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Abstract— The use of flying platforms such as unmanned aerial
vehicles (UAVs), popularly known as drones, is rapidly growing in
a wide range of wireless networking applications. In particular,
with their inherent attributes such as mobility, flexibility, and
adaptive altitude, UAVs admit several key potential applications
in wireless systems. On the one hand, UAVs can be used as
aerial base stations to enhance coverage, capacity, reliability, and
energy efficiency of wireless networks. For instance, UAVs can be
deployed to complement existing cellular systems by providing
additional capacity to hotspot areas as well as to provide network
coverage in emergency and public safety situations. On the other
hand, UAVs can operate as flying mobile terminals within the
cellular networks. Such cellular-connected UAVs can enable a
wide range of key applications expanding from real-time video
streaming to item delivery. Despite the several benefits and
practical applications of using UAVs as aerial wireless devices,
one must address many technical challenges. In this paper, a
comprehensive tutorial on the potential benefits and applications
of UAVs in wireless communications is presented. Moreover,
the important challenges and the fundamental tradeoffs in
UAV-enabled wireless networks are thoroughly investigated. In
particular, the key UAV challenges such as three-dimensional (3D)
deployment, performance analysis, air-to-ground channel model-
ing, and energy efficiency are explored along with representative
results. Then, fundamental open problems and potential research
directions pertaining to wireless communications and networking
with UAVs are introduced. To cope with the open research prob-
lems, various analytical frameworks and mathematical tools such
as optimization theory, machine learning, stochastic geometry,
transport theory, and game theory are described. The use of such
tools for addressing unique UAV problems is also presented. In a
nutshell, this tutorial provides key guidelines on how to analyze,
optimize, and design UAV-based wireless communication systems.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly known as
drones, have been the subject of concerted research over the
past few years [1–5], owing to their autonomy, flexibility, and
broad range of application domains. Indeed, UAVs have been
considered as enablers of various applications that include
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military, surveillance and monitoring, telecommunications,
delivery of medical supplies, and rescue operations [1], [3],
[6–16]. However, such conventional UAV-centric research has
typically focused on issues of navigation, control, and auton-
omy, as the motivating applications were typically robotics or
military oriented. In contrast, the communication challenges
of UAVs have typically been either neglected or considered as
part of the control and autonomy components.

A. Motivation

The unprecedented recent advances in drone technology has
made it possible to widely deploy UAVs, such as drones, small
aircrafts, balloons, and airships for wireless communication
purposes [9], [17–20]. In particular, if properly deployed
and operated, UAVs can provide reliable and cost-effective
wireless communication solutions for a variety of real-world
scenarios. On the one hand, drones can be used as aerial
base stations (BSs) that can deliver reliable, cost-effective,
and on-demand wireless communications to desired areas. On
the other hand, drones can function as aerial user equipments
(UEs), known as cellular-connected UAVs, in coexistence
with ground users (e.g., delivery or surveillance drones). This
exciting new avenue for the use of UAVs warrants a rethinking
of the research challenges with wireless communications and
networking being the primary focus, as opposed to control and
navigation.

In particular, when UAVs are used as flying, aerial base
stations, they can support the connectivity of existing terrestrial
wireless networks such as cellular and broadband networks.
Compared to conventional, terrestrial base stations, the advan-
tage of using UAVs as flying base stations is their ability to
provide on-the-fly communications, and to establish line-of-
sight (LoS) communication links to ground users (see Tables
I and II for a detailed comparison between UAVs and ground
BSs). Indeed, owing to their inherent attributes such as mo-
bility, flexibility, and adaptive altitude, UAV base stations can
effectively complement existing cellular systems by providing
additional capacity to hotspot areas and by delivering network
coverage in hard to reach rural areas. Another important
application of UAVs is in Internet of Things (IoT) scenarios
[21–25] whose devices often have small transmit power and



may not be able to communicate over a long range. UAVs
can also serve as wireless relays for improving connectivity
and coverage of ground wireless devices and can also be
used for surveillance scenarios, a key use case for the IoT.
Last, but not least, in regions or countries where building a
complete cellular infrastructure is very expensive, deploying
UAVs becomes highly beneficial as it removes the need for
expensive towers and infrastructure deployment.

From an industry perspective, key real-world examples of
recent projects that employ drones for wireless connectivity in-
clude Google’s Loon project and Facebook’s Internet-delivery
drone [17]. Within the scope of these practical deployments,
UAVs are being used to deliver Internet access to developing
countries and provide airborne global Internet connectivity.
Moreover, Qualcomm and AT&T are planning to deploy
UAVs for enabling wide-scale wireless communications in
the upcoming fifth generation (5G) wireless networks [26].
Meanwhile, Amazon Prime Air and Google’s Project Wing
[27] initiatives are prominent examples of use cases for
cellular-connected UAVs.

Despite such promising opportunities for drones, one must
address a number of technical challenges in order to effec-
tively use them for each specific networking application. For
instance, while using drone-BS, the key design considerations
include performance characterization, optimal 3D deployment
of drones, wireless and computational resource allocation,
flight time and trajectory optimization, and network planning.
Meanwhile, in the drone-UE scenario, handover management,
channel modeling, low-latency control, 3D localization, and
interference management are among the main challenges.

B. UAV Classification

Naturally, depending on the application and goals, one needs
to use an appropriate type of UAV that can meet various
requirements imposed by the sought quality-of-service (QoS),
the nature of the environment, and federal regulations. In fact,
to properly use UAVs for any specific wireless networking
application, several factors such as the UAVs’ capabilities and
their flying altitudes must be taken into account. In general,
UAVs can be categorized, based on their altitudes, into high
altitude platforms (HAPs) and low altitude platform (LAPs).
HAPs have altitudes above 17 km and are typically quasi-
stationary [14], [28]. LAPs, on the other hand, can fly at
altitudes of tens of meters up to a few kilometers, can quickly
move, and are flexible [28].

