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and Digital Predistortion of Power Amplifiers
Siqi Wang, Morgan Roger, Member, IEEE, Julien Sarrazin, Senior Member, IEEE, and Caroline Lelandais-Perrault

Abstract—Digital predistorsion (DPD) is a commonly used ap-
proach to compensate for the power amplifiers (PA) nonlinearities
and memory effects as well as to improve its power efficiency. To
alleviate the restriction brought by high peak-to-average power
ratio (PAPR) of input signals, crest factor reduction (CFR) is
needed for higher efficiency. In modern communication systems,
power of transmitted signals gets lower, which makes complexities
of CFR and DPD become non-negligible. This paper proposes a
new approach to realize a joint CFR and DPD model using neural
networks (NN). The modeling accuracy is guaranteed by a new
proposed augmented iterative learning control (AILC) algorithm
for the NN training signals. Compared with conventional ILC, the
proposed AILC is shown more robust according to simulation and
experimental results. The proposed AILC-based NN-CFRDPD is
experimentally evaluated on different test benches.

Index Terms—Crest factor reduction, digital predistortion,
iterative learning control, neural networks, power amplifiers
efficiency

I. INTRODUCTION

MODERN green communications have stringent require-
ments on the power efficiency of power amplifiers (PA)

which consume the majority of power in radio frequency (RF)
telecommunication systems [1]. However, the nonlinearity of
the PA causes spectral regrowth and introduces interference
when the PA operating point is pushed towards saturation for
high efficiency [2].

A common approach for PA linearization is digital predis-
tortion (DPD), which has the inverse characteristics of the PA
[3]. Applying the DPD upstream of the PA allows it working
in its nonlinear zone, where the power efficiency is higher
than in its linear zone [4]. Various DPD models have been
developed, such as memory polynomial (MP) [5] based on
Volterra series, generalized memory polynomial (GMP) [6],
and dynamic-deviation-reduction (DDR) [7]. Block-oriented
non linear (BONL) systems [8] have also been studied.

In modern communication systems, the peak-to-average
power ratio (PAPR) of modulated signals, e.g. Orthogonal Fre-
quency Division Multiplexing (OFDM) signals, brings another
restriction on the PA efficiency. That is due to the necessary
back-off on the PA operating point equal to or greater than the
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signal PAPR, applied to avoid the PA saturation [9]. To reduce
the signal PAPR, crest factor reduction (CFR) techniques can
be implemented along with the DPD [10]. The clip-and-filter
(CAF) approach is one of the most commonly used CFR
approaches and is usually implemented upstream of the DPD
[11]. The idea of CFR is to improve the PA efficiency while
sacrificing some linearity if there is a margin beyond the lowest
requirement of transmission standard after linearization by the
DPD. Since it can also be implemented as a polynomial soft
clipping as in [12], single models which combines the CFR
and the DPD have been proposed in [13] [14].

The power consumption of the CFR and the DPD becomes
crucial in modern wireless communication system, e.g. fem-
tocell networks or 5G and beyond [15], especially for green
communication [1]. It has been shown in [10] [14] that a
DPD model can be identified using some certain techniques
to realize also the function of a CFR, which improves the PA
efficiency without additional complexity. This joint CFR/DPD
model has been implemented with a conventional GMP model
in [14] with a low complexity and an acceptable linearity. In
this paper, we are seeking for a new joint CFR/DPD model
using artificial neural networks (NN), which brings possibility
to improve the linearization performance while trading off lit-
tle complexity. Since better linearization performance renders
larger linearization margin which allows more improvement of
PA efficiency, the proposed NN-CFRDPD gives an alternative
option in studying the trade-off between the power saved
from the PA by the digital signal processing (DSP) and the
power consumed by the DSP. Along with the development
of low power-consuming digital circuits, e.g. especially the
emerging memristor-based circuits for NN computation [16]
[17], the computational consumption of the DSP is getting less
and less significant, which makes the proposed NN-CFRDPD
technique more and more promising.

In recent years, NN models have been largely used in
different domains including the RF and microwave field
[18]. In [19], a DPD model based on real-valued focused
time-delay neural network (RVFTDNN) has been experi-
mentally validated for PA linearization considering mem-
ory effects. Different NN models have been proposed to
model the nonlinear behavior of wideband PAs and trans-
mitters, such as two hidden layers artificial neural network
(2HLANN) [20] [21], distributed spatiotemporal NN based
model (DSTNN) [22], complex-Chebyshev functional link
neural network (CCFLNN) [23]. The RVFTDNN has also
been proposed in [24] to compensate simultaneously for the
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nonlinearity of the transmitters and the I/Q imbalance of
the modulator. Furthermore, authors in [25] have addition-
ally taken the crosstalk interference into consideration and
proposed an NN model DPD for multi-input multi-output
(MIMO) transmitters. In addition, the NN model can also be
used to implement the CAF [26]. However, to the authors’
knowledge, this paper is the first time where an NN is used
for joint CFR/DPD.

