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Abstract. The problem of discrete-time multi-agent systems governed
by general MIMO dynamics is addressed. By employing a PID-like dis-
tributed protocol, we aim to solve two relevant consensus problems,
namely the leaderless weighted consensus under disturbances and leader-
follower weighted consensus under time-varying reference state. Sufficient
conditions for stability as well as a LMI approach to tune the controller
gains are provided. The two consensus techniques are then applied to
solve two issues concerning the wind farm (WF) power maximization
problem under wake effect. Leaderless consensus aims at averaging out
zero-mean wind disturbance effects on the optimal WF power sharing,
while leader-follower control is employed to restore it in the case of power
reference errors. Simulations are carried out on a small WF example,
whose units are the NREL’s CART wind turbines.

Keywords: consensus control, multi-agent systems, wind farm, wake
effect

1 Introduction

In recent years much research effort has been devoted to the area of multi-
agent cooperative control because of its wide range of applications and poten-
tial benefits. Cooperation of a coordinated multi-agent network is sought via
distributed algorithms as they present some interesting advantages over their
centralized counterpart, e.g. avoiding single point of failure, reducing commu-
nication and computational burden, etc. The main problem in distributed co-
ordination, known as consensus problem, is the one of achieving an agreement
on some variables of interest, named coordination variables, of each agent via
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local interactions. These variables evolve according to a prescribed dynamics de-
scribing the physics of the problem, while interactions among agents are defined
by a given communication graph. Finding a distributed protocol to solve the
aforementioned problem has been extensively treated for single and double inte-
grator dynamic agents, e.g. [1]. However, in a more general framework, general
dynamics need to be considered in order to describe the agents behavior.
The consensus problem for this latter case has been discussed for both continu-
ous and discrete-time multi-agent systems. In addition, it can be further divided
in two main classes of problems, namely leaderless and leader-follower ones. As
far as the former is concerned, the most employed distributed protocol is given
by a static state feedback law, also called P-like distributed control. One can
cite, for instance, [2–4] for the continuous-time framework, and [3, 5–7] for the
discrete one, where the consensus problem is led back to the one of simulta-
neously stabilizing multiple LTI systems. References [3, 6] also solve a leader-
follower problem where the leader has an autonomous time-invariant dynamics.
Another interesting problem is the one of finding the optimal P-like protocol
gain in order to improve consensus under system uncertainties, as in [8], and
disturbances as in [9, 10], for continuous time systems, and [11] for discrete-time
ones. The proposed approaches usually make use of some H2 or H∞ constraints
to be respected, and they are in general more involved than the one of simul-
taneously stabilizing multiple systems. For instance, [10] provide necessary and
sufficient conditions, for the continuous-time case to solve the consensus prob-
lem while guaranteeing some properties on the aforementioned norms. On the
other hand, for discrete-time systems only sufficient conditions are provided us-
ing results from robust control as in [11]. Dynamic distributed controllers are
also proposed for consensus achievement based on local output measurements,
e.g. [3]. In the continuous-time framework, [12] provide a controller with limited
energy, while a general full order one is presented in [13] to achieve some H∞
performance. Other possible structures have been explored too. Indeed, given
the common P-like controller, one can easily think of a more general PID-like
structure. In continuous-time, for instance, [14] propose a PI-like distributed
algorithm for single integrator dynamic agents, and [15] provide a PID-like con-
troller for general high-order SISO systems. Similar control design is applied to
solve a leader-follower consensus under time-varying reference state, as in [16],
and in its sampled-data counterpart [17], where a PD-like protocol is given. Even
though the presented literature review is nowhere near exhaustive, one can re-
mark that poorer attention has been devoted to discrete-time dynamic protocols
for general LTI MIMO systems, and this is on what we wish to focus our atten-
tion in the sequel.
In this chapter our first contribution concerns the proposal of a PID-like dis-
tributed controller for the aforementioned systems, and we provide a possible way
of tuning the controller parameters based on the solution of LMIs. The results
here presented have been object of our previous work in [18], where we treated
the problems of leaderless consensus under the presence of disturbances, and
leader-follower consensus under a time-varying reference state. Differently from
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the aforesaid work, here we propose a generalized control technique in order to
treat weighted consensus problems, i.e. those multi-agent systems in which con-
sensus has to respect predefined gains, which determine given distances among
the coordination variables. Despite being similar to what we already presented,
this additional step reveals to be necessary to tackle a great variety of real-world
problems such as the one considered in this chapter, namely the wind farm dis-
tributed control problem.
Our second main scope of this work is indeed concerned with applying the pro-
posed consensus techniques for the sake of controlling a wind farm. In particular,
we focus on the issues related to the power maximization problem for those wind
farms experiencing the so-called wake effect. In such case, it turns out that con-
sidering the aerodynamic coupling among the wind turbines (WTs) leads to
potential power gains when maximizing the power production, (see e.g. [19]),
and justifies a growing interest in cooperative methods to control them. Typi-
cally the problem of power maximization under wake interaction is handled via a
first step of optimization under the assumption of a static system. This approx-
imation is mainly due to the high nonconvexity of the wake model that makes
the problem hard to be treated directly under a control perspective. Here, coop-
eration is reached by considering a common WF optimization problem among
the WTs rather than a more classic greedy WT optimization such as the max-
imum power tracking point (MPPT) operating mode. The overall WF control
architecture thus exhibits a two-layer hierarchical structure, where the higher
control level is concerned with providing optimal power references to the local
WT controllers. These are then operated in decentralized mode, i.e. once received
the power reference to track, no additional cooperation is performed among the
WT controllers. In this chapter we claim that allowing additional cooperation
also at the WT control level can lead to interesting benefits. In particular we
show how cooperation at the lower level can be achieved via the consensus con-
trol techniques object of the first part of this chapter. Thus, the lower control
considered in this work is thus said to be distributed.
It is important to point out that wind farm power maximization can be alterna-
tively seen as the problem of finding the optimal power sharing of the available
wind source among the WTs. Similar power sharing problems for wind farms
have been treated in [20–22]. Based on the common assumption that the avail-
able wind power is higher than the demanded one, and with no wake effect con-
sideration, they employ different distributed control approaches to deal with the
problem of meeting the desired WF power output. The distributed WF control
approach here presented addresses the problem of allowing proper power sharing
among the WTs, enhancing the respect of the imposed higher level power gains
despite the system dynamics and the presence of wind disturbances. Even if it
has some common ideas, it substantially differs from the mentioned references
either in the problem addressed and in the control techniques proposed to tackle
it. The developments here proposed have been suggested in our preliminary work
of [23]. Nonetheless, in this chapter, these are extended by considering new wind
farm control applications and the theorems shown therein are here provided with
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the according proof.
The remainder of the chapter is organized as follows. Sections 2 and 3 are de-
voted to the leaderless and leader-follower techniques respectively. The wind
farm control problem is introduced in Section 4, while its control design is de-
scribed in Section 5. Simulations are shown in Section 6. The chapter ends with
conclusions and future perspectives in Section 7.