We note that, according to US Federal aviation regulations,
the maximum allowable altitude of LAP-drones that can freely
fly without any permit is 400 feet1 [29]. Compared to HAPs,
the deployment of LAPs can be done more rapidly thus making
them more appropriate for time-sensitive applications (e.g.,
emergency situations). Unlike HAPs, LAPs can be used for
data collection from ground sensors. Moreover, LAPs can be
readily recharged or replaced if needed. In contrast, HAPs have

1Hence, flying drones above 400 feet requires specific permissions from
the Federal aviation administration (FAA).

longer endurance and they are designed for long term (e.g.,
up to few months) operations. Furthermore, HAP systems
are typically preferred for providing and wide-scale wireless
coverage for large geographic areas [14]. However, HAPs are
costly and their deployment time is significantly longer than
LAPs.

UAVs can also be categorized, based on type, into fixed-
wing and rotary-wing UAVs. Compared to rotary-wing UAVs,
fixed-wing UAVs such as small aircrafts have more weights,
higher speed, and they need to move forward in order to
remain aloft. In contrast, rotary-wing UAVs such drones and
quadrotor drones, can hover and remain stationary over a given
area [14]. In Figure 1, we provide an overview on the different
types of UAVs, their functions, and capabilities.

C. Limitations of Prior Art and Our Contributions

These exciting new opportunities for using the various types
of UAVs for wireless networking purposes have spawned
numerous recent research in the area [7–15], [30–40]. These
works also include a number of interesting surveys such as
in [14], [15], [30], and [41]. While these surveys address
important UAV communication problems, they have several
limitations. For instance, the most relevant survey to UAVs in
wireless communications is the work in [14]. Despite covering
important wireless networking scenarios, the authors in [14]
limit their discussions to cases in which UAVs are used as
relay stations in ad hoc networks, rather than fully fledged
flying base stations that can support complex ground networks,
such as 5G cellular networks. Moreover, the scope of the
survey in [14] is primarily limited to positioning and physical
layer challenges, when UAVs are used as relays. Similarly, the
surveys in [15], [30], and [41] remain restricted to isolated
UAV topics and use cases in wireless networking. In addition,
the works in [14], [15], [30], and [41] do not introduce
potential analytical frameworks that are essentially needed for
designing and analyzing UAV-based communication systems.
More recently, some surveys such as [42] looked at channel
models for UAVs, while overlooking broader networking prob-
lems. Clearly, the existing literature on wireless networking us-
ing UAVs is largely fragmented and, given the rapid emergence
of the topic, in academia, industry, and government, there is a
clear need for a unified and comprehensive overview on how
UAVs can indeed be used as flying wireless base stations in
emerging wireless, broadband, and beyond 5G scenarios.

The main contribution of this article is to provide the first
holistic and comprehensive overview and tutorial on the use
of UAVs for wireless communications and networking appli-
cations. To this end, the goal is to gather the state-of-the-art
research contributions, from the largely fragmented and sparse
literature on UAV-based wireless communications, that address
the major opportunities and challenges in deploying UAVs as
flying wireless base stations that complement emerging wire-
less communication systems, or as cellular-connected UAV-
UEs that use existing wireless infrastructure, with emphasis
on application scenarios, challenges, representative results,
open problems, and analytical techniques that will enable



UAV 
Classification

Type

Altitude 

High altitude 
platform 

(HAP)

Low altitude 
platform 

(LAP)

Fixed-wing

Rotary-wing

- Long endurance (Days or months).
- Wide coverage.
- Quasi-stationary. 
- Altitude above 17 km.

- Fast and flexible deployment.
- Quick mobility.
- Cost-effective. 
- Typically flies up to several hours.

- Such as small aircrafts. 
- Cannot hover.
- High speed.
- Can carry high payload.
- Can fly for several hours. 

- Such as quadrotor drone.
- Can hover. 
- Low speed.
- More energy limited than
   fixed-wing.
- Less than 1 hour flight. 
   duration for typical drones.

Fig. 1: UAV Classification.

the real-world deployment of UAVs as aerial communication
platforms. With the incessant growth in research revolving
around the use of UAVs for wireless purposes, this article con-
stitutes one of the first comprehensives guides on how to fully
exploit the potential of UAVs for wireless communications and
networking. To achieve this goal, we treat the following key
topics:

• In Section II, we provide a comprehensive overview on
potential applications of UAVs in a plethora of wireless
networking scenarios. These applications will provide
motivating examples and future use cases of UAVs,
particularly in their role as flying base stations.

• In Section III, we outline key research directions that
will enable the applications identified in Section II. For
each research direction, we provide an overview on the
research challenges, the state of the art, and promising
early results within these areas.

• In Section IV, for each research direction identified in
Section III, we provide an outline of challenging open
problems that must be addressed, in order to fully exploit
the potential of UAV-based wireless communications.
This, in turn, will provide a roadmap for future research
in this area.

• In Section V, we then provide a summary on analytical
frameworks that are expected to play an important role
in the design of future UAV-based wireless networks and
that will enable network operators to leverage UAVs for
various application scenarios.

• The article is concluded in Section VI with additional
insights on this fascinating area of research.

II. WIRELESS NETWORKING WITH UAVS: MOTIVATING
APPLICATION USE CASES

In order to paint a clear picture on how UAVs can indeed
be used as flying wireless base stations, in this section, we

overview a number of prospective applications for such a
wireless-centric UAV deployment. The applications are drawn
from a variety of scenarios, that include imminent use cases,
such as for public safety scenarios or hotspot coverage, as
well as more “futuristic” applications such as the use of
UAVs as caching apparatus or IoT enablers. Naturally, in all
such applications, the UEs of the system can include cellular-
connected UAV-UEs which we will also discuss. Note that this
section restricts its attention to the application scenarios, while
the challenges are left for a deeper treatment in Section III.