The DPD parameter identification problem is traditionally
dealt with direct learning architecture (DLA) or indirect learn-
ing architecture (ILA) [27]. However DLA has difficulties
to train an NN-based DPD since the inverse function of an
NN model is generally ill-defined. In [14], a joint CFR/DPD
with GMP model has been identified using ILA. The ref-
erence signal for coefficients estimation is obtained thanks
to clipping-and-bank-filtering technique [28]. In [29], authors
advantageously applied the iterative learning control (ILC)
algorithm to train an NN-based DPD for MIMO transmitters.
The ILC is especially efficient in this case because it computes
a target predistorted signal [4] [30]. However it fails to
converge due to the added noise in the transmitted signals.

In this paper, we first propose an augmented ILC (AILC)
algorithm which renders a target predistorted signal with better
linearization performance compared with the conventional
ILC. Indeed, the fact that additive white noise at the PA input
is filtered iteratively in the ILC procedure generates out-of-
band distortion because of the PA memory effects. This effect
is analyzed and compensated in the proposed AILC procedure
with a simple low pass filter. The proposed AILC enables the
proposed NN-based joint CFR/DPD (NN-CFRDPD) to reach
a satisfactory linearization performance while significantly
enhancing the PA power efficiency. A simple two-hidden-layer
time-delay (2HLTD) NN is used in this paper as the model.
The proposed method is validated on different test benches.
The proposed approach is compared with the approaches in the
state-of-the-art. The comparison of linearization performance
between the NN-CFRDPD with AILC and that with the
conventional ILC confirms the advantages of our proposed
method on the adjacent channel power ratio (ACPR) and the
error vector magnitude (EVM).

This paper is organized as follows. Section II presents the
conventional iterative learning control algorithm, its limita-
tions, and the augmented version we propose. Section III gives
simulation results of the proposed AILC with different noise
levels. The structure and training process of the proposed
NN-CFRDPD are then described in Section IV. In Section
V, the test bench and the corresponding experimental results
are presented and discussed. Finally, the conclusion is given
in Section VI.

II. AUGMENTED ITERATIVE LEARNING CONTROL

ILC adjusts the PA input signal in an iterative procedure so
that the PA output signal converges towards a desired signal.
Without the need to know the DPD model structure, a desired
predistorted signal at the PA input is obtained after iterations
[31].
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Fig. 1. Process of the k-th iteration in ILC
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Fig. 2. ILC scheme with noised PA input signal at the k-th iteration

A. Conventional ILC for PA linearization

The ILC scheme is depicted in Fig. 1. The PA input and
output signals at the k-th iteration are denoted by xk(n)
and yk(n). yd(n) is the desired PA output signal and ek(n)
represents the observed error between the desired signal and
the measured PA output:

ek(n) = yd(n)− yk(n). (1)

At the first iteration, the PA input is initialized with the
stimulus of the system. At the kth iteration, a new PA input
according to the observed error ek(n) is computed:

xk+1 = xk + Lek, (2)

where xk = [xk(1), ..., xk(N)], ek = [ek(1), ..., ek(N)], N
is the number of signal samples, L is the learning matrix. In
[4], a linear ILC is proposed by setting the learning matrix
L = γI, where 0 < γ < 2

Gss
and Gss is the PA small signal

gain [32]. Then eq. 2 can be rewritten as

xk+1(n) = xk(n) + γek(n). (3)

The procedure ends when the error ek(n) meets the chosen
stop condition.

However, the convergence stays in level of ideal system
without noise which has a dramatic impact. To improve the
bound of ILC performance, we need to take the noise into
consideration as in next section.

B. Iterative filtering effect

With real measurements, it is unavoidable to bring noise into
the PA input signal during digital-to-analog conversion and RF
modulation as illustrated in Fig. 2, where d(n) is Gaussian
white noise (GWN).