2 Leaderless Consensus Under the Presence of
Disturbances

2.1 Problem Formulation

In the sequel, the reader may refer to Appendix 1 for basic notions and definitions
concerning graph theory. We consider N identical agents governed by general
discrete-time linear dynamics, according to{

x+
i = Axi +B2ui +B1ωi, i = 1, . . . , N

yi = Cxi
(1)

where A ∈ Rn×n, B2 ∈ Rn×l, B1 ∈ Rn×h, C ∈ Rm×n, xi , xi(k) ∈ Rn and
x+
i , xi(k + 1) ∈ Rn are respectively the agent state at the current step k, and

at the next step k + 1, ui , ui(k) ∈ Rl is the agent control, ωi , ωi(k) ∈ Rh its
disturbance, and yi , yi(k) ∈ Rm is the measured output and the variable on
which agreement among the agents is sought. Moreover we require the system
to satisfy l ≥ m, i.e. to have a greater or equal number of inputs with respect
to its outputs. For the sake of leaderless consensus, a priori we do not require
A to be Schur stable. Indeed, as shown in [7], A has a role in determining the
consensus function to which the agents converge under proper control. Here it
can be thought to be assigned by a previous control design step. The agents can
communicate on an undirected connected graph whose Laplacian matrix L has
positive minimum nonzero and maximum eigenvalues respectively equal to λL,
and λ̄L. Thus, we can address the problem of finding a distributed control law
for ui such that ‖yi/χi−yj/χj‖ is minimized for i, j = 1, . . . , N with respect to the
disturbance ω , col(ω1, . . . , ωN ), and where weight χi ∈ R+, i = 1, . . . , N , i.e.
for the sake of simplicity of analysis we associate the same scalar weight to the
whole controlled output vector. If error yi/χi− yj/χj = 0, i, j = 1, . . . , N , then we
say that weighted consensus is achieved. By naming D , diag(1/χ1, . . . , 1/χN),
we additionally define matrix L̂ , DL, which satisfies Lemma 3 in Appendix 1,
and whose positive minimum nonzero and maximum eigenvalues are respectively
λL̂, and λ̄L̂. In this work we focus on local controllers of the form{

x+
ci = Acxci +Bcsi, i = 1, . . . , N

ui = Ccxci +Dcsi
(2)
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where xci , xci(k) ∈ R2l is the agent controller state, and

Ac =

[
Il Il

0l×l 0l×l

]
2l×2l

Bc =

[
(Ki −Kd)

Kd

]
2l×m

Cc =
[
Il 0l×l

]
l×2l

Dc = [(Kp +Ki +Kd)]l×m

(3)

where Kp = [kp,ij ],Ki = [ki,ij ],Kd = [kd,ij ] ∈ Rl×m are gain matrices to be

tuned, and where si , si(k) ∈ Rm is defined as

si ,
N∑
j=1

aij

(
yi
χi
− yj
χj

)
(4)

Thus the closed-loop system for agent i has dimension n̄ , n + 2l. As shown
by [24], system (2) is a state representation of the discrete-time PID MIMO
controller, whose z-transform between si and ui is the transfer matrix Kp +
Ki

z
z−1 +Kd

z−1
z , where its generic element at position (i, j) is a PID whose gains

are kp,ij , ki,ij , kd,ij . The problem can be now restated as the one of finding
matrices Bc, and Dc such that the effect of disturbance ω on the weighted
consensus is minimized.

2.2 Fast Weighted Consensus

In our previous work of [18], we provided two possible ways to tune the dis-
tributed PID controller, the first of which being based on imposing a given H∞
constraint via LMIs on the closed-loop multi-agent system in order to minimize
the additive disturbance effect on weighted consensus. In this work though we
only focus on the second proposed possible way of tuning, which is concerned
with achieving a multi-agent system fast response with respect to exogenous
signals, such as disturbances, to reach weighted consensus. The two tuning tech-
niques are quite similar, and the reader may refer to the mentioned reference for
further details on H∞ consensus design.
Let us introduce the following

Definition 1. System (1) is said to achieve fast weighted consensus with per-
formance index τ ∈ R+ if for ω = 0, and any initial condition, limk→∞ ‖yi/χi −
yj/χj‖ = 0 for i, j = 1, . . . , N , and (1 − e−1)% of consensus is achieved in a
maximum number of steps equal to dτe.

Note that the same kind of definition can be considered for sampled-data systems,
by saying that system (1) achieves fast weighted consensus with a time constant
inferior to τTs, where Ts is the system sampling time.
The following result is based on Theorem 4 of [24] shown in the Appendix 2.

Theorem 1. Given the system described by (1), where N agents can communi-
cate on an undirected connected graph; consider the distributed protocol of equa-
tions (2),(3),(4); then the systems achieve fast weighted consensus with perfor-
mance index τ = −1/log(ψ), where ψ ∈ R : 0 ≤ ψ < 1, if there exist two symmetric
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positive definite matrices P , P̄ ∈ Rn̄×n̄ such that the LMI conditions of Theo-
rem 4 are simultaneously satisfied for two LTI systems whose dynamic, input,
and output matrices are respectively (A,B2, λL̂C), and (A,B2, λ̄L̂C), and where
the real constants (a, b) to be set in Theorem 4 are chosen to be (a, b) = (0, ψ).

Proof. In the sequel, the cited lemmas are shown in Appendix 1. The closed-loop
dynamics for the generic agent i, by using (1),(2), and by defining the augmented

state ξi , col(xi, xci) ∈ Rn̄, and matrices C̄ , [C 0m×2l], B̃ ,
[
B>1 0h×(2l)

]>
is given by ξ

+
i = Âξi + B̂

N∑
j=1

aij

(
ξi
χi
− ξj
χj

)
+ B̃ωi

yi = C̄ξi

where

Â =

[
A B2Cc
0 Ac

]
, B̂ =

[
B2DcC̄
BcC̄

] (5)

By naming ξ , col(ξ1, . . . , ξN ), y , col(y1, . . . , yN ), gathering together the
closed-loop agents dynamic, and performing the change of coordinates ξ̄ =
(D ⊗ In̄)ξ, it yields{

ξ̄+ =
(
IN ⊗ Â+DL ⊗ B̂

)
ξ̄ +

(
IN ⊗ B̃

)
ω̄

ȳ =
(
IN ⊗ C̄

)
ξ̄

(6)

where we named ω̄ , (D ⊗ Ih)ω, ȳ , (D ⊗ Im)y, and we used point (i) of

Lemma 6. Similar to [13, 11], we define ζi , ȳi−
1

N

N∑
j=1

ȳj , and δi , ξ̄i−
1

N

N∑
j=1

ξ̄j .

Thus ζi = C̄δi. Note that if ζi = 0 for i = 1, . . . , N then ȳi = ȳj , i.e. weighted con-

sensus is achieved. If we now name δ , col(δ1, . . . , δN ), and ζ , col(ζ1, . . . , ζN ),

we have that ζ =
(
IN ⊗ C̄

)
δ, and δ = ξ̄ − 1 ⊗ 1

N

∑N
j=1 ξ̄j =

(
L̄ ⊗ In̄

)
ξ̄, where

L̄ satisfies the conditions of Lemma 2. Thus ζ and ξ̄ variables are linked by
relationship ζ =

(
IN ⊗ C̄

) (
L̄ ⊗ In̄

)
ξ̄ =

(
L̄ ⊗ C̄

)
ξ̄. Considering the change of

coordinates δ =
(
L̄ ⊗ In̄

)
ξ̄ for system (6), it yields

δ+ =
(
L̄ ⊗ In̄

) (
IN ⊗ Â+ L̂ ⊗ B̂

)
ξ̄ +

(
L̄ ⊗ In̄

) (
IN ⊗ B̃

)
ω̄

=
(
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)(
δ + 1⊗ 1

N

N∑
k=1

ξ̄k

)
+
(
L̄ ⊗ B̃

)
ω̄

=
(
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)
δ +

(
L̄ ⊗ B̃

)
ω̄

where we used points (i) of Lemma 2, 3, and 6. According to the (ii) point of
Lemma 2, we employ the orthogonal matrix U ∈ RN×N to define the change of
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coordinates: δ̂ ,
(
U> ⊗ In̄

)
δ, ω̂ ,

(
U> ⊗ Ih

)
ω̄, ζ̂ ,

(
U> ⊗ Im

)
ζ, so that the

system equations in the new coordinates are given by

δ̂+ =
(
U> ⊗ In̄

) (
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)
(U ⊗ In̄) δ̂

+
(
U> ⊗ In̄

) (
L̄ ⊗ B̃

)
ω̄

=
(
Λ̄⊗ Â+ Λ̄U>L̂U ⊗ B̂

)
δ̂ +

(
Λ̄⊗ B̃

)
ω̂

ζ̂ =
(
U> ⊗ Im

) (
IN ⊗ C̄

)
(U ⊗ In̄) δ̂ =

(
IN ⊗ C̄

)
δ̂

(7)

As shown in Lemma 2, and 3, being the last row and column of Λ̄ zeros, and
the last column of U>L̂U zero, we can split (7) in two by dividing the system

variables as δ̂ = col(δ̂1, δ̂2), ω̂ = col(ω̂1, ω̂2), and ζ̂ = col(ζ̂1, ζ̂2). It follows that,
to conclude on system stability, we can study the reduced order system described
by {

