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The question of resource allocation arises whenever demand exceeds supply. The common approach is to optimize the network efficiency while maintaining some fairness among the users. While resource allocation policies use various definitions for network efficiency and fairness, most of them are based on maximization of a utility function. The mathematical formalism underlying these approaches is the same as the mathematical formalism used in the Bernoulli model in finance, where a player is supposed to maximize his expected utility function. This model is disproved by Allais' paradox, which provides examples of rational behaviors which cannot be described by the maximization of any utility function. By transposing this paradox to telecommunication networks for the purpose of resource allocation, we build examples of rational operators whose optimal choice cannot be described by the maximization of any utility function. By optimizing a trade-off between network efficiency and fairness, we propose a model similar to the risk-return trade-off optimization in finance.

Introduction

The mobile telecommunication sector is presently enjoying a tremendous growth, and this trend is expected to continue in the foreseen future. According to an IDATE report [START_REF] Pujol | Mobile traffic forecasts 2010-2020 & offloading solutions[END_REF], global mobile subscription should grow from 5,328 million in 2010 to 9,684 million in 2020 (+81.8%), while total worldwide mobile traffic should grow from 3.8 Ebyte in 2010 to 127 Ebyte in 2020 (x33).

This tremendous growth will inevitably cause saturation and congestion problems. In spite of the numerous solutions which are considered in order to meet the growing demand, there is no doubt that the question of resource allocation will become a key issue in the next years, especially in the scope of the introduction of 5G networks.

The question of resource allocation arises whenever demand exceeds supply. This issue goes far beyond the field of telecommunications and is extensively studied in economics and sociology. In telecommunication network management, the question arises especially in throughput allocation and base-station allocation in multi-tier networks [START_REF] Hong | Mechanism design for base station association and resource allocation in downlink OFDMA network[END_REF], [START_REF] Lin | Optimizing user association and spectrum allocation in HetNets: A utility perspective[END_REF].

Some approaches favor the search of balance between energy consumption and throughput revenue [START_REF] Maric | Resource allocation for constrained backhaul in picocell networks[END_REF], [START_REF] Feng | A survey of energy-efficient wireless communications[END_REF]. In addition, many methods have been proposed in order to improve energy efficiency [START_REF] Ng | Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station[END_REF], [START_REF] Li | Maximizing energy efficiency in wireless networks with a minimum average throughput requirement[END_REF].

Other approaches introduce a pricing in order to optimize both energy consumption and throughput revenue [START_REF] Kang | Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach[END_REF], [START_REF] Lee | Joint resource allocation and base-station assignment for the downlink in CDMA networks[END_REF].

Resource allocation is also mentioned as a technique for maximization of network lifetime, where network lifetime is defined as the total amount of time during which the network is capable of maintaining its full functionality and/or of achieving particular objectives during its operation [START_REF] Yetgin | A survey of network lifetime maximization techniques in wireless sensor networks[END_REF].

The common feature of all these approaches is that the question of resource allocation results from the fact that supply is limited. The objective is to optimize in some way the network efficiency while maintaining a certain fairness among the users.

The paper is organized as follows: Section 2 provides a literature review on fairness and utility function. Existing work on risk management in finance is presented in Section 3, and transposed to resource allocation in telecommunication networks in Section 4. Section 5 introduces the concept of unfairness aversion for the need of trade-off between fairness and efficiency when the limiting factor is the total rate. Simulations are presented in Section 6. Concluding remarks are given in Section 7.

2 Fairness and utility function

Fairness

Various approaches have been proposed for fairness in allocation of a single type of resource. Let x = (x 1 , ..., x n ) be a resource allocation vector. A variety of metrics, such as the ratio between the smallest and the largest allocations (min-max ratio), Jain's index, or proportional fairness have been proposed:

Min-max ratio

The min-max ratio is the ratio between the lowest allocation and the highest allocation.

min -max(x 1 , ...x n ) = min i x i max i x i (1) 
2.1.2 Jain's index

J(x 1 , x 2 , ..., x n ) = ( n i=1 x i ) 2 n n i=1 x 2 i (2)
In the worst case, when all x i but one equal to 0, J(x 1 , x 2 , ..., x n ) = 1 n . In the best case, when all x i are equal, J(x 1 , x 2 , ..., x n ) = 1.