The distortion of the PA is mainly due to its nonlinearity
and memory effects. Since the power of the added noise d(n)
is equally distributed at all frequencies and is weak compared
with the useful signal power, it is easy to know that d(n)k

is also GWN distributed at all frequencies. Therefore, the PA
nonlinearity has very few impact on it. However, the memory
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Fig. 3. Noise after iterative filtering and some frequency windows for
equalization

effects of the PA have impact on the out-of-band distortion
at frequencies away from the useful signal band [33]. Due to
memory effects, the output signal of a PA depends on both the
present and the historical input signal samples. Thus a linear
filter can be used to model the PA memory effects in baseband
digital signal processing [34]:

sout(n) =

L∑
l=0

clsin(n− l), (4)

where sin and sout are the filter input and output signals re-
spectively, L is the memory depth, cl are the filter coefficients.
If we express the noise component at frequency f as

df (n) = Aej2πfnt, (5)

where t = 1/fs with sampling frequency fs, A is the
amplitude, the filtered noise becomes

dFν (n) = A

L∑
l=0

cle
j2πν(n−l)

= (

L∑
l=0

cle
−j2πνl)dν(n),

(6)

where ν = f/fs represents the normalized frequency. The
amplitude of the filtered noise component dFν (n) is a function
of the normalized frequency ν. In other words, the filtered
noise dF (n) is no longer white noise.

Since ILC is an iterative procedure, the noise d(n) is filtered
iteratively and is accumulated in e(n). The noise at k-th
iteration can be expressed as

dν,k(n) = dν(n) +M(ν)dν,k−1(n),

where M(ν) =

L∑
l=0

cle
−j2πνl.

(7)

After K iterations, the iteratively filtered (IF) noise can be
approximated to

dIF
ν,K(n) =

K∑
k=0

Mk(ν)dν(n). (8)
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Fig. 4. AILC scheme at the k-th iteration

We denote the iterative filtering gain by

GIF
K(ν) = |

K∑
k=0

Mk(ν)|. (9)

At the frequencies where GIF
K(ν) > 1, the noise is amplified

as shown in Fig. 3 and the convergence of ILC is influenced.
The spectral evolution of GWN for 4 iterations is depicted in

Fig. 3. To equalize the amplified noise, we propose to use some
frequency windows, such as Chebyshev window and Gaussian
window, to filter it.

C. AILC with spectral windowing correction

The iteratively filtered noise components in the band of
yd(n) are negligible compared with the power of yd(n) and
can be compensated by (1). We propose an augmented version
of ILC to equalize the iteratively filtered noise components
at out-of-band frequencies with windows in the frequency
domain as illustrated in Fig. 3.

The AILC scheme is depicted in Fig. 4. At the k-th iteration,
on the error ek(n) obtained by (1), we apply a window in
the frequency domain to filter the out-of-band components of
ek(n):

F{zk(n)}(ν) = F{dk}(ν) ·W (ν) (10)

where F{·} represents the discrete Fourier transform of NFT
samples, W is a window centered at frequency 0 in baseband
with length NFT, and zk(n) is the windowed observed error of
AILC. The window W is constant at each iteration. The values
of W are real values with max(W ) = 1 and min(W ) = 0. The
width of the window is determined by the sampling frequency
of the system. The spectra of Gaussian frequency window
and Chebyshev frequency window are depicted in Fig. 3.
Chebyshev window has steeper descent at high frequency.

The window is an equalizer for the iteratively filtered
gain GIF

1 (ν) especially when GIF
1 (ν) increases along with ν

increasing.

III. SIMULATION RESULTS OF AILC

In order to validate the mathematical derivation of amplified
noise in the previous section, we feed an LTE signal noised
by different levels of GWN to a PA model.

In this section, we use a Wiener model PA [35] with
a 20MHz LTE signal for baseband simulation comparison
between the conventional ILC and the proposed AILC. The
AILC is implemented with either a Gaussian window or a
Chebyshev window. The Chebyshev window is applied with
100 dB of sidelobe attenuation.
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Fig. 5. simulation of conventional ILC and AILC without noise

Fig. 6. simulation of conventional ILC and AILC with SNR=40dB

Fig. 7. simulation of conventional ILC and AILC with SNR=50dB

Fig. 8. simulation of conventional ILC and AILC with SNR=70dB

TABLE I
AILC VS ILC WITH DIFFERENT SNR

Conventional Chebyshev Gaussian
ILC AILC AILC

No noise
L1 -75.4 -75.4 -75.4

ACPR (dBc)
U1 -75.4 -75.4 -75.4
L2 -75.4 -75.3 -75.4
U2 -75.4 -75.5 -75.4

SNR=70dB
L1 -61.5 -63.3 -62.8

ACPR (dBc)
U1 -60.6 -63.0 -62.9
L2 -53.4 -61.9 -61.5
U2 -54.4 -61.9 -61.5

SNR=50dB
L1 -41.9 -43.9 -43.4

ACPR (dBc)
U1 -41.0 -43.8 -43.1
L2 -34.8 -42.6 -41.9
U2 -35.1 -42.6 -41.9

SNR=40dB
L1 -31.8 -33.8 -33.4

ACPR (dBc)
U1 -31.6 -33.6 -33.3
L2 -26.5 -32.2 -31.9
U2 -26.6 -32.4 -32.0

By launching the conventional ILC and the proposed AILC
algorithms with different noise levels, we get the correspond-
ing PA output yk(n) and plot their spectra for comparison in
Fig. 5-8. We first test these methods without additive noise and
verify that the conventional ILC can converge in this ideal case
as depicted in Fig. 5. The AILC is the same as the conventional
ILC, which can reach the best performance. Then we add white
noise to the PA input signal (Noised input) with the signal-
to-noise ratio (SNR) equal to 40 dB, 50 dB and 70 dB. The
corresponding PA output spectra are illustrated in Fig. 6, Fig. 7
and Fig. 8 respectively.