A. Coverage and Capacity Enhancement of Beyond 5G Wire-
less Cellular Networks

The need for high-speed wireless access has been inces-
santly growing, fueled by the rapid proliferation of highly
capable mobile devices such as smartphones, tablets, and more
recently drone-UEs and IoT-style gadgets [23]. As such, the
capacity and coverage of existing wireless cellular networks
has been extensively strained, which led to the emergence
of a plethora of wireless technologies that seek to overcome
this challenge. Such technologies, which include device-to-
device (D2D) communications, ultra dense small cell net-
works, and millimeter wave (mmW) communications, are
collectively viewed as the nexus of next-generation 5G cellular
systems [43–47]. However, despite their invaluable benefits,
those solutions have limitations of their own. For instance,
D2D communication will undoubtedly require better frequency
planning and resource usage in cellular networks. Meanwhile,
ultra dense small cell networks face many challenges in
terms of backhaul, interference, and overall network modeling.
Similarly, mmW communication is limited by blockage and
high reliance on LoS communication to effectively deliver
the promise of high-speed, low latency communication. These
challenges will be further exacerbated in UAV-UEs scenarios.

We envision UAV-carried flying base stations as an in-
evitable complement for such a heterogeneous 5G environ-
ment, which will enable to overcome some of the challenges of
the existing technologies. For example, while deploying ultra
dense small cell networks is challenging in rural and geograph-
ically constrained areas, LAP-UAVs can provide rapid, and
cost-effective on-the-fly communications. Meanwhile, HAP-
UAVs can provide a more long-term sustainable solutions
for coverage in such rural environments. Moreover, deploying
small cells for the sole purpose of servicing hotspot and tem-
porary events, such as football games or Presidential inaugura-
tions, may not be economically and technically viable, given
the short period of time during which these events require
wireless access. In contrast, mobile UAVs can provide on-
demand connectivity for such areas, at little additional costs.
Indeed, AT&T and Verizon have already announced several
plans to use flying drones to provide temporarily boosted
Internet coverage for college football national championship
and Super Bowl [48]. Clearly, flying base stations can provide
an important complement to ultra dense small cell networks.

Meanwhile, UAVs that are equipped with mmW capabilities
can naturally establish LoS connections to ground users. This,



in turn, can be an attractive solution to provide high capacity
wireless transmission, while leveraging the advantages of
both UAVs and mmW links. Moreover, combining UAVs
with mmW and potentially massive multiple input multiple
output (MIMO) techniques can create a whole new sort of
dynamic, flying cellular network that can provide potentially
high capacity wireless services, if well planned and operated.

In addition, UAVs can assist various terrestrial networks
such as D2D and vehicular networks. For instance, owing to
their mobility and LoS communications, drones can facili-
tate rapid information dissemination among ground devices.
Furthermore, drones can potentially improve the reliability
of wireless links in D2D and vehicle-to-vehicle (V2V) com-
munications while exploiting transmit diversity. In particular,
flying drones can help in broadcasting common information
to ground devices thus reducing the interference in ground
networks by decreasing the number of transmissions between
devices. Moreover, UAV base stations can use air-to-air links
to service other cellular-connected UAV-UEs, to alleviate the
load on the terrestrial network.

For the aforementioned cellular networking scenarios, it is
clear that the use of UAVs is quite natural due to their key
features given in Tables I an II such as agility, mobility, flexi-
bility, and adaptive altitude. In fact, by exploiting these unique
features as well as establishing LoS communication links,
UAVs can boost the performance of existing ground wireless
networks in terms of coverage, capacity, delay, and overall
quality-of-service. Such scenarios are clearly very promising
and one can see UAVs as being an integral part of beyond 5G
cellular networks, as the technology matures further, and new
operational scenarios emerge. Naturally, reaping these benefits
will require overcoming numerous challenges, that we outline
in Section III.

B. UAVs as Flying Base Stations for Public Safety Scenarios

Natural disasters such as floods, hurricanes, tornados, and
severe snow storms often yield devastating consequences in
many countries. During wide-scale natural disasters and unex-
pected events, the existing terrestrial communication networks
can be damaged or even completely destroyed, thus becoming
significantly overloaded, as evidenced by the recent aftermath
of Hurricanes Sandy and Irma [49]. In particular, cellular
base stations and ground communications infrastructure can be
often compromised during natural disasters. In such scenarios,
there is a vital need for public safety communications between
first responders and victims for search and rescue operations.
Consequently, a robust, fast, and capable emergency commu-
nication system is needed to enable effective communications
during public safety operations. In public safety scenarios,
such a reliable communication system will not only contribute
to improving connectivity, but also to saving lives.

In this regard, FirstNet in the United States was established
to create a nationwide and high-speed broadband wireless net-
work for public safety communications. The potential broad-
band wireless technologies for public safety scenarios include
4G long term evolution (LTE), WiFi, satellite communications,

Drone

Fig. 2: Drone in public safety scenarios.

and dedicated public safety systems such as TETRA and
APCO25 [50]. However, these technologies may not provide
flexibility, low-latency services, and swift adaptation to the
environment during natural disasters. In this regard, the use
of UAV-based aerial networks [51], as shown in Figure 2,
is a promising solution to enable fast, flexible, and reliable
wireless communications in public safety scenarios. Since
UAVs do not require highly constrained and expensive in-
frastructure (e.g., cables), they can easily fly and dynamically
change their positions to provide on-demand communications
to ground users in emergency situations. In fact, due the
unique features of UAVs such as mobility, flexible deployment,
and rapid reconfiguration, they can effectively establish on-
demand public safety communication networks. For instance,
UAVs can be deployed as mobile aerial base stations in
order to deliver broadband connectivity to areas with damaged
terrestrial wireless infrastructure. Moreover, flying UAVs can
continuously move to provide full coverage to a given areas
within a minimum possible time. Therefore, the use of UAV-
mounted base stations can be a very appropriate solution for
providing fast and ubiquitous connectivity in public safety
scenarios.

C. UAV-assisted Terrestrial Networks for Information Dissem-
ination

With their mobility and LoS opportunities, UAVs can sup-
port terrestrial networks for information dissemination and
connectivity enhancement [14], [52]. For instance, as shown
in Figure 3, UAVs can be used as flying base stations to assist
a D2D network or a mobile ad hoc network in information
dissemination among ground devices. While D2D networks
can provide an effective solution for offloading cellular data
traffic and improving network capacity and coverage, their
performance is limited due to the short communication range
of devices as well as potentially increasing interference. In this
case, flying UAVs can facilitate rapid information dissemina-
tion by intelligently broadcasting common files among ground
devices. For example, UAV-assisted D2D networks allow the
rapid spread of emergency or evacuation messages in public
safety situations.