By noting x and σx 2 the empirical mean and the empirical squared error of x, respectively, Jain's index can be expressed as a function of these two parameters:

J(x 1 , x 2 , ..., x n ) = 1 1 + σx 2 x2
(3)

Proportional fairness

Proportional fairness is based upon the assumption that the users' utility functions are logarithmic. Resource allocations x * i are proportionally fair if they maximize

n i=1 log x i .
In weighted proportional fairness, the optimal allocation is obtained by maximizing n i=1 p i log x i . The concept of proportional fairness has been generalized in [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF], which introduces the definition of (p, α)proportional fairness: a feasible resource vector x * is (p, α)-proportionally fair if for any feasible vector x,

n i=1 p i xi-x * i x * i α ≤ 0.
It is shown in [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF] that (p, α)-proportional fair resource allocation is equivalent to the maximization of the function:

f α (x) = ln x, if α = 1 x 1-α 1-α , otherwise (4) 
This definition can be slightly modified in order to have a family of functions continuous in α:

f α (x) = x 1 dt t α = ln x, if α = 1 x 1-α -1 1-α , otherwise (5) 

Entropy

Entropy was introduced by Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] in information theory in order to measure the expected value of the information contained in a message. Assuming that a random variable can take n distinct values, with probabilities p 1 , p 2 ,...,p n , Shannon entropy is defined as:

H(p 1 , ..., p n ) = - n i=1 p i log 2 p i (6) 
Shannon entropy equals to 0 when one probability equals to 1 and all other probabilities equal to 0. Shannon entropy reaches its maximum value, log 2 n when all probabilities equal to 1 n . More generally, the more homogeneous the probability distribution is, the greater Shannon entropy is. For this reason, Shannon entropy can be used as a fairness measure. By defining:

p i = x i n j=1 x j (7) 
H(p 1 , ..., p n ) is a fairness measure of the resource allocation vector x = (x 1 , ..., x n ).

In order to unify these various theories, [START_REF] Lan | An axiomatic theory of fairness in network resource allocation[END_REF] and [START_REF] Joe-Wong | Multiresource allocation: Fairness-efficiency tradeoffs in a unifying framework[END_REF] developed an axiomatic approach which is summarized below. A fairness measure is a function f : R n → R where x ∈ R n is an allocation vector representing the resource allocated to each user, fulfilling the following axioms:

-Continuity: f is continuous for any n ≥ 1.

-Homogeneity: f (x) = f (t.x), ∀t > 0 -Saturation: As the number of users tends to infinity, fairness value of equal resource allocation becomes independent of the number of users: lim n→∞ 1n 1n+1 .

-Partition:

The partition axiom uses the concept of mean function:

h : R 2 → R
is a mean function iff there exist a continuous and strictly monotonic function g and two positive weights s 1 and s 2 fulfilling

s 1 + s 2 = 1 such that: ∀u, v ∈ R, g(h(u, v)) = s 1 g(u) + s 2 g(v).
Considering an arbitrary partition of the system into two subsystems, the partition axiom states that there exists a mean function h : R 2 → R such that the fairness ratio of two resource allocation vectors x = [x 1 x 2 ] and y = [y 1 y 2 ] equals the mean of the fairness ratios of the two suballocations:

f (x) f (y) = h f (x 1 ) f (y 1 ) , f (x 2 ) f (y 2 ) .
-Starvation: In a two-user system, an equal allocation is more fair than starving one user:

f ([11]) ≥ f ([10]).
Starting with these five axioms, [START_REF] Lan | An axiomatic theory of fairness in network resource allocation[END_REF] generates a family of fairness measures from a generator function:

f β (x) = sign(1 -β)   n i=1 x i n j=1 x j 1-β   1 β (8)
where sign(.) is the sign function. Fairness in network resource allocation encounters the question of fair balance of utility functions, rather than fair balance of throughputs: fair balance of throughputs can lead to very unsatisfied users. For example, if two users have an all-or-nothing utility function for the total available throughput in the network, the best solution is to choose arbitrarily one of the users and to attribute him the whole throughput.

Utility function

On the other hand, maximization of utility function is also considered. These two approaches are clearly different, since scale-invariant metrics are unaffected by the total amount of allocated resources, while maximization of utility functions leads to Pareto optimal resource allocations.