In these tests, iterations stop when the error power∑N
n=1 |ek(n)|2 does not decrease. The ACPR values in the

first/second lower/upper (L/U) adjacent channels are listed in
Table I. If we denote the stimulus bandwidth by B, the first
lower/upper (L1/U1) adjacent channels are [−3B/2,−B/2]
and [B/2, 3B/2] respectively, the second lower/upper (L2/U2)
adjacent channels are [−5B/2,−3B/2] and [3B/2, 5B/2].

With the noise added at the PA input, we can see that
the conventional ILC has spectral regrowth at out-of-band
frequencies as predicted in Section II-B. The proposed AILC
improves the ACPR around 2 dB in the first band and more
than 5 dB in the second band. Furthermore the AILC with
Chebyshev window shows better performance than Gaussian
window. The experimental confirmation will then be given in
Section V.

IV. NEURAL NETWORK-BASED JOINT CFR/DPD
This section presents the NN architecture and details the

training methodology. The training signals are obtained by the
proposed AILC. The stimulus u(n) is the input of NN and the
desired predistorted signal given by AILC is the target signal
of NN. Since the NN output cannot be better than the target
signal, its linearization performance is bounded by the AILC.
With the conventional ILC, the performance of the NN model
is heavily restricted due to the noised error. With the proposed
AILC, the bound is lowered and this allows the NN to achieve
better linearization performance.

In order to realize the function of CFR in the NN model,
the target signal generated by the AILC procedure presented in
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Fig. 9. Clipping u(n) for desired signal yd(n) in AILC
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CAF
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Fig. 10. Procedure of NN-CFRDPD training

Section II-C should result in a clipped linearized signal yd(n)
at the PA output. Simply taking the stimulus u(n) multiplied
by the PA gain g as yd(n) as in [4] can only give a predistorted
signal for PA linearization. In this paper, we take a clipped
signal uc(n) with reduced PAPR for the desired yd(n) as
illustrated in Fig. 9.

In this paper, we compute uc(n) using traditional clip-
and-filter (CAF) [10]. The CAF is composed of mainly two
steps. First, it clips the signal samples which exceed the given
threshold P to obtain a correction signal

c(n) =

{
u(n)(1− P

|u(n)| ) if |u(n)| ≥ P,
0 otherwise,

(11)

Then, we apply a filter with the same bandwidth as u(n) on
c(n) to remove the out-of-band frequency components. The
clipping step may generate new peaks and thus we repeat for
a certain number of iterations to obtain a final correction signal
cf (n) [36]. We use the signal clipped by the CAF approach
to compute the desired signal yd(n) of AILC

yd(n) = g · uc(n) = g · (u(n)− cf (n)) (12)

where g is the gain of the PA. This desired signal is then used
in AILC to compute the NN target signal x(n) by (1).

PA
y(n)x(n)

CFR
u(n)

DPD

PA
y(n)x(n)u(n)

…

Iin(n)

…

…

Qin(n)

…

… …

Iout(n)

Qout(n)

NN-CFRDPD

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Fig. 11. The structure of NN-CFRDPD

The entire identification procedure of NN-CFRDPD is sum-
marized in Fig. 10. It can be decomposed into three steps:

1) Calculating desired signal yd(n) for AILC with u(n).
2) Estimating the target signal x(n) which is the predis-

torted clipped signal obtained by AILC.
3) Training the NN model with u(n) and x(n).
The idea of the NN-CFRDPD structure is illustrated in

Fig. 11. The NN-CFRDPD is equivalent to the cascade of the
CFR and the DPD, which means the NN input is the stimulus
u(n) and its output is the PA input signal x(n). The PA output
signal is denoted by y(n). In the 2HLTDNN, the input and
output are decomposed into real-valued I and Q signals:

u(n) = Iin(n) + iQin(n)

x(n) = Iout(n) + iQout(n).
(13)