Likewise, drones can play a key role in vehicular networks
(i.e., V2V communications) by spreading safety information
across the vehicles. Drones can also enhance reliability and
connectivity of D2D and V2V communication links. On the
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Fig. 3: UAV-assisted terrestrial networks.

one hand, using drones can mitigate interference by reducing
the number of required transmission links between ground
devices. On the other hand, mobile drones can introduce
transmit diversity opportunities thus boosting reliability and
connectivity in D2D, ad hoc, and V2V terrestrial networks.
One effective approach for employing such UAV-assisted
terrestrial networks is to leverage clustering of ground users.
Then, a UAV can directly communicate with the head of
the clusters and the multi-hop communications are performed
inside the clusters. In this case, the connectivity of terrestrial
networks can be significantly improved by adopting efficient
clustering approaches and exploiting UAVs’ mobility.

D. 3D MIMO and Millimeter-Wave Communications

Due to their aerial positions and their ability to deploy on
demand at specific locations, UAVs can be viewed as flying
antenna systems that can be exploited for performing massive
MIMO, 3D network MIMO, and mmW communications. For
instance, in recent years, there has been considerable interest
in the use of 3D MIMO, also known as full dimension MIMO,
by exploiting both the vertical and horizontal dimensions in
terrestrial cellular networks [53–59]. In particular, as shown
in Figure 4, 3D beamforming enables the creation of separate
beams in the three-dimensional space at the same time, thus
reducing inter-cell interference [60]. Compared to the conven-
tional two-dimensional MIMO, 3D MIMO solutions can yield
higher overall system throughput and can support a higher
number of users. In general, 3D MIMO is more suitable for
scenarios in which the number of users is high, users are
distributed in three dimensions with different elevation angles
with respect to their serving base station [14], [59]. Due to the
high altitude of UAV-carried flying base stations, ground users
can be easily distinguishable at different altitudes and elevation
angles measured with respect to the UAV. Furthermore, LoS
channel conditions in UAV-to-ground communications enable
effective beamforming in both azimuth and elevation domains
(i.e., in 3D). Therefore, UAV-BSs are suitable candidates for
employing 3D MIMO.

Furthermore, the use of a drone-based wireless antenna
array, that we introduced in [61], provides a unique opportu-
nity for airborne beamforming. A drone antenna array whose
elements are single-antenna drones can provide MIMO and

user

2D beamforming 3D beamforming

UAV

Fig. 4: 3D beamforming using a drone.

beamforming opportunities to effectively service ground users
in downlink and uplink scenarios. Compared to conventional
antenna array systems, a drone-based antenna array has the
following advantages: 1) The number of antenna elements (i.e.,
drones) is not limited by space constraints, 2) Beamforming
gains can be increased by dynamically adjusting the array
element spacing, and 3) The mobility and flexibility of drones
allow effective mechanical beam-steering in any 3D direction.
In addition, the use of a large number of small UAVs within
an array formation can provide unique massive MIMO oppor-
tunists. Moreover, such UAV-based massive antenna array can
form any arbitrary shape and effectively perform beamform-
ing.

UAVs can also be a key enabler for mmW communica-
tions2 (e.g., see [14], [15], [62], [63], and [64]). On the one
hand, UAVs equipped with mmW capabilities can establish
LoS connections to ground users which significantly reduces
propagation loss while operating at high frequencies. On the
other hand, with the use of small-size antennas (at mmW
frequencies) on UAVs, one can exploit advanced MIMO
techniques such as massive MIMO in order to operate mmW
communications. Meanwhile, swarms of UAVs can create
reconfigurable antenna arrays in the sky [61].

E. UAVs for IoT Communications

Wireless networking technologies are rapidly evolving into a
massive IoT environment that must integrate a heterogeneous
mix of devices ranging from conventional smartphones and
tablets to vehicles, sensors, wearables, and naturally, drones.
Realizing the much coveted applications of the IoT such as
smart cities infrastructure management, healthcare, transporta-
tion, and energy management [23], [65–67] requires effective
wireless connectivity among a massive number of IoT devices
that must reliably deliver their data, typically at high data rates
or ultra low latency. The massive nature of the IoT requires
a major rethinking to the way in which conventional wireless
networks (e.g., cellular systems) operate.

For instance, in an IoT environment, energy efficiency, ultra
low latency, reliability, and high-speed uplink communications
become major challenges that are not typically as critical in
conventional cellular network use cases [66]. In particular, IoT
devices are highly battery limited and are typically unable to

2It is worth noting that mmW communications have been already adopted
for satellite and HAPS communications [62].



transmit over a long distance due to their energy constraints.
For instance, in areas which experience an intermittent or poor
coverage by terrestrial wireless networks, battery-limited IoT
devices may not be able to transmit their data to distant base
stations due to their power constraints. Furthermore, due to the
various applications of IoT devices, they might be deployed
in environments with no terrestrial wireless infrastructure such
as mountains and desert areas.