In [START_REF] Fossati | A mood value for fair resource allocations[END_REF], users' satisfaction is defined taking into account the available resource. As a consequence, a user receiving a given allocation will have a greater satisfaction if all or part of the allocation he receives has been taken at the expense of other users. This definition leads to a trade-off between fairness and efficiency which favors compromise from the part of the users. This is fairly adapted to a resource sharing problem where users know all the allocations or at least the total allocation. However, the basic need of a user connecting to a telecommunication network is to transmit his data, without taking into account other users' allocations. Therefore, in our model, the utility function of a user only depends upon the throughput he receives.

We assume in the following that each user requests a given throughput R and has a utility function f fulfilling the following conditions:

-

f (0) = 0 -f (R) = 1 -∀x ≤ 0, f (x) = 0 -∀x ≥ R, f (x) = 1 -∀x < R, f (x) < 1
f is a growing function It has been shown in [START_REF] Ye | User association for load balancing in heterogeneous cellular networks[END_REF] that if the utility function is concave, then the general utility is maximized when resources are equally allocated. However, we will not make any assumption on convexity since all kinds of convexity properties can occur in practice for utility functions.

We assume that each user's utility function is known by the network, with no possibility of cheating.

Since the question is sharing one resource between several users, we will deal with cardinal utility rather than ordinal utility. The utility functions are considered according to their absolute values and treated as additive and multiplicative. Therefore, unlike most utility functions in use in economic modeling, the utility functions we consider are affected by composition with a growing function.

Many well-known resource allocation optimization policies are particular cases of utility functions. For example:

a constraint requiring the SIN R to be greater than a threshold [START_REF] Le | Multihop cellular networks: Potential gains, research challenges, and a resource allocation framework[END_REF], [START_REF] Koutsopoulos | Adaptive resource allocation in SDMA-based wireless broadband networks with OFDM signaling[END_REF] is equivalent to an all-or-nothing utility function;

optimizing the total throughput [START_REF] Seong | Optimal resource allocation for OFDMA downlink systems[END_REF] is equivalent to a linear utility function. proportional fairness [START_REF] Kelly | Charging and rate control for elastic traffic[END_REF], [START_REF] Massoulié | Bandwidth sharing: objectives and algorithms[END_REF] is equivalent to a logarithmic utility function.

Taking into account the fact that each player tries to optimize his utility function, the fairness measure of a resource allocation vector x = (x 1 , ..., x n ) will be defined as Jain's index of utility functions:

F (x 1 , x 2 , , x n ) = J (f 1 (x 1 ), f 2 (x 2 ), ..., f n (x n )) F (x 1 , x 2 , , x n ) = ( n i=1 fi(xi)) 2 n n i=1 fi(xi) 2
In the case where there are several classes of users, Jain's index may be weighted:

F (x 1 , x 2 , , x n ) = J (f 1 (x 1 ), f 2 (x 2 ), ..., f n (x n )) F (x 1 , x 2 , , x n ) = ( n i=1 βifi(xi)) 2 n n i=1 (βifi(xi)) 2

A PARALLEL WITH FINANCE

In the expected utility model, introduced by Daniel Bernoulli in the 18 th century, a rational player behaves as if he tries to maximize his expected utility function.

That is to say that if a rational player participates to a lottery A, where the gains are A 1 ,..., A n with respective probabilities p 1 ,...,p n , the player will attribute to this lottery a cardinal utility:

ϕ(A) = n k=1 p k f (A k )
, where f is some growing function.

Then, a rational player is able to define his preference between two lotteries: if ϕ(A) ≥ ϕ(B), the player prefers lottery A to lottery B (A B).

This model was formally developed by John Von Neumann and Oscar Morgenstern [START_REF] Von Neumann | Theory of games and economic behavior[END_REF], who stated four axioms which define a rational decision maker:

-Completeness: for every A and B, A B or B A.

-Transitivity: for every A, B and C, if A B and B C, then A C.

-Independence: for any t ∈ [0, 1] and for every A, B

and

C, if A B, then tA + (1 -t)C tB + (1 -t)C. -Continuity: for every A, B and C, if A B C, there exist some t ∈ [0, 1] such that B is equally good as tA + (1 -t)C.
In 1953, Maurice Allais published simple examples disproving Bernoulli's utility function and Von Neumann and Morgenstern's independence assumption [START_REF] Allais | The so-called Allais paradox and rational decisions under uncertainty[END_REF].