Iin(n), Qin(n) and their L delayed samples construct the input
layer (yellow circles in Fig. 11). The output layer has only two
neurons: Iout(n) and Qout(n). Between the input and output
layers, there are two hidden layers as the green and blue circles
show in Fig. 11. The number of neurons in the l-th hidden
layer is denoted by Nl. The output qml of the m-th neuron in
the l-th layer is a function of its inputs tj :

qm(l) = f
(Nl−1∑
j=1

wjmtj + bm
)

(14)

where wjm is the weight, bm is the bias and f(·) is the
activation function. In this paper, we chose the rectified linear
unit (ReLU) as activation function for hidden layers [37]:

ReLU(x) =

{
x if x ≥ 0,

0 otherwise.
(15)

The activation function of the output layer is linear.
Knowing the target signal x(n), the NN can be trained

and its weights computed by backward computation using the
Levenberg-Marquardt algorithm [38]. We randomly divide the
input and target signals into 3 segments for training, validating
and testing. The process can be composed of 2 phases:

1) At each epoch, we take the first segment to compute the
values of wjm and bm and validate the computed NN
with the second segment.
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Fig. 12. Test bench for Experimental Implementation

Fig. 13. AMAM & AMPM curves of Test bench 1

2) After the training, we test the NN with the third segment.
In validating and testing step, the mean square error (MSE)

between the target signal and the NN output signal is calcu-
lated to estimate the NN modeling accuracy. The maximum
training epochs are set to 100.

V. EXPERIMENTAL RESULTS

A. Test bench

In this section, we give experimental results using two test
benches.

1) Test bench 1: The first test bench is illustrated in Fig. 12.
The device under test (DUT) is a HMC409LP4E PA operating
in the 3.3-3.8 GHz band. Its nominal gain at 3.5 GHz is
31 dB and the saturated output power is 32.5 dBm. The supply
voltage is 5 V. The AM/AM & AM/PM (Amplitude Modu-
lation/Amplitude Modulation & Amplitude Modulation/Phase
Modulation) curves is depicted in Fig. 13. We generate the
baseband stimulus in the PC workstation and feed it to the PA
through an Arbitrary Waveform Generator (AWG) at 10 GHz
sampling frequency. The AWG generates the stimulus directly
at the 3.5 GHz carrier frequency and no external mixer are
therefore used. The PA output signal is directly captured by
an oscilloscope with sampling rate at 10 GHz and is fed back
to the PC workstation for postdistortion processing. The input
and output baseband signals are synchronized in time after
down-sampling to 200 MHz for the NN-CFRDPD training.

Fig. 14. Test bench of WebLab [39] for Experimental Implementation.

Fig. 15. AMAM & AMPM curves of Test bench 2 (WebLab)

2) Test bench 2: We use test bench of WebLab [39] for
measurements as depicted in Fig. 14. The baseband IQ signal
is fed from the PC Workstation to the driver through a Vector
Signal Transceiver (PXIe-5646R VST) using a 200 MHz
sampling frequency. The supply voltage is 5 V. The VST
up-converts the baseband signal to the carrier frequency
2.14 GHz. The signal at the output of the PA is then down-
converted to baseband by the VST which provides to the PC
workstation the baseband signal digitized with a sampling
frequency of 200 MHz. A GaN PA CGH40006P transistor
mounted in the manufacturer demo-board fabricated by CREE
has been used to validate the proposed low rate DPD. Its
nominal gain is 13 dB at 2 GHz and the output power
at 1dB gain compression is 40.2 dBm. The nonlinearities
and the memory effect of this PA can be seen from the
AMAM&AMPM curves in Fig 15 in the case the stimulus
is 60 MHz LTE signal. The average power of the signal at
the input of the driver is around -24.94 dBm. The measured
average output power of the PA is 27.43 dBm.

B. AILC

In section III, we have shown that our proposed AILC out-
performs the conventional ILC by simulation. In this section,
we experimentally test the conventional ILC and the proposed
AILC to confirm that our proposed AILC has tackled the
problem of convergence which can significantly improve the
linearization performance. We compute the target signal x(n)
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Fig. 16. Error convergence comparison of conventional ILC and AILC

Fig. 17. PA output spectra with conventional ILC and different AILC

for NN training using conventional ILC and the proposed
AILC algorithm.

With Test bench 1, Fig. 16 gives the error convergence of
conventional ILC and AILC when the stop condition is set to
10 iterations. The error in dB is calculated by

EdB = 10 log10(
1

N

N∑
n=1

|e(n)|2). (16)

We can see that the error of conventional ILC is worse than
AILC after 3 iterations and it diverges after 4 iterations.
The error of our proposed AILC converges to -55 dB after
5 iterations. Compared with Gaussian window, the error of
the Chebyshev window AILC is higher at the 3rd iteration
but lower at the 5th iteration. With Chebyshev window, the
proposed AILC converges more slowly but more steadily.