δ̂+
1 =

(
IN−1 ⊗ Â+ L̂1 ⊗ B̂

)
δ̂1 +

(
IN−1 ⊗ B̃

)
ω̂1

ζ̂1 =
(
IN−1 ⊗ C̄

)
δ̂1

From Lemma 3, it exists an invertible matrix V ∈ R(N−1)×(N−1) : V −1L̂1V ,
Λ = diag(λ1, . . . , λN−1), where 0 < λL̂ ≤ λi ≤ λ̄L̂ for i = 1, . . . , N − 1. Thus

we can define a further change of coordinates, such that δ̃1 ,
(
V −1 ⊗ In̄

)
δ̂1,

ω̃1 ,
(
V −1 ⊗ Ih

)
ω̂1, and ζ̃1 ,

(
V −1 ⊗ Im

)
ζ̂1. The latter yields{

δ̃+
1 =

(
IN−1 ⊗ Â+ Λ⊗ B̂

)
δ̄1 +

(
IN−1 ⊗ B̃

)
ω̃1

ζ̃1 =
(
IN−1 ⊗ C̄

)
δ̃1

(8)

We can now separate (8) in N − 1 subsystems, each of them being governed byδ̃
+
1i

=

[
x̃+

1i

x̃+
1,ci

]
=

[
(A+B2Dc(λiC)) B2Cc

Bc(λiC) Ac

][
x̃1i

x̃1,ci

]
+

[
B1

0

]
ω̃1i

ζ̃1i
= Cx̃1i

(9)

System (9) can be equivalently seen as the closed-loop form of the two following
systems

x̃+
1i

= Ax̃1i +B2ũi +B1ω̃1i

ỹ1i , (λiC)x̃1i

ζ̃1i
= Cx̃1i

,

{
x̃+

1,ci
= Acx̃1,ci +Bcỹ1i

ũi , Ccx̃1,ci +Dcỹ1i

(10)

where ỹ1i , and ζ̃1i are respectively the measured and controlled output variables
of the controlled system. Thus, we can reformulate the problem as the one finding
matrices Bc, and Dc such that for i = 1, . . . , N−1 the closed-loop system of (10)
is Schur stable when ω1i

= 0. Moreover, since we are interested in speeding
up consensus reaching with respect to exogenous signals, we want to push the
overall closed-loop system eigenvalues closed to zero as much as possible. For
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a

j

1
<[λ]

=[λ]

b

Fig. 1. FD region in the complex plane defined via parameters (a, b).

this purpose we invoke Theorem 4, whose results can be directly applied to one
generic system of the form of (10). Here it is shown that, given two constants
a ∈ R, and b ∈ R+

0 , if there exists a symmetric positive definite matrix Pi such
that the given LMI condition in the theorem is satisfied, then system (10) is
stable with all its eigenvalues laying in the complex plane region defined by

FD ,
{

(<[λ],=[λ]) : (<[λ] + a)2 + =[λ]2 < b2
}

where λ is the complex variable, (see Fig. 1). It is important to stress that
the mentioned LMI conditions are affine in the system matrices, variables and
matrix Pi. We make use of this fact to provide sufficient conditions for which
it exists a controller of the considered form such that the mentioned LMI is
simultaneously verified for i = 1, . . . , N−1. Since the generic eigenvalue of L̂1 : λi
is such that λL̂ ≤ λi ≤ λ̄L̂, then it always exists αi ∈ R : 0 ≤ αi ≤ 1 so that
λi = αiλL̂+(1−αi)λ̄L̂. Notice that the systems to be stabilized, appearing in the
first set of equation in (10), can be seen as one single system with an uncertain
measurement matrix, whose parameter is λi. In other words, Ci , λiC, and
∃αi : Ci = αiClow + (1−αi)Cup, where Clow , λL̂C, and Cup , λ̄L̂C, i.e. it can
be written as a convex combination of the extreme matrices Clow, and Cup. Thus,
as in [11], we make use of classic results of robust linear control, and in particular
by introducing an affine parameter dependent Lyapunov matrix P (αi) , αiP +
(1− αi)P̄ , where P , P̄ are Lyapunov matrices solution of simultaneous LMI of
Theorem 4 written for respectively Clow, and Cup. Thus, it is easy to show that
if P , P̄ exist, then the controller solves the problem ∀λ ∈ R : λL̂ ≤ λ ≤ λ̄L̂, and
in particular for λ = λi, for i = 1, . . . , N − 1. Such a controller is easily found
from the solution of the aforementioned LMI condition. Indeed among the LMI
variables there are matrices Bc, and Dc, from which it is easy to deduce the
PID gain matrices Kp, Ki, and Kd by employing relations in (3). Eventually, in
order to place the closed-loop system eigenvalues closed to 0, we set a = 0, and
b = ψ, where ψ : 0 ≤ ψ < 1. Thus, all system eigenvalues are guaranteed to have
a module inferior to ψ. As a result, the system has the slowest time-constant
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inferior to −Ts/log(ψ). In terms of number of iterations, such performance is equal
to a maximum value d−1/log(ψ)e of iterations. ut

Remark 1. If the mentioned LMI has a solution, then the closed-loop multi-agent
system is guaranteed to be stable. In addition, having employed a PID structure
for the distributed controller may suggest that consensus should be reached
for any constant disturbance vector ω. Unfortunately, this is not automatically
guaranteed in the MIMO case by the mentioned LMI conditions, and in this
framework it is only verified a posteriori. Note that the MIMO PID controller is
not block diagonal. Nonetheless, if such LMI has a solution then, according to the
well-known Francis equations, a necessary condition for the proposed controller
to reject constant exogenous signals is that l ≥ m.

Remark 2. If the mentioned LMI has a solution and consensus is reached, still
the disturbance has a role in determining the common function to which the
agents converge, called consensus function.

3 Leader-follower Consensus with Time-varying
Reference State

3.1 Problem Formulation

The results shown in Section 2 can be easily applied to solve the following leader-
follower problem. Consider N + 1 discrete-time linear agents, whose dynamics
are described by{

x+
0 = Ax0 +B1u0

y0 = Cx0

,

{
x+
i = Axi +B2ui, i = 1, . . . , N

yi = Cxi
(11)

where A ∈ Rn×n, B1 ∈ Rn×h, B2 ∈ Rn×l, C ∈ Rm×n, x0 , x0(k) ∈ Rn is the
state of the N + 1 agent, called leader, y0 , y0(k) ∈ Rm is its measured output
and the variable on which we want the follower measured and controlled outputs
yi to converge, and u0 , u0(k) ∈ Rh is a time-varying unknown control acting
on the leader dynamics. We additionally suppose that l ≥ m. Concerning the
remaining N follower agents, system description equivalent to (1) holds. The
followers are assumed to communicate on an undirected connected graph whose
Laplacian matrix is L. The leader can pass information to a subset of followers.
If agent i receives information from the leader, then we set ai0 to 1, and 0
otherwise. Thus we can defineM , L+ diag(a10, . . . , aN0), which is symmetric
and positive definite. Differently from the leaderless consensus case, without loss
of generality we consider A to be Schur stable. The aim of the present problem
is indeed not the one of stabilizing each single agent, but rather to steer the
follower agents state to the leader one despite the presence of u0, which makes
the leader dynamics time-varying. Moreover, as done for the leaderless case,
we consider the general case of weighted consensus. In other words we aim at
finding a distributed control law to minimize ‖yi/χi − y0/χ0‖ for i = 1, . . . , N ,
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where χi, χ0 ∈ R+. In order to accomplish such objective we aim to employ the
controller of form (2), (3), where we consider a modified variable si to take into
account the communication with the leader agent, according to

si =

N∑
j=1

aij

(
yi
χi
− yj
χj

)
+ ai0

(
yi
χi
− y0

χ0

)
(12)

Eventually, by using D, which we recall to be D = diag(1/χ1, . . . , 1/χN), we
can additionally define M̂ , DM, which satisfies Lemmas 4, and 5, and it
has minimum and maximum positive real eigenvalues equal to λM̂, and λ̄M̂
respectively.

3.2 Fast Weighted Leader-follower Consensus

Similar to Definition 1, we provide the following

Definition 2. System (11) is said to achieve fast weighted leader-follower con-
sensus with performance index τ ∈ R+ if for any initial condition, limk→∞ ‖yi/χi−
y0/χ0‖ = 0 for i = 1, . . . , N , when u0 = 0, and (1−e−1)% of consensus is achieved
in a maximum number of steps equal to dτe.

