / √ N , such that for any Laplacian matrix L associated to any undirected graph we have

where L 1 ∈ R (N -1)×(N -1) is symmetric and positive definite if the graph is connected.

Moreover we deduce the following extension of Lemma 2.

Lemma 3. Let L ∈ R N ×N be the Laplacian matrix associated to an undirected connected graph, and let D ∈ R N ×N 0, and symmetric, then the following hold: (i) L DL 0, all its eigenvalues are real, and 0 is a simple eigenvalue