While implementing the AILC, we set the stop condition
as E

(k)
dB > E

(k−1)
dB . The linearized PA output spectra are

illustrated in Fig. 17. The gray dotted curve is the PA out-

TABLE II
COMPARISON OF DIFFERENT METHODS WITH TEST BENCH 1

Conventional Chebyshev Gaussian
ILC AILC AILC

ACPR
L1 -44.1 -48.6 -47.4

(dBc)
U1 -45.1 -48.1 -47.9
L2 -41.4 -50.1 -49.1
U2 -43.4 -50.5 -49.9

EVM (%) 4.9 3.2 3.6

Fig. 18. Error convergence comparison of conventional ILC and AILC

Fig. 19. PA output spectra with conventional ILC and different AILC

put without linearization. The blue diamond curve represents
the conventional ILC. The green circle curve represents the
Chebyshev AILC. The red curve represents the Gaussian
AILC. The ACPR values are listed in Table II.

These experimental results validate the robustness of the
proposed AILC. We can see that our proposed AILC has
advantage beyond the conventional ILC about 3 dB in the
first band and over 6 dB in the second band. The performance
of Chebyshev AILC is about 1 dB better than that of Gaussian
AILC. This corresponds to the curves in Fig. 16. With the cur-
rent stop condition, Gaussian AILC stops at the 4th iteration
while Chebyshev AILC stops at the 5th iteration.

Using Test bench 2, we can also observe that the problem of
convergence is tackled by using AILC as illustrated in Fig. 18
and Fig. 19. Since AILC with Chebyshev window is found
better according to the results with Test bench 1, we test
only Chebyshev AILC with Test bench 2. The linearization
performance is listed in Table III. In this case, the proposed
AILC achieves more than 10 dB improvement on ACPR
compared with ILC.

TABLE III
COMPARISON OF DIFFERENT METHODS WITH TEST BENCH 2

Conventional Chebyshev
ILC AILC

ACPR L -30.6 -48.8
(dBc) U -35.2 -48.4

EVM (%) 3.6 1.7
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TABLE IV
NUMBER OF FLOPS FOR OPERATIONS

Operation flops Operation flops
Real Addition 1 Real Multiplication 1
Real Division 4 Complex Addition 2
Complex Multiplication 6 Complex-Real 2Square-root 6~8 Multiplication

With the proposed AILC, we can obtain a better target
signal for the NN-CFRDPD training, which may improve
the linearization margin and thus gives more possibility to
enhance the PA efficiency. In case of Test bench 2, using
AILC to estimate the target signal for NN-CFRDPD training
is indispensable.

C. Complexity Analysis

Since the identification of models is not required all the
time, in this paper we consider only running complexity [40].
We estimate the complexity with the number of flops (floating-
point operation) for each sample. Table IV gives the number
of flops of each operation according to [40]. Since different
algorithms are available for the square-root operation, the
number of flops is around 6~8. We take the average 7 flops
in this paper.

According to [10] [14], the joint CFR/DPD has obvious
advantage on complexity and linearization performance as
well compared with the traditional CFR algorithm which is
implemented independently of the DPD. Therefore we mainly
focus on comparing the complexities of GMP-based CFRDPD
in [21] and the proposed NN-CFRDPD.

1) GMP complexity estimation: The GMP model [6] is
expressed as

x(n) =

Ka∑
k=0

La∑
l=0

θa,klu(n− l)|u(n− l)|k

+

Kb∑
k=1

Lb∑
l=0

Mb∑
m=1

θb,klmu(n− l)|u(n− l −m)|k

+

Kc∑
k=1

Lc∑
l=0

Mc∑
m=1

θc,klmu(n− l)|u(n− l +m)|k.

(17)

where k is the index for nonlinearity, and l, m are the indices
for memory. The vector θ = [θa, θb, θc] contains the complex
coefficients for the signal and envelope, the signal and lagging
envelope, and the signal and leading envelope, respectively.

According to [40], the running complexity of a GMP model
for each sample signal can be expressed as

FGMP = 8R− 2 (18)

where R is the number of model coefficients.
2) NN complexity estimation: The inputs of NN are real

values. In eq. (14), there are Nl−1 real multiplications and
Nl−1 + 1 summation. Since ReLU does only a comparison,
we can neglect its complexity. Thus the number of flops for
2-hidden-layer NN is

FNN = (4L+ 1)N1 + (2N1 + 1)N2 + 2(2N2 + 1) (19)

where L is the memory depth, Ni is number of neurons in the
i-th layer.