The following result, similar to Theorem 1, is based on Theorem 4 of [24] in the
Appendix 1.

Theorem 2. Given the system described by (11), where N follower agents can
communicate on an undirected connected graph, and one leader can communicate
with a non-empty subset of followers; consider the distributed protocol of equa-
tions (2),(3),(12); then the systems achieve fast leader-follower consensus with
performance index τ = −1/log(ψ), where ψ ∈ R : 0 ≤ ψ < 1, if there exist two
symmetric positive definite matrices P , P̄ ∈ Rn̄×n̄ such that the LMI conditions
of Theorem 4 are simultaneously satisfied for two LTI systems whose dynamic,
input and output matrices are respectively (A,B2, λM̂C), and (A,B2, λ̄M̂C),
and where the real constants (a, b) to be set in Theorem 4 are chosen to be
(a, b) = (0, ψ).

Proof. The proof is similar to the one of Theorem 1. By defining error ei ,
xi − x0

χi/χ0, ξi , col(ei, xci), and ζi , Cei the closed-loop system for the
generic follower agent i is given byξ

+
i = Âξi + B̂

(
N∑
j=1

aij

(
ξi
χi
− ξj
χj

)
+ ai0

ξi
χi

)
+ χiB̃u0

ζi = C̄ξi

where Â, B̂, C̄ are defined in (5), and B̃ , [−B>
1 /χ0 0h×2l]

>. Defining u0 ,
1N ⊗ u0, and u0 , (D⊗ In̄)ũ0 ,we then gather the N agent equations together{

ξ+ =
(
IN ⊗ Â+MD ⊗ B̂

)
ξ +

(
IN ⊗ B̃

)
ũ0

ζ =
(
IN ⊗ C̄

)
ξ

(13)
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We consider the change of coordinates ξ̄ , (D⊗In̄)ξ, and define ū0 , (D⊗In̄)ũ0,
ζ̄ , (D ⊗ In̄)ζ, system (13) can be rewritten in the new coordinates as{

ξ̄+ =
(
IN ⊗ Â+ M̂ ⊗ B̂

)
ξ̄ +

(
IN ⊗ B̃

)
ū0

ζ̄ =
(
IN ⊗ C̄

)
ξ̄

From the definition of M̂, there exists an orthogonal matrix U : U>M̂U , Λ =
diag(λ1, . . . , λN ), where λi ∈ R : λi > 0 for i = 1, . . . , N , so that we can define

the change of coordinates ξ̄ , (U ⊗ In̄)ξ̂, ũ0 , (U ⊗ Ih)û0, ζ̄ , (U ⊗ Im)ζ̂. By
applying similar calculation as in the previous sections, the global system in the
new coordinates is{

ξ̂+ =
(
IN ⊗ Â+ Λ⊗ B̂

)
ξ̂ +

(
IN ⊗ B̃

)
û0

ζ̂ =
(
IN ⊗ C̄

)
ξ̂

(14)

Splitting (14) in N subsystems yields the following equation for subsystem iξ̂
+
i =

[
(A+B2Dc(λiC)) B2Cc

Bc(λiC) Ac

]
ξ̂i +

[
−B1/χ0

0

]
û0

ζ̂i = Cêi

(15)

where ξ̂i , col(êi, x̂ci). System (15) can be equivalently described as the connec-
tion of the two following systems

ê+
i = Aêi +B2ûi − B1/χ0û0

ŷi , (λiC)êi

ζ̂i = Cêi

,

{
x̂+
ci = Acx̂ci +Bcŷi

ûi , Ccx̂ci +Dcŷi
(16)

The rest of the proof is similar to the last part of the one of Theorem 1. In par-
ticular, since system (15) can be seen as one system with uncertain parameter
λi ∈ [λM̂, λ̄M̂], we make use of LMI conditions of Theorem 4, and we impose
them to be simultaneously satisfied for two systems at the vertexes of the poly-
tope having matrices (A,B2, λM̂C), and (A,B2, λ̄M̂C). The proof is concluded
as for Theorem 1. ut

Remark 3. A similar remark to the one of Remark 1 holds for the leader-follower
consensus case too. In particular, having imposed a PID structure for the dis-
tributed controller is not sufficient to guarantee rejection of constant u0 vectors
in the MIMO case. A necessary condition though is given by l ≥ m.

4 Wind Farm Control Problem

4.1 Wind Turbine Model

The wind turbine model describes the conversion from wind power to electric
power. The wind kinetic energy captured by the turbine is turned into mechanical
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Fig. 2. Wind turbine aerodynamics and mechanics.

energy of the turbine rotor, turning at an angular speed ωr and subject to a
torque Tr. In terms of extracted power, it can be described by the nonlinear
function Pr = ωrTr = 1/2ρπR2v3Cp (λ, ϑ), where ρ is the air density, R is the
radius of the rotor blades, ϑ is the pitch angle, v is the effective wind speed
representing the wind field impact on the turbine, λ is the tip speed ratio given
by λ = ωrR

v . Cp, nonlinear function of the tip speed ratio and pitch angle, is the
power coefficient. This is typically provided in turbine specifications as a look-up
table. As far as the turbine parameters are concerned, in this work we make use
of the CART (Controls Advanced Research Turbine) power coefficient shown in
Fig. 2a. This turbine is located at NREL’s National Wind Technology Center.
Nonetheless, we employ a polynomial approximation of the latter for the purpose
of the synthesis of the controller. Referring to a two-mass model as in [25], and
as shown in Fig. 2b, then, the low speed shaft torque Tls acts as a braking
torque on the rotor, the generator is driven by the high speed torque Ths, and
braked by the generator electromagnetic torque Tem. The drive train turns the
slow rotor speed into high speed on the generator side, ωg. Finally Jr is the rotor
inertia, Kr, and Kg damping coefficients, ng the gear ratio, and Jg the generator
inertia. The dynamics of the WT is thus described by Jrω̇r = Tr−Krωr−Tls, and
Jgω̇g = Ths−Kgωg −Tem. In this paper we also consider a first order system to
model the pitch actuator, endowed with a sigmoid function σ : R→ [ϑmin, ϑmax]
to model the pitch saturation. In addition, for ease of further development we can
bring the system equations back on the low speed side, obtaining the simplified
overall model 

τϑϑ̇s = −ϑs + ϑr

ϑ = σ(ϑs)

Jtω̇r =
Pr(ωr, ϑ, v)

ωr
−Ktωr − Tg

(17)

where Tg , ngTem, Jt , Jr + n2
gJg, Kt , Kr + n2

gKg, and where we used the
relation ng = ωg/ωr = Tls/Ths. Eventually, neglecting the generator losses, the
electric power delivered to the grid is P = Tgωr. The system inputs are Tg, and
ϑr, while the wind speed v acts as a disturbance. The feasible domain of the
state variable is X ,

{
(ωr, ϑ) ∈ R2 : ωr ∈ [ωr,min, ωr,max], ϑ ∈ [ϑmin, ϑmax]

}
.
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4.2 Problem Statement

In the sequel, for consistency of notation, we add the index i to the WT variables
described in the previous subsection when referring to turbine i variables, and
we drop it when the results hold for any WT. At low wind speed, WTs are
usually operated according to the well-known MPPT algorithm. The maximum
power that a WT can extract from the wind is thus attained for a constant
value of ϑ, named here ϑo, depending on the turbine Cp, and by controlling

the WT to track the optimal tip speed ratio value λo , arg maxλ Pr(v, ϑ
o, λ) =

arg maxλ Cp(λ, ϑ
o). We name Cop , Cp(λ

o, ϑo), and P o(v) , Pr(v, ϑ
o, λo). For

the considered CART turbine λo ∼= 8. Nonetheless, when considering the wake
effect in the optimization step of a farm of N WTs, the optimal value of Cp
related to the generic turbine i is such that C?p,i ≤ Cop . As a matter of fact, this
implies that a turbine i should track an optimal power reference P ?i (vi) that
satisfies P ?i (vi) ≤ P oi (vi), i.e. it has to be deloaded if maximum wind farm power
is seek. The reader may refer to the works of e.g. [26, 19] to see how values C?p,i
can be computed. According to the usually employed wake models, as well as
the following

Assumption 1 For i = 1, · · · , N , vi is such that P ?i (vi) < Pn, where Pn is the
nominal WT power.