In this regard, the use of mobile UAVs is a promising solu-
tion to a number of challenges associated with IoT networks.
In IoT-centric scenarios, UAVs can be deployed as flying base
stations to provide reliable and energy-efficient uplink IoT
communications (e.g., see [7], [10], [68], and [69]). In fact,
due to the aerial nature of the UAVs and their high altitude,
they can be effectively deployed to reduce the shadowing and
blockage effects as the major cause of signal attenuation in
wireless links. As a result of such efficient placement of UAVs,
the communication channel between IoT devices and UAVs
can be significantly improved. Subsequently, battery-limited
IoT devices will need a significantly lower power to transmit
their data to UAVs. In other words, UAVs can be placed based
on the locations of IoT devices enabling those devices to
successfully connect to the network using a minimum transmit
power. Moreover, UAVs can also serve massive IoT systems by
dynamically updating their locations based on the activation
pattern of IoT devices. This is in contrast to using ground
small cell base stations which may need to be substantially
expanded to service the anticipated number of devices in
the IoT. Hence, by exploiting unique features of UAVs, the
connectivity and energy efficiency of IoT networks can be
significantly improved.
F. UAVs as Flying Backhaul for Terrestrial Networks

Wired backhauling is a common approach for connecting
base stations to a core network in terrestrial networks. How-
ever, wired connections can be expensive and infeasible due
to geographical constraints, especially when dealing with ultra
dense cellular networks [70–72]. While wireless backhauling
is a viable and cost-effective solution, it suffers from blockage
and interference that degrade the performance of the radio
access network [73]. In this case, UAVs can play a key role
in enabling cost-effective, reliable, and high speed wireless
backhaul connectivity for ground networks [74]. In particular,
UAVs can be optimally placed to avoid obstacles and establish
LoS and reliable communication links. Moreover, the use of
UAVs with mmW capabilities can establish high data rate
wireless backhaul connections that are needed to cope with
high traffic demands in congested areas. UAVs can also create
a reconfigurable network in the sky and provide multi-hop
LoS wireless backhauling opportunities. Clearly, such flexible
UAV-based backhaul networks can significantly improve the
reliability, capacity, and operation cost of backhauling in
terrestrial networks.

G. Cache-Enabled UAVs
Caching at small base stations (SBSs) has emerged as

a promising approach to improve users’ throughput and to

reduce the transmission delay [75–79]. However, caching at
static ground base stations may not be effective in serving
mobile users in cases of frequent handovers (e.g., as in ultra-
dense networks with moving users). In this case, when a
user moves to a new cell, its requested content may not be
available at the new base station and, thus, the users cannot
be served properly. To effectively service mobile users in
such scenarios, each requested content needs to be cached at
multiple base stations which is not efficient due to signaling
overheads and additional storage usages. Hence, to enhance
caching efficiency, there is a need to deploy flexible base
stations that can track the users’ mobility to effectively deliver
the required contents.

To this end, we envision futuristic scenarios in which UAVs,
acting as flying base stations, can dynamically cache the pop-
ular contents, track the mobility pattern of the corresponding
users and, then, effectively serve them [8], [80], [81]. In
fact, the use of cache-enabled UAVs is a promising solution
for traffic offloading in wireless networks. In this case, by
leveraging user-centric information, such as content request
distribution and mobility patterns, cache-enabled UAVs can
be optimally moved and deployed to deliver desired services
to users. Another key advantage of deploying cache-enabled
UAVs is that the caching complexity can be significantly
reduced compared to a conventional static SBSs case. While
performing caching with SBSs, content requests of a mobile
user may need to be dynamically stored at different SBSs.
However, cache-enabled UAVs can track the mobility pattern
of users and avoid frequently updating the content requests
of mobile users. Therefore, ground users can be effectively
served by exploiting mobile cache-enabled UAVs that predict
mobility patters and content request information of users.

H. Cellular-Connected Drones as User Equipments

Naturally, drones can act as users of the wireless infrastruc-
ture. In particular, drone-users can be used for package deliv-
ery, surveillance, remote sensing, and virtual reality applica-
tions. Indeed, cellular-connected UAVs will be a key enabler of
the IoT. For instance, for delivery purposes, drones are used for
Amazon’s prime air drone delivery service, and autonomous
delivery of emergency drugs [82]. The key advantage of drone-
users is their ability to swiftly move and optimize their path
to quickly complete their missions. To properly use drones
as user equipments (i.e., cellular-connected drone-UEs [60]),
there is a need for reliable and low-latency communication
between drones and ground BSs. In fact, to support a large-
scale deployment of drones, a reliable wireless communication
infrastructure is needed to effectively control the drones’
operations while supporting the traffic stemming from their
application services.

Beyond their need for ultra low latency and reliability,
when used for surveillance purposes, drone-UEs will require
high-speed uplink connectivity from the terrestrial network
and from other UAV-BSs. In this regard, current cellular
networks may not be able to fully support drone-UEs as they
were designed for ground users whose operations, mobility,



and traffic characteristics are substantially different from the
drone-UEs. There are a number of key differences between
drone-UEs and terrestrial users. First, drone-UEs typically
experience different channel conditions due to nearly LoS
communications between ground BSs and flying drones. In
this case, one of the main challenges for supporting drone-
UEs is significant LoS interference caused by ground BSs3.
Second, unlike terrestrial users, the on-board energy of drone-
UEs is highly limited. Third, drone-UEs are in general more
dynamic than ground users as they can continuously fly
in any direction. Therefore, incorporating cellular-connected
drone-UEs in wireless networks will introduce new technical
challenges and design considerations.

I. Smart Cities

Realizing a global vision of smart and connected commu-
nities and cities is a daunting technological challenge. Smart
cities will effectively have to integrate many of the previ-
ously mentioned technologies and services including an IoT
environment (with its numerous services), a reliable wireless
cellular network, resilience to calamities, and huge amounts
of data [83]. To this end, UAVs can provide several wireless
application use cases in smart cities. On the one hand, they
can be used as data collection devices that can gather vast
amounts of data from across various geographical areas within
a city and deliver them to central cloud units for big data
analytics purposes. On the other hand, UAVs can provide
flying wireless base stations that can be used to simply enhance
the coverage of the cellular network in a city or to respond
to specific emergencies. UAVs can also be used to sense the
radio environment maps [84] across a city, in order to assist
network operators in their network and frequency planning
efforts. Another key application of UAVs in smart cities is
their ability to act as mobile cloud computing systems [37].
In this regards, a UAV-mounted cloudlet can provide fog
computing and offloading opportunities for devices that are
unable to perform computationally heavy tasks. We note that,
within smart cities, drones may need to temporarily position
themselves on buildings for specific purposes (e.g., recharge).
In such case, there is a need for on-demand site renting man-
agement to accommodate drones’ operation. Overall, UAVs
will be an integral part of smart cities, from both a wireless
and operational perspective.