Utility function

Allais' paradox is based on the four lotteries described in Table 1 

Lottery Chance Winnings

1A 100% 1 M$ 10% 5 M$ 1B 89% 1 M$ 1% 0 11% 1 M$ 2A 89% 0 10% 5 M$ 2B 90% 0
Allais claims that a rational player can prefer lottery 1A to lottery 1B and lottery 2B to lottery 2A. The reason is risk aversion: if the risk is low, the player will prefer the more secure choice. If the risk is high anyway, the player will try to maximize the risk premium. However, these preferences contradict the expected utility model:

If the player prefers Lottery 1A to Lottery 1B, then:

f (1M $) > 10%f (5M $) + 89%f (1M $) + 1%f (0) (9) Therefore, 11%f (1M $) > 10%f (5M $) + 1%f (0) (10) 
But if he prefers Lottery 2B to Lottery 2A, then:

10%f (5M $) + 90%f (0) > 11%f (1M $) + 89%f (0) (11) So, 11%f (1M $) < 10%f (5M $) + 1%f (0) (12) 
Inequalities ( 10) and ( 12) clearly contradict each other.

Independence assumption

The independence assumption is based on the following argument: the lottery tA + (1 -t)C (resp. tB + (1t)C) can be performed in two steps: first we draw lots between lotteries A (resp. B) and C with probabilities t and (1 -t), and then we play the chosen lottery. If the probability t event occurs, then we play lottery A (resp. lottery B). If the probability (1 -t) event occurs, then we play lottery C anyway. Since lottery A is assumed to be preferable to lottery B, the player shall prefer lottery tA + (1 -t)C to lottery tB + (1 -t)C.

However, Allais points out that the choice must be ex ante and not ex post, and provides an example based upon the three lotteries described in Table 2. With t = 1%, the combined lotteries are described in Table 3. Allais' main conclusion is that all the properties of the probability distribution must be taken into account for any rational choice involving risk.

Risk-return trade-off in portfolio management

The portfolio management model was developed by Harry Markowitz in 1952 [START_REF] Markowitz | Portfolio selection[END_REF]. Given a set of individual assets with their respective expected returns, volatilities and correlations, it can be proved that the set of feasible portfolios is bounded by a curve, which is called the minimum-variance frontier ([3], Chapter 7). The upper part of the minimum-variance frontier is called the efficient frontier of risky assets. Any rational investor shall define his risky portfolio on the efficient frontier (Fig. 1).

The choice of a risky portfolio on the efficient frontier is a matter of risk aversion. A risk-averse investor will choose a portfolio close to the global minimumvariance portfolio, in order to reduce risk. A non-riskaverse investor will choose a more risky portfolio, offering a higher expected return.

TRANSPOSITION TO RESOURCE ALLOCATION

Allais' paradoxes can be transposed to resource allocation in wireless networks.

Utility function

Let us consider the four following networks, proposing various rates for equally-weighted users (see Table 4). While it is generally assumed that Network 1A is more efficient than Network 1B, it is also assumed that Network 2B is more efficient than Network 2A. However, as in the example above, these statements contradict the definition of network efficiency.

Independence assumption

Let us consider the three following networks, proposing various rates for equally-weighted users (see Table 5). With t = 1%, the resulting networks are described in Table 6. In finance, the most widely accepted explanation for Allais' paradox is risk aversion: if the risk is low, the player will prefer the more secure choice. If the risk is high anyway, the player will try to maximize the risk premium.

A similar explanation can be adopted for network efficiency: in Network 1B, 10% fully satisfied users will be negatively overwhelmed by 1% of fully unsatisfied users. Network 1A will be preferred because it does not let any user fully unsatisfied.

On the other hand, the difference of fully unsatisfied users between Networks 2A and 2B is not significant (89% vs 90%). For 1% more unsatisfied users, it seems worthy to enhance the satisfaction level of other users.

Therefore, as in the example of utility function in finance, network efficiency shall be considered as a prescriptive theory, rather than a descriptive theory.

A major consequence on this paradox is that resource allocation in a network must be made by considering the network as a whole. Sharing the network into subnetworks and optimizing resource allocation in each one of them will lead to suboptimal allocation.