Then, the static optimization step needs to be run only when the wind direction
changes, as optimal values C?p,i do not depend on the wind speed value, [19].

Assumption 2 The average wind direction is considered to be slowly varying
with respect to the system dynamics. Thus, it is considered to be constant.

We can formulate the overall WF control problem in two subproblems, the first
of which being

Problem 1. Consider the system described by (17). Given an effective wind speed
signal v(t), and a time-varying reference trajectory P ref (t), verifying P ref (t) ≤
P o(t) ∀t ≥ 0, find the signals (ϑr(t), Tg(t)) ∀t ≥ 0 such that lim

t→∞
|P ref (t) −

P (t)| = 0 for every initial condition (ωr(0), ϑ(0)) ∈ X : P (0) ≤ P o(0).

Let us now assume that each local WT controller can measure, or estimate, the
effective wind speed vm,i(t) such that vi(t) = vm,i(t) + vd,i(t) ∀t ≥ 0. Thus vd,i
represents a nonmeasurable time varying disturbance for turbine i.

Assumption 3 We consider small zero-mean disturbances vd,i with respect to
vm,i, and slowly-varying with respect to the dynamics of (17).

Each WT can compute its power reference, as described in [27], from its maxi-
mum available power P oi , according to

P fwi , Pi(vm,i) =
C?p,i
Cop

P oi (vm,i) (18)
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which is optimal in nominal conditions, i.e. P ?i (vi) =
C?p,i
Cop

P oi (vi) when vd,i ≡ 0.

We can additionally require the WTs to meet an optimal relative power sharing
condition given by

Pi
χi

=
Pk
χk

i, k = 1, · · · , N (19)

Indeed, by naming P o∞ the maximum power that a WT could extract from the
wind if there was no wake effect, from (18) we have that Pi/C?

p,i = P o
i/Co

p =
γiP

o
∞/Co

p, i = 1, · · · , N , thus Pi/γiC?
p,i = Pk/γkC?

p,k, i, k = 1, · · · , N . We name

χi , γiC
?
p,i ∈ R+, and where γi = P o

i/P o
∞ = (vi/v∞)

3
are constant values for

any value of v∞ according to Assumptions 1, and 2, being v∞ the free stream
wind speed. In the sequel, in order to make the difference with condition (19)
clear, we will refer to (18) as the absolute power reference. This is optimal if
the corresponding vd,i = 0. Despite being redundant information with respect
to (18) in nominal conditions, as it will be made clear in the sequel, condition (19)
provides additional signals that can be exploited when the system is subject to
disturbances. We can now state the second subproblem.

Problem 2. Given N identical WTs, allowed to communicate on an undirected
connected graph G; given optimal values C?p,i, and χi, i = 1, . . . , N ; find P refi (t)
∀t ≥ 0, i = . . . , N such that each Pi tracks (18), while minimizing the error
|Pi/χi − Pj/χj|, i, j = . . . , N , under the presence of vd,i(t).

The idea behind Problem 2 is to exploit additional information concerning op-
timal WTs relative power values in order to even out the system disturbances
from the optimal power sharing defined by the higher optimization step.

5 Wind Farm Control Design

5.1 Wind Turbine Control for Deloaded Mode

According to the WF optimization problem, it turns out that every WT causing
a reduction of available wind power of another one, is very likely to be subject
to an optimal Cp value such that C?p,i < Cop , i.e. strictly inferior. Thus, WTs
whose C?p,i verifies C?p,i = Cop should simply perform classic MPPT regardless
the disturbances of the system and the other WTs operating points, and they
can be controlled with classic local controllers. In the sequel we only consider
WTs that have to be strictly deloaded with respect to their P oi .
In this subsection we proposed an approximated asymptotic output tracking
(AOT) technique to control a WT in deloaded mode, and it is based on the
work of [25]. However, differently from [25], power tracking is here achieved by
employing both the rotor angular speed and the pitch angle. The local WT con-
troller is composed of a first loop to control ωr. We impose a first order dynamics
to the rotor speed tracking error εω , ωref − ωr, i.e. ε̇ω + a0εω = 0 by choosing
a0 ∈ R+. If we name w , a0ω

ref + ω̇ref , this is attained by using (17) as

Tem = Tr − (Kt − a0Jt)ωr − Jtw (20)
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We choose to regulate the power output P by acting on the pitch angle, and
by imposing a first order dynamics to the electric power tracking error εp ,
P ref − P , i.e.

ε̇p + b0εp = 0 (21)

where b0 ∈ R+. This is attained via feedback linearization (FL) on (17) by
choosing the feedback linearizing input

ϑr =
1

β(ωr, ϑs, v)

(
Ṗ ref − ωr

∂Tr
∂v

v̇ +
ωr
τϑ

∂Tr
∂ϑ

dσ

dϑs
ϑs + Jtẇωr

+

(
2(Kt − a0Jt)ωr − Tr + Jtw − ωr

∂Tr
∂ωr

)
(−a0ωr + w) + b0εp

)
(22)

where
∂Tr
∂ωr

,
∂Tr
∂ϑ

, and
∂Tr
∂v

are functions of (ωr, ϑ, v), and β , ωr

τϑ

dσ

dϑs

∂Tr
∂ϑ

.

As pointed out in our previous work [28], there exist points in which β = 0,
called singular points, i.e. points in which (22), feedback linearizing input with
respect to output P , is not well-defined. These points are determined by the

solution of dfrac∂Cq∂ϑ(ωr, ϑ, v) =
∂Cq
∂ϑ

(λ, ϑ) = 0, being Cq ,
Cp
λ

, since

β(ωr, ϑs, v) = ωr

2τϑ
ρπR3v2 dσ

dϑs

∂Cq
∂ϑ

(ωr, σ(ϑs), v) ∼= ωr

2τϑ
ρπR3v2 ∂Cq

∂ϑ
(ωr, ϑ, v) in

the domain of interest of ϑ, and ωr, v > 0. In Fig. 3a the white area represents
Λ = {(λ, ϑ) : (ωr, ϑ) ∈ X ∧ β < 0}. If ωref is chosen to let λ be in a neighbor-
hood of λo, and ϑ > ϑo in order to deload the WT, where ϑo ' 0◦ for CART
turbine, then it is clear that β is negative-valued in the points of functioning
of interest. In order to ensure that the trajectories of the closed loop system,
defined by (17), (20), (22), do not pass through singular points, we consider a
modified FL function for ϑr, by replacing the β function appearing in (22) with

β̂ ,
ωr
2τϑ

ρπR3v2 dσ

dϑs

(
∂Cq
∂ϑ

(λ, ϑ)− ε(λ, ϑ)

)

ε(λ, ϑ) ,

%max

{
∂Cq
∂ϑ

(λ, ϑ), 0

}
if
∂Cq
∂ϑ

(λ, ϑ) 6= 0

ε1 otherwise

(23)

where ε1 is a small positive value, and % > 1 is a tunable parameter to let some
margin to have β̂ negative-valued in the system trajectories. Thus we obtain

an expanded negative-valued area Λ̂ =
{

(λ, ϑ) : (ωr, ϑ) ∈ X ∧ β̂ < 0
}

, shown in

Fig. 3b. The idea is thus to perform an approximated FL only when the system
trajectories come close to a singular point. Clearly, in this case, the chosen ϑr no
longer guarantees satisfaction of (21). Nonetheless, under proper choice of ωref ,
and deloading technique, approximation (23) may occur only during transients.
We can summarize the results in this subsection by stating the following

Theorem 3. Given system (17), controlled via (20), and (22), where the β
function is replaced with (23). For any initial condition (ωr(0), ϑ(0)) ∈ Λ̂, the
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(a) Λ, white area, set of (λ, ϑ)
such that β(λ, ϑ) < 0.

(b) Λ̂, white area, set of (λ, ϑ)
such that β̂(λ, ϑ) < 0.