Clearly, the aforementioned applications are only a selected
sample of potential use cases of UAVs as flying wireless
platforms. If realized, such applications will have far reaching
technological and societal impacts. However, in order to truly
deploy such UAV-centric applications, one must overcome
numerous technical challenges, as outlined in the next section.

III. RESEARCH DIRECTIONS, CHALLENGES, AND
STATE-OF-THE-ART

In this section, inspired by the aforementioned applications,
we present a comprehensive overview on the key research

3One approach for mitigating such LoS interference is to utilize full-
dimensional MIMO in BS-to-drone communications [60].

Table I: UAV base station versus terrestrial base station.
UAV Base Stations Terrestrial Base Stations
• Deployment is naturally three-
dimensional.

• Deployment is typically two-
dimensional.

• Short-term, frequently changing
deployments.

• Mostly long-term, permanent de-
ployments.

• Mostly unrestricted locations. • Few, selected locations.
• Mobility dimension. • Fixed and static.

Table II: UAV networks versus terrestrial networks.
UAV Networks Terrestrial Networks
• Spectrum is scarce. • Spectrum is scarce.
• Inherent ability for LoS com-
munication can facilitate high-
frequency (e.g., mmW).

• Difficulty to maintain LoS poses
challenges at high frequencies.

• Elaborate and stringent energy
constraints and models.

• Well-defined energy constraints
and models.

• Varying cell association. • Mainly static association.
• Hover and flight time constraints. • No timing constraints, BS always

there.

UAV-Enabled Wireless 
Networks

Benefits and 
Applications 

Challenges  

 Coverage and capacity enhancement  
 LoS communications 
 Internet of Things support
 On-demand communications
 Fast, flexible and efficient deployment
 Emergency situations and disaster relief  
 No significant infrastructure: Low cost 
 Localization, search and rescue
 Information dissemination 

 Optimal 3D placement
 Channel modeling
 Energy limitation
 Flight time constraints
 Performance analysis  
 Path planning 
 Security and privacy issues
 Interference management
 Backhaul connectivity

Fig. 5: Opportunities, applications, and challenges of
UAV-enabled wireless networks.

directions that must be pursued for practically deploying UAVs
as flying wireless platforms. For each research direction, we
first outline the key challenges, and then we discuss the state
of the art, while also providing an overview on recent results.

A. Air-to-Ground Channel Modeling

1) Challenges: Wireless signal propagation is affected by
the medium between the transmitter and the receiver. The air-
to-ground (A2G) channel characteristics significantly differ
from classical ground communication channels which, in
turn, can determine the performance of UAV-based wireless
communications in terms of coverage and capacity [28],
[85–87]. Also, compared to air-to-air communication links that
experience dominant LoS, A2G channels are more susceptible
to blockage. Clearly, the optimal design and deployment of
drone-based communication systems requires using an accu-
rate A2G channel model. While the ray-tracing technique is a
reasonable approach for channel modeling, it lacks sufficient
accuracy, particularly at low frequency operations [88]. An
accurate A2G channel modeling is important especially when



using UAVs in applications such as coverage enhancement,
cellular-connected UAV-UE, and IoT communications.

The A2G channel characteristics significantly differ from
ground communication channels [60]. In particular, any move-
ment or vibration by the UAVs can affect the channel char-
acteristics. Moreover, the A2G channel is highly dependent
on the altitude and type of the UAV, elevation angle, and
type of the propagation environment. Therefore, finding a
generic channel model for UAV-to-ground communications
needs comprehensive simulations and measurements in various
environments. In addition, the effects of a UAV’s altitude,
antennas’ movements, and shadowing caused by the UAV’s
body must be captured for channel modeling. Clearly, captur-
ing such factors is challenging in A2G channel modeling.

2) State of the Art: Now, we discuss a number of recent
studies on A2G channel modeling. The work in [89] presented
an overview of existing research related to A2G channel
modeling. In [90], the authors provided both simulation and
measurement results for path loss, delay spread, and fading
in A2G communications. In [42], the authors provided a
comprehensive survey on A2G propagation while describing
large-scale and small-scale fading models. In [85] and [86],
the authors performed thorough path loss modeling for high
altitude A2G communications. As discussed in [85], due to
the different propagation environments and high elevation
angle between transmitter and receiver in A2G, A2G links
experience lower path loss and shadowing compared to the
cellular network links. The authors in [87] presented a channel
propagation model for high altitude platforms and ground
users communications in an urban area. In [87], based on
empirical results, the statistical characteristics of the channel
are modeled as a function of the elevation angle. In particular,
the authors in [87] considered LoS and NLoS links between
the HAP and ground users and derived the probability of
occurrence associated with each link. In [91], the likelihood of
LoS links for A2G communication was derived as a function
of elevation angle and average height of buildings in urban
environments. In addition, there are some measurement-based
studies on UAV-to-ground channel modeling such as [92–94]
that identified some of the key channel characteristics. These
works provide some insights on the A2G channel characteris-
tics that can be used to find a more generic channel model.

3) Representative Result: One of the most widely adopted
A2G path loss model for low altitude platforms is presented
in [28] and, thus, we explain it in more detail. As shown
in [28], the path loss between a UAV and a ground device
depends on the locations of the UAV and the ground device
as well as the type of propagation environment (e.g., rural,
suburban, urban, high-rise urban). In this case, depending on
the environment, A2G communication links can be either LoS
or NLoS. Note that, without any additional information about
the exact locations, heights, and number of the obstacles, one
must consider the randomness associated with the LoS and
NLoS links. As a result, many of the existing literature on
UAV communication (e.g., [8], [15], [34], [49], [74], [80],
[95–99]) adopted the probabilistic path loss model given in