O: Only DPD without CFR; I: GMP-CFRDPD in [14]; II: NN-CFRDPD
with conventional ILC; III: NN-CFRDPD with Chebyshev AILC; IV:

NN-CFRDPD with Gaussian AILC V: GMP-CFRDPD in [13];

Fig. 20. PA output spectra without and with only DPD, and with NN-
CFRDPD on Test bench 1

D. NN-CFRDPD

With the target signal obtained by the proposed AILC, an
NN-CFRDPD is trained and implemented in this section. We
take 50000 samples from the stimulus and the predistorted
signal obtained in Section V-B as the target signal to train the
NN-CFRDPD. We randomly select 70% samples for training
step, 15% samples for validating step and 15% samples for
testing step. We set NN model with time delay L = 6
and N1 = N2 = 30 neurons in each hidden layer for all
tests. These hyperparameters are determined by the algorithm
proposed in [21]. The proposed NN-CFRDPD is then validated
on the test bench with another segment of signal with 40000
samples.

First we test our proposed AILC-based NN-CFRDPD on
Test bench 1 and compare it with approaches in the state-
of-the-art. We take a generalized memory polynomial model
(GMP) [6] for a joint CFR/DPD [14] as references. According
to the algorithm in [41], we have the DPD model structure

Ka = 2,La = 4

Kb = 1,Lb = 1,Mb = 1

Kc = 6,Lc = 2,Mc = 1.

(20)

with 21 coefficients.
The PA output spectra linearized with different methods

are illustrated in Fig. 20. The gray dotted curve is the PA
output without DPD linearization. The black point curve stands
for the PA output linearized by only DPD (method O). The
pink dashed curve represents the GMP-based joint CFR/DPD
in [14] (method I). The blue diamond curve represents the
conventional-ILC-based NN-CFRDPD method (method II).
The green circle curve represents the Chebyshev AILC-based
NN-CFRDPD method (method III). The red curve represents
the Gaussian AILC-based NN-CFRDPD method (method IV).

The corresponding ACPR, EVM values, the currents of
supply (Isupply) and PA power added efficiencies (PAE) are
given in Table V. The EVM in this paper is calculated with
the difference between the I/Q samples of measured signal and
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TABLE V
COMPARISON OF DIFFERENT METHODS WITH TEST BENCH 1

PA out O I II III IV V
Pout (dBm) 27.1 24.2 26.9 27.5 27.1 27.2 26.9
Isupply (A) 0.64 0.63 0.64 0.64 0.64 0.64 0.64

PAE (%) 16.0 8.4 15.3 17.6 16.0 16.4 15.3

ACPR
L1 -36.3 -45.0 -42.4 -41.0 -43.6 -43.2 -38.9

(dBc)
U1 -36.9 -45.7 -43.0 -41.5 -44.0 -43.8 -38.5
L2 -43.6 -46.3 -45.1 -43.0 -45.8 -45.9 -42.8
U2 -44.2 -46.8 -46.0 -43.1 -46.2 -46.4 -44.3

EVM (%) 15.3 2.4 4.5 7.0 3.6 3.6 4.6
Complexity (flops) - 2702 166 2702 2702 2702 166

O: Only DPD without CFR; I: GMP-CFRDPD in [14]; II: NN-CFRDPD with conventional ILC; III: NN-CFRDPD with Chebyshev AILC; IV: NN-CFRDPD
with Gaussian AILC; V: GMP-CFRDPD in [13]

estimated signal [42]:

EVM% =

√√√√√√ 1
N

N−1∑
j=0

(δI2 + δQ2)

S2
avg

× 100% (21)

where δI and δQ are errors magnitude corresponding to in-
phase symbol and quadrature symbol of linearized signal sam-
ples compared with the desired signal samples respectively,
N is the number of samples, S2

avg is the average square
magnitude of N samples. The result of method O (only DPD
without CFR) is given as a reference.

Compared with method O, the proposed NN-CFRDPD
which reduces the PAPR of the input signal of 3 dB can
improve the PAE from 8.4% to at least 16.0%. The proposed
NN-CFRDPD achieves around -44 dBc on ACPR, which
trades 1 dB off compared with only DPD linearization to
double the PAE.

Compared with method II and method V, method III and
IV have better linearization performance in ACPR and EVM.
The NN-CFRDPD based on Gaussian window and Chebyshev
AILC exhibit similar performance. Both of them improve the
ACPR 2-3 dB and the EVM is halved. Comparing with GMP-
based joint CFR/DPD in literature (method I), our proposed
NN-CFRDPD can reach similar performance while using
Chebyshev AILC and shows 1 dB improvement on ACPR.
The NN-CFRDPD based on AILC can outperform the one
based on conventional ILC because the proposed AILC tackles
the problem of convergence caused by filtered errors and
thus gives a better target signal for NN training. The NN
model shows a very strong modeling accuracy compared with
conventional Volterra-series-based models, which therefore
exhibits much dependence on the training signals.