Fig. 3. Singular points with and without β approximation.

system trajectories are bounded if parameters b0, ε1, and % are chosen such that
ε1 > 0 is sufficiently small, % > 1, and b0 > − %

1−% . In addition, if ∃t̄ ≥ 0 such

that
∂Cq
∂ϑ

(λ(t), ϑ(t)) < 0 ∀t ≥ t̄, then lim
t→∞

|P ref (t)− P (t)| = 0.

Proof. First of all, initial conditions in Λ̂ imply β̂(0) < 0, then ε1 > 0, % > 1

allow β̂(t) < 0 ∀t ≥ 0. In particular β̂(t) 6= 0 ∀t ≥ 0, thus (22) is well-defined.

Note that initial conditions considered in Problem 1 satisfy β̂(0) < 0, belonging
to Λ̂ shown in Fig. 3b. The system dynamics in closed loop is given by

ε̇p =

(
−b0 + 1− β

β + βε

)
εp +

(
1− β

β + βε

)
ϕ(ς) (24)

where we named βε , β̂ − β, and ϕ(ς) the function composed of all the terms
appearing in the right factor of (22) deprived of the term b0εp, and being

ς , (ωr, v, ϑs, v̇, w, ẇ, Ṗ
ref ). The term

(
1− β

β + βε

)
ϕ(ς) is bounded in the

trajectories thanks to the choice of βε, and being ϕ a continuous function on
a compact set. The latter is compact because the wind is limited, w, ẇ, Ṗ ref

are chosen to be so, ωr is bounded thanks to (20), and term
dσ

dϑs
ϑs is bounded.

Thus it will be considered as a bounded input of (24) to simplify the analysis.
Finally system (24) with ϕ(ς) ≡ 0, given by

ε̇p =



(
−b0 + 1− 1

ε1

)
εp if β = 0(

−b0 + 1− 1

1− %

)
εp if β > 0

−b0εp otherwise

(25)

is stable if, for instance, we choose b0 > −
%

1− %
, and ε1 < 1. This can be proved

by choosing V (εp) , 1
2ε

2
p as a common Lyapunov function for the family of
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systems (25), (see [29]). Eventually, if for some t̄ ≥ 0 :
∂Cq
∂ϑ

< 0 ∀t ≥ t̄, then (24)

reduces to ε̇p = −b0εp, thus P → P ref for t→∞.

Remark 4. Concerning ωref , we make the choice to use the MPPT signal ωor =
λov
R sufficiently filtered of its high frequency components. There are different

motivations to support this choice. First of all, if v varies rapidly so it does ωor ,
then if we consider ωref = ωor , its variation would directly effect ϑr via (22), and
in turns ϑ. This fact risks to make ϑ hit the saturation constraints of the sigmoid
function, and more in general, to not let the constraints on ϑ̇ be respected, as
in this framework they are only verified a posteriori. Secondly, if ωref varies too
rapidly, by empirical results it turns out that the closed-loop system trajectories
are more likely to approach singular points, letting the activation of ε(λ, ϑ) de-
fined in (23), and not allowing satisfaction of (21). On the other hand, filtering
ωor let (22) be defined, i.e. it fulfils the requirement of tracking the desired de-
loaded power reference. The physical explanation of this fact is that for a given
deloaded P ref there exist infinite pairs (ωr, ϑ) ∈ X that let a WT track it, (see
e.g. [30, 31]), and by filtering ωor , we are simply considering another possible
choice of couples (ωr, ϑ) than the one in which ωr = ωor .

5.2 Disturbance Effect and Additional Local Control Settings

Assumption 4 Trajectories of the closed-loop system described by (17), (20),

(22) verify
∂Cq
∂ϑ

< 0.

As previously mentioned, we assume that turbine i local controller is able to
measure vm,i such that vi = vm,i + vd,i. The effect of vd,i on the closed loop
dynamics can be thus approximated as

ε̇p,i = −b0εp,i + µ1(ζ̂i)vd,i + µ2(ζ̂i)v
2
d,i + µ3(ζ̂i)v̇d,i (26)

obtained via first order Taylor expansion of the functions depending on vi, in

a neighborhood of vm,i, e.g. Tr(vi) ∼= Tr(vm,i) +
∂Tr
∂v

(vm,i)vd,i, and where ζ̂i ,

(ωr,i, ϑi, vm,i, v̇m,i). Functions µ1, µ2, µ3 are not reported here for the sake of

brevity. According to Assumption 3 we neglect µ3(ζ̂i)v̇d,i. Moreover, by numerical
simulation, the contribution of term µ2v

2
d,i can be neglected with respect to

µ1vd,i. On the compact set on which µ1 is defined, the function satisfies µ1,min ≤
µ1 ≤ 0, thus in the sequel we treat µ1 as a parametric uncertainty, and we drop
its dependency on ζ̂i for ease of notation. Being interested in a discrete-time
communication set-up among the WTs we shall consider system (26) discretized
at sampling time Ts, given by[

ξi(k + 1)
Pi(k + 1)

]
=

[
0 0
−1 (1− Tsb0)

] [
ξi(k)
Pi(k)

]
+[

1
(1 + Tsb0)

]
P refi (k) +

[
0

µ1Ts

]
vd,i(k)

(27)
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where we used Euler approximation, Ṗ refi
∼=

(P refi (k)− P refi (k − 1))

Ts
, and we

named ξi(k) , P refi (k − 1). System (27) is required to track the optimal power
reference provided by the higher optimization step according to (18). For the

moment, let us assume that P fwi , i = 1, . . . , N are not affected by wind mea-

surement error, i.e. P fwi (vi). Because of the presence of vd,i in (27), affecting

the controlled WT dynamics, simply setting P refi = P fwi does not guarantee

Pi to asymptotically converge to P fwi , nor the satisfaction of relationship (19),
describing the optimal relative power sharing values among the WTs. Under the
assumption of communicating WTs on an undirected connected graph G, whose
associated Laplacian matrix is L, one could think to exploit the leaderless PID-
like distributed protocol developed in Section 2 to reduce the effect of vd on the
weighted consensus among the WTs, by acting on P refi . Nonetheless, as pointed
out in Remark 2, still the consensus function to which the system converges
depends in the disturbance signals. As a result, even if relative distances on
power values according to (19) are respected thanks to consensus control, there

is no general guarantee for the power values to reach P fwi . This is why before
continuing our analysis on WF consensus control, we introduce an additional
local PI loop to system (27) to let convergence to the absolute power value P fwi .
Note that the two integral actions, namely the internal loop one controlling Pi
to P fwi , and the distributed control one controlling Pi to satisfy condition (19),

are not in contradiction if P fwi are measurement error free. Indeed, by nam-

ing P fw , col(P fw1 , . . . , P fwN ), then by construction, LDP fw = 0, where recall

D , diag( 1
χ1
, · · · , 1

χN
), which is exactly the weighted consensus condition seek

by the distributed protocol. As a consequence, in such case of perfect informa-
tion on P fwi , the distributed consensus is not necessary to let condition (19) be
satisfied, as it is already ensured by the internal PI. However, even in this case,
consensus control can be employed to enhance closed-loop performance.
The above discussion holds for the case in which the wind disturbance vd,i only
affects the system equations as shown in (27). However, vd,i has also a role in the

computation of P fwi , since in reality we have P fwi (vm,i). In this case, condition
LDP fw = 0 generally does not hold, i.e. the power references provided to the
local WT controller may not let satisfaction of the optimal relative power shar-
ing. Under these circumstances, the distributed PID does have a role in forcing
weighted consensus among the WTs. Moreover, the two integral actions may
come to a conflict. In the following we decide to give priority to consensus seek-
ing by allowing the distributed control action modify the local error P fwi − Pi.
This is achieved by considering the dashed arrow shown in the control scheme of
Fig. 4, where the overall WT control is illustrated. The idea behind this choice is
that zero-mean disturbances on the local power references P fwi can be globally
evened out by enforcing relative power distances among the network of wind
turbines.
By naming Kl

I , and Kl
P respectively the integral, and proportional gains of

the PI, we can write (27) in closed-loop as xi(k + 1) = Axi(k) + B2ui(k) +
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P fw
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I

∫
Kl

P

AOT
control

PID{Pj |j ∈ Ni}

+

+ + +

P ref
i

−

Pi

+

ui

+

Pi

Fig. 4. WT control scheme: the local control is composed of an AOT step and of a
PI; the distributed control has a PID structure. Each WT i receives P values from its
neighbors, i.e. WTs j ∈ Ni.