[11], and [28]. As discussed in these works, the LoS and non-
LoS (NLoS) links can be considered separately with different
probabilities of occurrence. The probability of occurrence is a
function of the environment, density and height of buildings,
and elevation angle between UAV and ground device. The
common probabilistic LoS model is based on the general
geometrical statistics of various environments provided by the
International Telecommunication Union (ITU-R) [100]. In par-
ticular, for various types of environments, the ITU-R provides
some environmental-dependent parameters to determine the
density, number, and hight of the buildings (or obstacles).
For instance, according to [100], the buildings’ heights can
be modeled using a Rayleigh distribution as:

f(hB) =
hB
γ2

exp

(
−hB
2γ2

)
, (1)

where hB is the height of buildings in meters, and γ is
a environmental-dependent parameter [11]. Clearly, due to
the randomness (uncertainty) associated with the height of
buildings (from a UAV perspective), one must consider a
probabilistic LoS model while designing UAV-based commu-
nication systems. Therefore, using the statistical parameters
provided by ITU-R, other works such as [11] and [28] derived
an expression for the LoS probability, which is given by [8],
[28], [34], [49], [95–99]:

PLoS =
1

1 + C exp(−B [θ − C])
, (2)

where C and B are constant values that depend on the
environment (rural, urban, dense urban, or others) and θ is
the elevation angle in degrees. Clearly, θ = 180

π × sin−1
(
h
d

)
,

with h being the UAV’s altitude, and d is the distance between
the UAV and a given ground user. In this case, the NLoS
probability will be PNLoS = 1 − PLoS. We note that the
probabilistic path loss model in (2) is an example of existing
A2G channel models such as the one proposed by the 3rd
generation partnership project (3GPP) [60].

Equation (2) captures the probability of having LoS con-
nection between the aerial base station and ground users
is an increasing function of elevation angle. According to
this equation, by increasing the elevation angle between the
receiver and the transmitter, the blockage effect decreases and
the communication link becomes more LoS.

It is worth noting that the small-scale fading in A2G
communications can be characterized by Rician fading channel
model [90]. In this case, the Rician K-factor that represents
the strength of LoS component is a function of elevation angle
and UAV altitude.

B. Optimal Deployment of UAVs as Flying Base Stations

1) Challenges: The three dimensional deployment of UAVs
is one of the key challenges in UAV-based communications. In
fact, as mentioned in Tables I and II, the adjustable height of
UAVs and their potential mobility provide additional degrees
of freedom for an efficient deployment. As a result, optimal
deployment of UAVs has received significant attention [7],
[8], [11–13], [31], [32], [34], [95], [101], [102]. In fact,
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deployment is a key design consideration while using UAVs
for coverage and capacity maximization, public safety, smart
cities, caching, and IoT applications. The optimal 3D place-
ment of UAVs is a challenging task as it depends on many
factors such as deployment environment (e.g., geographical
area), locations of ground users, and UAV-to-ground channel
characteristics which itself is a function of a UAV’s altitude.
In addition, simultaneously deploying multiple UAVs becomes
more challenging due to the impact of inter-cell interference
on the system performance. In fact, the deployment of UAVs
is significantly more challenging than that of ground base
stations, as done in conventional cellular network planning.
Unlike terrestrial base stations UAVs needs to be deployed
in a continuous 3D space while considering the impact of
altitude on the A2G channel characteristics. Moreover, while
deploying UAVs, their flight and energy constraints need to be
also taken into account, as they directly impact the network
performance.

2) State of the Art: Recently, the deployment problem of
UAVs in wireless networks has been extensively studied in
the literature. For instance, in [7], the optimal deployment and
mobility of multiple UAVs for energy-efficient data collection
form IoT devices is investigated. In [11], the authors derived
the optimal altitude enabling a single UAV to achieve a
maximum coverage radius. In this work, the deterministic
coverage range is determined by comparing the average path
loss with a specified threshold. As shown in [11], for very
low altitudes, due to the shadowing effect, the probability of
LoS connections between transmitter and receiver decreases
and, consequently, the coverage radius decreases. On the other
hand, at very high altitudes, LoS links exist with a high
probability. However, due to the large distance between trans-
mitter and receiver, the path loss increases and consequently
the coverage performance decreases. Therefore, to find the
optimal UAV’s altitude, the impact of both distance and LoS
probability should be considered simultaneously.

In [12], we extended the results of [11] to the case of two,
interfering UAVs. In [13], we investigated the optimal 3D
placement of multiple UAVs, that use directional antennas, to
maximize total coverage area. The work in [34] analyzed the
impact of a UAV’s altitude on the sum-rate maximization of a
UAV-assisted terrestrial wireless network. In [95], the authors
studied the efficient deployment of aerial base stations to
maximize the coverage performance. Furthermore, the authors

in [95] determined the minimum number of drones needed
for serving all the ground users within a given area. In [15],
the authors investigated the 3D placement of drones with the
goal of maximizing the number of ground users which are
covered by the drone. In [101], the authors used evolutionary
algorithms to find the optimal placement of LAPs and portable
base stations for disaster relief scenarios. In this work, by
deploying the UAVs at the optimal locations, the number of
base stations required to completely cover the desired area
was minimized. The work in [103] proposed a framework
for a cooperative deployment and task allocation of UAVs
that service ground users. In [103], the problem of joint
deployment and task allocation is addressed by exploiting the
concepts of coalitional game theory and queueing theory.

Moreover, the deployment of UAVs for supplementing ex-
isting cellular infrastructure was discussed in [104]. In this
work, a general view of the potential integration of UAVs
with cellular networks was presented. Integrating UAVs with
the existing cellular network provides an enhanced coverage
with low costs as the deployment of UAVs does not require
significant infrastructure investments. In [105], the authors
investigated the optimal deployment of a UAV that acts as
a wireless relay between the transmitter and the receiver. The
optimal location of the UAV was determined by maximizing
the average rate while ensuring that the bit error rate will not
exceed a specified threshold. As shown in [105], a UAV should
be placed closer to the ground device (transmitter or receiver)
which has a lower link quality to the UAV. The authors in [106]
studied the use of UAV relays to enhance the connectivity
of a ground wireless networks. In this work, flying UAVs
are optimally deployed to guarantee the message delivery of
sensors to destinations. The work in [107] investigated the
deployment of multiple UAVs as wireless relays in order to
provide service for ground sensors. In particular, this work
addressed the tradeoff between connectivity among the UAVs
and maximizing the area covered by the UAVs. However,
the work in [107] does not consider the use of UAVs as
aerial base stations and their mutual interference in downlink
communications.