FAIRNESS-EFFICIENCY TRADE-OFF

A survey of fair optimization methods and models for resource allocation in telecommunication networks is provided in [START_REF] Ogryczak | Fair optimization and networks: A survey[END_REF]. The concept of trade-off between fairness and utility is mentioned in [START_REF] Huaizhou | Fairness in wireless networks: Issues, measures and challenges[END_REF]. A metric to evaluate the price of fairness in terms of efficiency loss and the price of efficiency in terms of fairness loss is provided in [START_REF] Bertsimas | On the efficiency-fairness trade-off[END_REF]. A method of management of the efficiency-fairness trade-off by controlling the system fairness index is proposed in [START_REF] Rodrigues | Control of the trade-off between resource efficiency and user fairness in wireless networks using utility-based adaptive resource allocation[END_REF]. An α-fair dynamically adapted scheduling strategy optimizing coverage and capacity in selforganizing networks is proposed in [START_REF] Combes | On the use of packet scheduling in self-optimization processes: application to coverage-capacity optimization[END_REF]. In order to introduce our own definition of fairness-efficiency trade-off, we will first define the concepts of network efficiency and unfairness aversion.

Network efficiency

A simple measure for network efficiency can be the total binary rate of the network. However, we prefer to relate network efficiency to the user's utility functions. The reason is that a network can be inefficient even though the binary rate may be high. For example, if two users have an all-or-nothing utility function for the total available throughput in the network, choosing arbitrarily one of the users and attributing him the whole throughput is a more efficient solution than sharing the throughput into two equal parts.

Optimizing the total binary rate is a particular case of our model, since it is equivalent to rule that the users' utility functions are linear.

Therefore, we define the network efficiency as the sum, optionally weighted, of the user's utility functions:

U (x 1 , x 2 , ..., x n ) = n i=1 α i f i (x i ) (13) 
where x i is the rate allocated to user i and f i his utility function.

Unfairness aversion

The definition we adopt for unfairness aversion is similar to that of risk aversion in finance.

Unfairness aversion is the reluctance of a network to accept a given unfairness level for a given efficiency level rather than a lower unfairness level for a lower efficiency level.

The concept of unfairness aversion gives a measure of the price the network is ready to pay in terms of efficiency in order to get a better fairness.

Therefore, the network's indifference curves are the set of points in the efficiency-fairness map which are equally satisfying from the network's point of view.

Thus, the network's characteristics can be represented by a point in a two-axis map. Among all the feasible points, the fairness-efficiency trade-off is the point located on the highest indifference curve.

If the fairness is defined by Jain's index, which can be, as mentioned above, expressed as a function of empirical mean and empirical squared error, then the fairness-efficiency trade-off is equivalent to the riskreturn trade-off in finance. Though mean and standard deviation do not provide all the information about probability distribution, these two parameters may provide a fairly good approximation in order to describe the operator's preferences.

Unfairness aversion can be characterized by an objective function ϕ (U, J) where the curves ϕ (U, J) = C are the indifference curves, C denoting a constant.

Trade-off between fairness and efficiency

The optimal trade-off between fairness and efficiency is given by the constrained optimization: max ϕ (U (x 1 , x 2 , ..., x n ), J(x 1 , x 2 , ..., x n )) [START_REF] Le | Multihop cellular networks: Potential gains, research challenges, and a resource allocation framework[END_REF] subject to n i=1 x i = X, X being the total allocated resource.

The approach described above can be illustrated by the following examples. In these examples, two kinds of utility functions will be used:

linear utility function: the user's satisfaction is proportional to the rate he gets; all-or-nothing utility function: the user is satisfied if and only if he gets the rate he wants.

In practice, linear utility functions can be encountered for example for data transmission, where the time transmission will be inversely proportional to the rate, while all-or-nothing utility functions can be met for real-time video applications.

Simulations

We ran simulations of the approach presented above in a network involving a large number of users.

System description

Users arrive into the network according to a Poisson process. Each user i is characterized by 4 parameters:

-Utility function (linear or all-or-nothing) -Requested rate: R i for an all-or-nothing user, R i for a linear user. The requested rate follows a lognormal law -Volume of data which needs to be transmitted: Q i for an all-or-nothing user, Q i for a linear user. The volume of data follows a lognormal law. -User class (gold, silver, bronze)

We denote r i (resp. r i ) the rate allocated to all-ornothing (resp. linear) user i and q i (resp. q i ) the remaining data to be transmitted by all-or-nothing (resp. linear) user i. At each instant, the number of all-ornothing users is n and the number of linear users is m. The total number of users is N = n + m.

An event is the entry of a newcomer or the exit of a user when his transmission is achieved.