BfwP
fw
i (k) +Bwvd,i(k), where

A ,


1 0 −Kl

ITs
1 0 −Kl

P

(1 + Tsb0) −1
(1− Tsb0
−Kl

P (1 + Tsb0))

 , Bw ,

 0
0

µ1Ts



B2 ,

 Kl
ITs
1

(1 + Tsb0)

 , Bfw ,

 Kl
ITs
Kl
P

(1 + Tsb0)Kl
P


(28)

and where we named xi , col(δi, ξi, Pi), being δi the state of the local integral

action, P fwi a forward signal, and ui is left as a degree of freedom to let dis-
tributed control. Note that other choices for the introduction of ui in the internal
WT control loop would have been possible.

5.3 Wind Farm Distributed Protocols

Leaderless Consensus As previously mentioned, consensus control over the
WF can be employed to let satisfaction of relationship (19) over a set of N
controlled WTs of the form of (28). This can be done by making use of the tools
concerning leaderless consensus shown in Section 2. This is simply obtained by
choosing as A, B2 the matrices of (28), C = [0 0 1], i.e. Pi is the measured and

controlled output, and B1 = [Bfw Bw], i.e. P fwi , and vd,i are both considered
as disturbances with respect to the weighted consensus.

Remark 5. The considered control approach relies on Assumption 3. In particu-
lar disturbances vd,i are supposed to be zero-mean signals. If there exist WTs for
which vd,i has not zero mean, then the corresponding absolute power reference
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Fig. 5. Wind signals.

P fwi would be in average different from the optimal one. Unfortunately under
these circumstances, there is no hope for the optimal absolute power sharing
to be satisfied by the only means of consensus control, even if optimal relative
power sharing condition (19) is satisfied. This is due to the fact that in a network
of agents communicating on an undirected graph, each of them has a role in de-
termining the consensus function to which they converge. Thus, WTs affected
by nonzero-mean wind disturbance would make the whole network deviate from
the optimal absolute power values in average.

Leader-follower Consensus Since leaderless consensus technique fails to re-
store optimal absolute power references when some WTs in the wind farm are
subject to nonzero-mean wind measurement errors, if the WTs being affected by
nonzero-mean wind disturbances can be detected and isolated then, for instance,
the leader-follower techniques developed in Section 3 can be employed to restore
the optimal power references in the concerned WTs. This could be achieved by
letting the faulty WTs be follower agents, and the unfaulty WT network serve
as a leader.
If, for the sake of simplicity, we consider only one WT not to be affected by
absolute power reference error, and we thus let it be the only leader in the
WF, then Theorem 2 can be applied by choosing A, B2 the matrices of (28),
C = [0 0 1], and B1 = Bfw. In addition to what shown in the leader-follower
development of Section 3, in this case either the followers and the leader are
additionally subject to disturbances via matrix [Bfw Bw], i.e. P fwi , and vd,i
are both considered as disturbances with respect to the weighted consensus.

6 Simulation

In the following we propose some numerical simulations to show the overall
WF control performance in both leaderless and leader-follower modes. In the
considered simulation test, the system is subject to two sources of model-plant
mismatches. The first one is caused by differences between the polynomial Cp
approximation used for the AOT-based controller design and the CART power
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(a) Leaderless consensus graph.
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(b) Leader-follower consensus
graph.

Fig. 6. WF example communication graph.
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Fig. 8. Zoom on LDP and DP during WF leaderless control.

coefficient given as a lookup table, and shown in Fig. 2a. The second one is
given by the way vd,i acts on WT i. Indeed, each vd,i affects the according WT
i dynamics via the mechanical power Pr. This causes an additional mismatch
as recall that vd,i effect was approximated in Subsection 5.2, leading to the
approximated model of system (27). We consider a WF composed of N = 6
WTs aligned one after the other according to the wind direction. We suppose
the 6-th WT to be the last one of the row according to the wind direction. Thus



22 Nicolò Gionfra et al.

0 50 100 150 200 250 300 350

time (s)

100

200

300

400

P
o
w

e
r 

(k
W

)

P
2

P
2

*

(a) WT 2 restored power.

0 50 100 150 200 250 300 350

time (s)

100

200

300

400

P
o

w
e

r 
(k

W
)

P
3

P
3

*

(b) WT 3 restored power.

0 50 100 150 200 250 300 350

time (s)

100

200

300

400

P
o

w
e

r 
(k

W
)

P
4

P
4

*

(c) WT 4 restored power.

0 50 100 150 200 250 300 350

time (s)

100

200

300

400

P
o

w
e

r 
(k

W
)

P
5

P
5

*

(d) WT 5 restored power.

Fig. 9. Wind farm leader-follower control.

it is required to always operate in classic MPPT mode. In the following tests, it
is supposed to not intervene in the consensus control, and its power signals will
not be reported. Concerning leaderless control, the remaining WTs are supposed
to communicate on the undirected graph shown in Fig. 6a. The free stream wind
speed v∞ blowing in front of WT 1 is chosen to have the profile of Fig. 5a. The
other wind speed signals vi, i = 2, . . . , 5 are obtained from v∞ according to the
wake model, (e.g. see [19]). The local WT PI gains are set equal to Kl

P = 0.2,
and Kl

I = 0.8, while the PID gains for the aforementioned multi-agent system
found via Theorem 1 are Kp = 0.0072, Ki = −0.0638, Kd = 0.0013, and they
allow weighted consensus achievement with performance index τ = 24.5. The
disturbance vd , col(d,1, . . . ,d,5 ) affecting the system is chosen to be the one
shown in Fig. 5b. In this case P fw is computed on the available measurements
vm,i. Thus, they are corrupted by measurement error, and they do not respect the
optimal relative power sharing condition (19). For this simulation we show signals
LDP , DP , and P , where P , col(P1, . . . , P5). Indeed consensus is reached
when LDP = 0, which can be alternatively seen as weighted power signals
DP reaching a common value, or as power signals P reaching defined constant
relative distances. These are illustrated in Fig. 7, from which we can also notice
that the aforesaid model-plant mismatches, as well as temporary dissatisfaction
of Assumption 4, cause persistent small oscillations around the reached weighted
consensus. For the sake of clarity, LDP , and DP are also shown in a zoomed
window in Fig. 8.
Eventually, we aim at showing how optimal absolute power references P ?i can be
restored via leader-follower consensus when some WTs in the WF are affected
by power reference error. In order to do, we consider a simple example in which
the only first WT in the row is error-free, and thus acts as the leader. In such
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case, we consider the WF communication graph to be modified according to
Fig. 6b, where the leader, WT 1, can communicate with WT 2 and WT 5
directly. The remaining WTs from 2 to 5 are followers and they can communicate
on an undirected connected graph. We suppose the leader vd,1 to be equal to
the one shown in Fig. 5b, whereas the followers wind disturbances are nonzero-
mean signals of the form of vd,i = v̄d,i + ṽd,i, where ṽd,i is a zero-mean signal,
and v̄d,i a constant nonzero value. ṽd,i, i = 2, . . . , 5 are supposed to be equal
to the corresponding i-th signal in Fig. 5b used in the previous simulation,
while v̄d,i are such that P fw2 = 80%P ?2 , P fw3 = 60%P ?3 , P fw4 = 30%P ?4 , P fw5 =
40%P ?5 , i.e. without leader-follower control they would track a not optimal power
reference. By employing fast leader-follower weighted consensus technique, the
PID gains are Kp = 0.0082, Ki = −0.0656, and Kd = −0.0028, and they allow a
performance index equal to τ = 24.5. Simulation results are illustrated in Fig. 9,
where the red dashed signals represent the original optimal power reference P ?i ,
and the blue solid line the obtained power output via consensus control. We are
able to conclude that consensus control shows good performance in restoring
the optimal absolute power values. Small persistent errors are due to model-
plant mismatches, by the fact that the PID structure cannot reject general time-
varying reference state, and because wind disturbance ṽd,i also affect the system
consensus function.