The complexity of NN-CFRDPD seems higher than GMP-
CFRDPD in Table V. That is because the GMP model struc-
ture is determined by the algorithm in [41] which optimizes
both the model modeling accuracy and model complexity.
On the other hand, the hyperparameters of NN model are
determined by the algorithm in [21] which considers only
average modeling accuracy since NN training signals are
randomly partitioned and the corresponding performance is
not a constant value for the same group of hyperparameters.
Furthermore, we can see that the proposed AILC-based NN-
CFRDPD reaches at least 1 dB better than the GMP-CFRDPD.

O: Only DPD without CFR; I: GMP-CFRDPD in [14]; II: NN-CFRDPD
with conventional ILC; III: NN-CFRDPD with Chebyshev AILC

Fig. 21. PA output spectra without and with only DPD, and with NN-
CFRDPD on Test bench 2

TABLE VI
COMPARISON OF DIFFERENT METHODS WITH TEST BENCH 2

PA out O I II III
Pout (dBm) 31.5 29.8 31.5 31.6 31.6
Isupply (A) 0.10 0.10 0.10 0.10 0.10

PAE (%) 70.6 47.8 70.6 72.3 72.3
ACPR L1 -36.0 -45.0 -43.0 -37.9 -45.7
(dBc) U1 -35.1 -45.8 -43.8 -41.5 -46.2

EVM (%) 18.1 2.7 5.3 6.5 4.9
Complexity (flops) - 1283 262 1283 1283

O: Only DPD without CFR; I: GMP-CFRDPD in [14]; II: NN-CFRDPD with
conventional ILC; III: NN-CFRDPD with Chebyshev AILC

We also test these approaches with Test bench 2 using the
stimulus with wider band on a more powerful PA. The GMP-
CFRDPD model for method I is given as

Ka = 3,La = 6

Kb = 1,Lb = 1,Mb = 1

Kc = 1,Lc = 7,Mc = 2.

(22)

with 33 coefficients. We set NN model with time delay L = 9
and N1 = 18, N2 = 15 neurons for all tests.

The spectra of different approaches are given in Fig. 21. The
gray dotted curve is the PA output without DPD linearization.
The black point curve stands for the PA output linearized by
only NN DPD (method O). The pink dashed curve represents
the GMP-based joint CFR/DPD in [14] (method I). The blue
curve represents the conventional-ILC-based NN-CFRDPD
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method (method II). The green curve represents the Chebyshev
AILC-based NN-CFRDPD method (method III). Gaussian
AILC is not presented according to former results.

The power efficiencies are given in Table VI as well as
the corresponding linearization performance and complexity.
Using the same model, the joint CFR/DPD improves the PA
efficiency over 20% for a similar linearization performance
without adding complexity for the CFR.

Comparing with method I, the proposed method III has
2~3 dB advantage on ACPR, which provides more margin of
linearity to enhance the PA efficiency. Though the complexity
of NN model is higher than that of GMP, it offers an alternative
option which results in a different trade-off between linearity
and complexity, or a different trade-off between saved PA
power and the power consumed by DSP.

Comparing with method II based on conventional ILC, the
proposed method III has over 5 dB advantage on ACPR.
The spectra of method II in Fig. 21 shows the impact of
conventional ILC on out-of-band which can be eliminated by
the proposed AILC as shown by the spectra of method III.

The experimental results show that the proposed NN-
CFRDPD can keep a similar linearization performance as a
single DPD while largely enhancing the PA efficiency by
incorporating the CFR. The proposed AILC is crucial to
implement the NN-CFRDPD for high PA efficiency with an
acceptable linearization performance.

VI. CONCLUSION

In this paper, we propose an NN-based joint CFR/DPD
to enhance the PA power efficiency while keeping a good
linearization performance. Compared with joint CFR/DPD
based on Volterra series, e.g. GMP, the proposed NN-CFRDPD
has higher complexity but better linearization performance.
It is more an alternative option depending on the vision of
the trade-off between the power saved from the PA and the
power consumed by the joint CFR/DPD itself, rather than a
substitution of the GMP-based joint CFR/DPD in [14]. With
low power-consuming digital circuits developing recently, the
proposed NN-CFRDPD is promising. In the future work, an
algorithm should be developed to reduce the complexity of
NN model in the same way as the algorithm in [41]. In order
to achieve the best performance of the NN model, we also
propose an AILC algorithm in this paper to compute the target
signal used for training. Different types of windows are applied
in AILC to compensate for the out-of-band distortion brought
in conventional ILC by the iteratively filtered white noise at
the PA input. Experimental results confirm that the proposed
approach has good linearization performance while exhibiting
a high efficiency.
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