The system will process the resource allocation which optimizes the fairness-efficiency trade-off, under the constraint that the total rate is R total .

The system will provide statistical outputs regarding the rate of satisfaction according to the type of users (class, demand or utility function).

-If the utility function of user i is all-or nothing, it is defined as:

-f i (r i ) = 1 [Ri,+∞[ -If the utility function of user i is linear, it is defined as: -f i (r i ) = r i /R i for 0 ≤ x i ≤ R i -f i (r i ) = 1 for r i ≥ R i
In order to define the priorities among the user classes, utility functions are weighted for the calculation of the network efficiency and Jain's index.

The network efficiency is:

U (r 1 , , r n , r 1 , ...r m ) = n i=1 α i f i (r i )+ m i=1 α i f i (r i ) where:
α i = 9 or α i = 9 if user i is a gold user; α i = 3 or α i = 3 if user i is a silver user; α i = 1 or α i = 1 if user i is a bronze user. Jain's index is:

F (r1, , rn, r 1 , ...r m ) = J f1(r1), ..., fn(rn), f 1 (r 1 ), ..., f m (r m ) F (r 1 , , r n , r 1 , ...r m ) = ( n i=1 β i f i (r i )+ m i=1 β i f i (r i )) 2 N ( n i=1 (β i f i (r i )) 2 + m i=1 (β i f i (r i )) 2 )
, where:

-

β i = 1 or β i = 1 if user i is a gold user -β i = 3 or β i = 3 if user i is a silver user -β i = 9 or β i = 9 if user i is a bronze user
We deal with three kinds of indifference curves:

-φ(U, J) = U (r 1 , , r n , r 1 , ...r m ); -φ(U, J) = U (r1, , rn, r 1 , ...r m )J f1(r1), ..., fn(rn), f 1 (r 1 ), ..., f m (r m ) η ,
where η is a strictly positive number; φ(U, J) = J (f 1 (r 1 ), ..., f n (r n ), f 1 (r 1 ), ..., f m (r m )).

For each event, the system will process the optimal allocation: max i ri≤R total φ(U, J)

Algorithm

Any all-or-nothing user shall be either fully served or not served at all. As a result, all-or-nothing users bring discontinuities in the network efficiency and Jain's index, making impossible the use of classical algorithms for optimization.

Taking into account all the possibilities to serve or not serve each all-or-nothing user would lead to an exponentially complex problem.

Therefore, we present hereafter an approximation which enables to find a sub-optimal solution with a polynomial complexity. Under reasonable assumptions, this sub-optimal solution will tend to the optimal solution when the number of users tends to infinity.

Ordering the all-or-nothing users

The all-or-nothing users will be ordered according to the α k R k ratio. The purpose of comparing these ratios is to evaluate the average impact of each unit of rate on the network efficiency.

After this ordering, we have n ordered all-or-nothing users and m linear users, with n + m = N .

X 1 =      R 1 Q 1 α 1 , X 2 =      R 2 Q 2 α 2 , ... , X n =      R n Q n α n , with α1 R1 ≥ α2 R2 ≥ ... ≥ αn Rn X n+1 =      R n+1 Q n+1 α n+1 , X n+2 =      R n+2 Q n+2 α n+2 , ... , X n+m =      R n+m Q n+m α n+m

Basic assumption: priority among all-or-nothing users

We now assume that if an all-or-nothing user X k , 1 ≤ k ≤ n is served, then all the all-or-nothing users who are better rated than him (ie X i , 1 ≤ i ≤ k) are also served. This assumption is an approximation. Since rate demands are not breakable, it may lead to a suboptimal solution. The priority that we define among all-or-nothing users is based on the following considerations:

-Lemma 1 Let X j and X k be two all-or-nothing users. If α j = α k and R j ≤ R k , then:

max i ri≤R total rj =Rj r k =0 φ(U, J) ≥ max i ri≤R total rj =0 r k =R k φ(U, J) Proof max i ri≤R total rj =Rj r k =0 φ(U, J) = max i / ∈{j,k} ri≤R total -Rj rj =Rj r k =0 φ(U, J) max i ri≤R total rj =0 r k =R k φ(U, J) = max i / ∈{j,k} ri≤R total -R k rj =0 r k =R k φ(U, J)
Since U (r 1 , ..., r j = R j , ..., r k = 0, ..., r n , r 1 , ...r m ) = U (r 1 , ..., r j = 0, ..., r k = R k , ..., r n , r 1 , ...r m ) and F (r 1 , ..., r j = R j , ..., r k = 0, ..., r n , r 1 , ...r m ) = F (r 1 , ..., r j = 0, ..., r k = R k , ..., r n , r 1 , ...r m ), the lemma results from the fact that R total -R j ≥ R total -R k .