7 Conclusion

We presented a PID-like distributed protocol for general LTI MIMO discrete-
time agents. By employing LMIs we showed how the controller gains can be
tuned to solve two different, yet similar, problems, namely a leaderless under
system disturbances and a leader-follower under time-varying reference state
weighted consensus problem. The distributed control approaches were then ap-
plied to treat some issues concerning the wind farm power maximization problem
under wake effect. In order to do so, first an approximated AOT control tech-
nique allows a WT to track a general deloaded power reference by acting on
both the rotor speed and the pitch angle. Leaderless control technique was then
used to average out zero-mean wind disturbances from the optimal WF power
sharing, while we showed how leader-follower control can be applied to restore
the optimal power sharing in the case of power reference errors.
In the near future it would be interesting to consider other LMI approaches,
such as H∞ loop-shaping, to tune a distributed controller that could take into
account prior knowledge about system disturbances for a better rejection on con-
sensus reaching. Concerning the wind farm control problem, consensus control
represents a fairly new approach, and ti may lead to a great variety of other
applications, such as the distributed estimation of the wind filed within a wind
farm.
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Appendix

Appendix 1

A directed graph G, called digraph, is a pair (V, E), where V = {1, . . . , N} is
the set of nodes, and E ⊆ V × V is the set of unordered pairs of nodes, named
edges. Two nodes i, j are said to be adjacent if (i, j) ∈ E . In such case the
communication is supposed to be directed from i to j. We additionally define Ni
to be the set of neighbors of node i, i.e. Ni , {j ∈ V : (j, i) ∈ E}. The weighted
adjacency matrix A = [aij ] ∈ RN×N associated with the digraph G, is defined
by aii = 0, i.e. self-loops are not allowed, and aij > 0 if (i, j) ∈ E . The Laplacian
matrix L = [lij ] ∈ RN×N is defined as lii =

∑
j 6=i aij and lij = −aij , i 6= j.

Typically, if the adjacency matrix is not weighted, then we simply assign aij = 1
if (i, j) ∈ E . Moreover, under the assumption of undirected graph, (i, j) ∈ E
implies that (j, i) ∈ E too. In this report an undirected graph is always considered
to be not weighted. An undirected graph is connected if there exists a path
between every pair of distinct nodes, otherwise it is disconnected. If there exist
an edge between any two nodes, the graph is said to be complete. We provide
the following useful lemmas.

Lemma 1. [32] The Laplacian matrix has the following properties: (i) if A
refers to an undirected graph, then L is symmetric and all its eigenvalues are
either strictly positive or equal to 0, and 1 is the corresponding eigenvector to 0;
(ii) 0 is a simple eigenvalue of L if and only if the graph is connected.

Lemma 2. [33] Let L̄ =
[
l̄ij
]
∈ RN×N be a Laplacian matrix such that l̄ij =

N−1/N if i = j, and l̄ij = −1/N otherwise, then the following hold: (i) the eigen-
values of L̄ are 1 with multiplicity N−1, and 0 with multiplicity 1. 1> and 1 are
respectively the left and right eigenvector associated to eigenvalue 0; (ii) there
exists an orthogonal matrix U ∈ RN×N , i.e. U : U>U = UU> = I, and whose
last column is equal to 1/

√
N, such that for any Laplacian matrix L associated to

any undirected graph we have

U>L̄U =

[
IN−1 0(N−1)×1

01×(N−1) 0

]
, Λ̄,

U>LU =

[
L1 0(N−1)×1

01×(N−1) 0

]
where L1 ∈ R(N−1)×(N−1) is symmetric and positive definite if the graph is
connected.

Moreover we deduce the following extension of Lemma 2.

Lemma 3. Let L ∈ RN×N be the Laplacian matrix associated to an undirected
connected graph, and let D ∈ RN×N � 0, and symmetric, then the following
hold: (i) L̂ , DL � 0, all its eigenvalues are real, and 0 is a simple eigenvalue
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with associated eigenvector 1; (ii) consider the orthogonal matrix U ∈ RN×N
defined in Lemma 2, then

U>L̂U =

[
L̂1 0(N−1)×1

∗ 0

]
where ∗ indicates a generally nonempty row, L̂1 ∈ R(N−1)×(N−1) � 0, and its
eigenvalues are real.

Proof. We have that DL = D1/2(D1/2LD1/2)D−1/2, thus DL is similar to a sym-
metric semi-definite positive matrix, so its eigenvalues are positive real. L̂ pre-
serves the 0 eigenvalue, and its associated eigenvector 1, as DL1 = 0. 0 is a
simple eigenvalue as D is nonsingular, and L has one simple 0 eigenvalue by
hypothesis. The last column of U>L̂U has all its entries equal to 0 because the
last column of U is 1/

√
N. Being U>L̂U block triangular, and similar to L̂, L̂1

has all real strictly positive eigenvalues. ut

Lemma 4. Given two symmetric matrices A, and B of equal dimension such
that A � 0, and B � 0; then σ(AB) ⊂ C≥0.

Proof. It exists the symmetric matrix B1/2 : B1/2B1/2 = B, where B1/2 � 0, and
it exists B−1/2 : B−1/2B1/2 = B1/2B−1/2 = I. We have that AB = AB1/2B1/2 =
B−1/2

(
B1/2AB1/2

)
B1/2, thus σ(AB) ≡ σ(B1/2AB1/2). Moreover B1/2AB1/2 � 0

because A � 0 and B1/2 is symmetric. Thus σ(B1/2AB1/2) ⊂ C≥0. ut

Lemma 5. Given two symmetric matrices A, and B of equal dimension; if A �
0 then AB is diagonalizable in R.

Proof. It exists the symmetric matrix A1/2 : A1/2A1/2 = A, where A1/2 � 0, and
it exists A−1/2 : A−1/2A1/2 = A1/2A−1/2 = I. We have A−1/2ABA1/2 = A1/2BA1/2,
and the latter is symmetric. Thus AB is similar to a symmetric matrix, so it is
diagonalizable in R. ut

We recall the following lemma on Kronecker product ⊗

Lemma 6. [34] Suppose that U ∈ Rp×p, V ∈ Rq×q, X ∈ Rp×p, and Y ∈ Rq×q.
The following hold: (i) (U ⊗ V ) (X ⊗ Y ) = UX ⊗ V Y ; (ii) suppose U , and V

invertible, then (U ⊗ V )
−1

= U−1 ⊗ V −1.

Appendix 2

In the following we report the cited theorem of [24]. Consider the system of
equations {

x+ = Ax+Bu

y = Cx
(29)

where A ∈ Rn×n, B ∈ Rn×l, C ∈ Rm×n, x , x(k) ∈ Rn and x+ , x(k+ 1) ∈ Rn
are respectively the system state at the current step k, and at the next step k+1,
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u , u(k) ∈ Rl is the control input, and y , y(k) ∈ Rm is the measured and

controlled output. Define the matrices Ccl ,
[
C 0r×(2l)

]
, K ,

[
D>c B>c

]>
,

and

Ã ,

[
A BCc

02l×n Ac

]
where Ac, Bc, Cc, and Dc are defined in (3). Assuming B to be of full column
rank without loss of generality, there exists an invertible Tb ∈ Rn×n : TbB =[
0l×(n−l) Il×l

]>
. Finally define

T ,

[
Tb 0n×2l

02l×n I2l×2l

]
Thus, we have the following theorem

Theorem 4. Consider system (29). If there exists a positive definite matrix
P ∈ Rn̄×n̄, and a matrix

J =

[
J11 0(n̄−q)×3l

J21 J22

]
J22 ∈ R3l×3l, and X ∈ R3l×m, and we further name

Ω ,

[
0(n̄−3l)×n 0(n̄−3l)×2l

XC 03l×2l

]
such that the following LMI has a solution[

bP ∗
Ω + JTÃ+ aJT b(JT + (JT )> − P )

]
> 0

where ∗ indicates the transposed of the opposite term with respect to the matrix
diagonal, and if J is nonsingular, then by choosing K = J−1

22 X, the eigenvalues
of the following matrix

Acl ,

[
(A+BDcC) B2Cc

BcC Ac

]
lie in the region FD ,

{
(<[λ],=[λ]) : (<[λ] + a)2 +=[λ]2 < b2

}
.
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