-Lemma 2 Let X j1 ,..., X jq be q all-or-nothing users with α j1 = ... = α jq = α j and X k1 ,..., X kp p allor-nothing users with α k1 = ... = α kp = α k . If αj α k = p q , then U (r 1 , ..., r j1 = R j1 , ..., r jq = R jq , r k1 = 0, ..., , r kp = 0, ..., r n , r 1 , ...r m ) = U (r 1 , ..., r j1 = 0, ..., r jq = 0, r k1 = R k1 , ..., , r kp = R kp , ..., r n , r 1 , ...r m ) Proof U (r 1 , ..., r j1 = R j1 , ..., r jq = R jq , r k1 = 0, ..., , r kp = 0, ..., r n , r 1 , ...r m ) = qα j + i= / ∈{j1,...jq,k1,...kp} α i f i (r i )+ m i=1 α i f i (r i ) U (r 1 , ..., r j1 = 0, ..., r jq = 0, r k1 = R k1 , ..., , r kp = R kp , ..., r n , r 1 , ...r m ) = pα k + i= / ∈{j1,...jq,k1,...kp} α i f i (r i )+ m i=1 α i f i (r i ) Since qα j = pα k , the equality is obtained.

Lemma 2 shows that there are two groups of users which are equivalent with regard to the network efficiency. Of course, these two groups may have a different impact on Jain's index. However, the expression of Jain's index shows that if the number of other users is much larger than the size of these two groups, serving either one of these two groups should have little effect on Jain's index. This gives legitimacy to ordering the all-or-nothing users according to the α k R k ratio, since this ratio represents the gain in network efficiency relative to the allocated rate.

This approximation enables to reduce the number of optimizations from 2 n to n + 1.

The algorithm

The simulation algorithm is described in Figure 2.

Simulation parameters

The simulations were run with the following parameters:

-R total = 1, 000 Mbit/s -Number of events: 4,000.

-

Requested rate R i = R 0 2 ui or R i = R 0 2 u i , with
R 0 = 100 Mbit/s , and u i and u i following a standard normal distribution. -Volume of data which needs to be transmitted: If n users, each one willing to transmit a volume of data Q i = Q 0 2 vi , 1 ≤ i ≤ n are in the network, the average requested time to exit all of them is:

Q i = Q 0 2 vi or Q i = Q 0 2 v i , with Q 0 = 1,
T = n i=1 Q i R total = Q 0 R total n i=1 2 vi = Q 0 R total n e vi ln 2 T = nQ 0 R total exp(ln 2 2 /2) (15)
Therefore, in order that the average number of incoming users equals the average number of exiting users, λ = R total Q0exp(ln 2 2 /2) ≈ 0.78645. -All random processes are independent.

Fairness-efficiency trade-off : In order to evaluate the impact of the fairness-efficiency trade-off on the network performance, we ran the simulations with three different objective functions:

φ(U, J) = U ; maximization of network efficiency; φ(U, J) = U J; trade-off between fairness and efficiency, with η = 1; φ(U, J) = J; maximization of fairness.

It should be noted that the resource which is allocated is not storable. For this reason, the efficiency and the fairness are measured at any time for the users who are connected to the network at this time. There is no fairness between users connected at different times to the network.

Results

The minimum time a user i stays in the network is Qi Ri or

Q i R i
. Therefore, a relevant parameter to evaluate the network performance, from the point of view of user i,

is x i = Qi tiRi or x i = Q i t i R i
, where t i (resp. t i ) is the delay between the arrival of the all-or-nothing user (resp. linear user) i to the network and the end of his transaction.

φ(U, J) = U Figures 3, 4 and 5 provide the cumulative distribution functions of x i resulting from the simulations for each category of users. Means and standard deviations are summarized in Table 7.

For each class of users, cumulative distribution functions, means and standard deviation are similar for allor-nothing utility function users and linear utility function users.

AON Users

Mean φ(U, J) = UJ Figures 6, 7 and 8 provide the cumulative distribution functions of x i resulting from the simulations for each category of users. Means and standard deviations are summarized in Table 8.

For each class of users, the number of fully-satisfied users (x i = 1) is much greater for all-or-nothing utility function users. The standard deviations and the numbers of presumably disappointed customers (low values of x i ) are much greater for all-or-nothing utility function users. 9.

For each class of users, the number of fully-satisfied users (x i = 1) is much greater for all-or-nothing utility function users. The standard deviations and the numbers of presumably disappointed customers (low values of x i ) are much greater for all-or-nothing utility function users. As the comparison between Tables 7, 8 and 9 shows, the performance is strongly degraded when the network maximizes the fairness (φ(U, J) = J). When comparing the performances between maximizing the network efficiency (φ(U, J) = U ) and maximizing a trade- off between fairness and efficiency (φ(U, J) = U J), it turns out that the means of x i are always higher for φ(U, J) = U .

Users

However, as the comparison between the cumulative distribution functions of x i shows, the number of presumably disappointed customers (low values of x i ) is also significantly greater.

This example highlights the fact that, by defining its fairness-efficiency trade-off function and adjusting the parameter η in the objective function φ(U, J) = U J η , an operator can define its priorities and find the proper balance between maximizing the network efficiency and minimizing the number of disappointed customers.

Conclusion

Tools already existing in finance can be successfully transposed to resource allocation in telecommunication networks. Drawing a parallel with the Bernoulli model, which is disproved by Allais' paradox, we challenge the common approach based on utility function maximization for resource allocation. By introducing the concepts of network efficiency and unfairness aversion, we propose a model based on fairness-efficiency trade-off, similar to the well-known risk-return trade-off in finance. This approach enables to define an optimal resource allocation without conflicting with paradoxes resulting from the maximization of a utility function.
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Table 1

 1 Allais paradox 

1 

.

1 

French francs were originally used in all the paradoxes

Table 2

 2 Independence assumption -Counter-example

	Lottery Chance Winnings
	A	100%	100 M$
		98%	500 M$
	B	2%	0
	C	100%	0

Table 3

 3 Combined lotteriesRational, but cautious, players may prefer lottery A to lottery B and lottery tB + (1 -t)C to lottery tA + (1 -t)C. Once again, as in the first paradox, the reason is risk aversion.

	Lottery	Chance Winnings
		1%	100 M$
	tA+(1-t)C	99%	0
		0.98%	500 M$
	tB+(1-t)C	99.02%	0

Table 4

 4 Allais paradox -Transposition to resource allocation

	Network Users	Rate
	1A	100% 1 Mbit/s
		10%	5 Mbit/s
	1B	89%	1 Mbit/s
		1%	0
		11%	1 Mbit/s
	2A	89%	0
		10%	5 Mbit/s
	2B	90%	0

Table 5

 5 Independence assumption -Transposition to resource allocation

	Network Users	Rate
	A	100% 100 Mbit/s
		98%	500 Mbit/s
	B	2%	0
	C	100%	0

Table 6

 6 Combined networks

	Network	Users	Rate
		1%	100 Mbit/s
	tA+(1-t)C	99%	0
		0.98% 500 Mbit/s
	tB+(1-t)C 99.02%	0
	An operator may prefer Network A to Network B,

and Network tB + (1 -t)C to Network tA + (1 -t)C.

  000 Mbit, and v i and v i following a standard normal distribution.-Newcomers arrive according to a Poisson process.The Poisson parameter λ is calculated in order to have a stable long-term number of users in the network.

Table 9

 9 Simulations results φ(U, J) = J.

		Mean Standard deviation
	AON Gold	0.67	0.36
	AON Silver	0.35	0.32
	AON Bronze	0.17	0.14
	Linear Gold	0.55	0.28
	Linear Silver	0.34	0.15
	Linear Bronze	0.15	0.06

Next newcomer at t 0 (Poisson process) n := 0 m := 0 event := 0 If t 0 < min i,j q i r i , q j r j , next event: newcomer(utility function, α, R, Q); t := t 0 If t 0 ≥ min i,j q i r i , q j r j , next event: exit of argmin i,j q i r i , q j r j ; t := min i,j q i r i , q j r j q i := q i -tr i ; q j := q j -tr j ;

Insert newcomer between i and i + 1

, newcomer in last position n := n + 1

Remove user i (n := n -1) or j (m = m -1) φ(U, J) = J
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