3) Representative Results: In [7], we proposed a framework
for dynamic deployment and mobility of UAVs to enable
reliable and energy-efficient IoT communications. In Figure 7,
we show a representative result on the optimal 3D placement
of UAVs, taken from [7]. In this case, four UAVs are de-
ployed to collect data (in the uplink) from IoT devices which
are uniformly distributed within a geographical area of size
1km × 1km. Here, using tools from optimization theory and
facility location problems, we derived the optimal 3D positions
of the UAVs as well as the device-UAV associations such that
the total uplink transmit power of devices is minimized while
ensuring reliable communications. As a result, the devices are
able to send their data to the associated UAVs while using a
minimum total transmit power. This result shows that UAVs
can be optimally deployed to enable reliable and energy-
efficient uplink communications in IoT networks.

Figure 8 shows the average transmit power of devices in
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Fig. 8: Total transmit power of devices vs. number of UAVs
(for 80 IoT devices).

the optimal deployment scenario with a case in which aerial
base stations are pre-deployed (i.e., without optimizing the
UAVs’ locations). As we can see, the average transmit power
of devices can be reduced by 78% by optimally deploying
the UAVs. Figure 8 also shows that the uplink transmit power
decreases while increasing the number of UAVs. Clearly, the
energy efficiency of the IoT network is significantly improved
by exploiting the flexibility of drones and optimizing their
locations.

Next, we discuss another key result on the deployment of
multiple UAVs for maximizing wireless coverage. In our work
in [13], we consider multiple UAV-BSs that must provide a
downlink wireless service to a circular geographical area of
radius 5 km. We assume that the UAVs are symmetric and
have the same transmit power and altitude. In the considered
model, each UAV uses a directional antenna with a certain
beamwidth, and UAVs operates at the same frequency band.
Our goal is to optimally deploy the UAVs in 3D space such that
their total coverage area is maximized while avoiding mutual
interference between the UAVs. To this end, we tackle our
problem by exploiting circle packing theory [108]. Our results
provide rigorous guidelines on how to optimally adjust the
location and, in particular, the altitude of UAVs, based on the
antenna beamwidth, size of the area, and number of UAVs.

In Figure 9, we show a representative result from [13]. In
particular, Figure 9 shows how the optimal UAVs’ altitude
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varies by changing the number of UAVs. Intuitively, to avoid
interference, the height of UAVs must be decreased as the
number of UAVs increases. In this case, for a higher number
of UAVs, the coverage radius of each UAV must be decreased
by reducing its altitude to avoid overlapping (or interference)
between their coverage regions. For instance, by increasing the
number of UAVs from 3 to 6, the optimal altitude decreases
from 2000 m to 1300 m. This figure also shows that the UAVs
must be placed at lower altitudes when they use directional
antennas with higher antenna beamwidths.

C. Trajectory Optimization

Optimal path planning for UAVs is another important chal-
lenge in UAV-based communication systems. In particular,
optimizing the trajectory of UAVs is crucial while using
them for smart cities, drone-UE, and caching scenarios. The
trajectory of a UAV is significantly affected by different factors
such as flight time, energy constraints, ground users’ demands,
and collision avoidance.

Naturally, optimizing the flight path of UAVs is challenging
as it requires considering many physical constraints and pa-
rameters. For instance, while finding the trajectories of UAVs
for performance optimization, one needs to consider various
key factors such as channel variation due to the mobility,
UAV’s dynamics, energy consumption of UAVs, and flight
constraints. Furthermore, solving a continuous UAV trajectory
optimization problem is known to be analytically challenging
as it involves finding an infinite number of optimization
variables (i.e. UAV’s locations) [14]. In addition, trajectory
optimization in UAV-enabled wireless networks requires cap-
turing coupling between mobility and various QoS metrics in
wireless communication.

1) State of the Art: Trajectory optimization for UAVs has
been primarily studied from a robotics/control perspective
[109–114]. More recently, there has been a number of works
that study the interplay between the trajectory of a UAV and its
wireless communication performance. The work in [33] jointly
optimized user scheduling and UAV trajectory for maximizing
the minimum average rate among ground users. In [115], the
authors investigated the optimal trajectory of UAVs equipped
with multiple antennas for maximizing sum-rate in uplink



communications. The work in [116] maximized the throughput
of a relay-based UAV system by jointly optimizing the UAV’s
trajectory as well as the source/relay transmit power. In [117],
a UAV path planning algorithm for photographic sensing of
a given geographical area was proposed. The algorithm of
[117] led to a minimum total energy consumption for the
UAV while covering the entire survey area. To this end, the
authors in [117] computed the optimal set of waypoints and the
optimal speed of the UAV in the path between the waypoints.
In [118], considering collision avoidance, no-fly zones, and
altitude constraints, the optimal paths of UAVs that minimize
the fuel consumption were computed using the mixed integer
linear programming.

Moreover, the authors in [119] investigated the path plan-
ning problem for UAVs in the search and localization applica-
tions using camera measurements. In this work, path planning
was analyzed by maximizing the likelihood of target detection.
In [120], the authors investigated how to optimally move
UAVs for improving connectivity of ad hoc networks assuming
that the drones have complete information on the location of
devices. The work in [33], studied the joint user scheduling
and UAV trajectory design to maximize the minimum rate
of ground users in a multi-UAV enabled wireless network. In
addition, there are some works that studied the UAV trajectory
optimization for localization purposes. For instance, the work
in [109] investigated path planning for multiple UAVs for
localization of a passive emitter. In this work, using the
angle of arrival and time difference of arrival information,
the set of waypoints which leads to a minimum localization
error was determined. However, the work in [109] is limited
to localization and does not directly address any wireless
communication problem. Other works on UAV navigation and
cooperative control are found in [110–114].

In fact, prior studies on UAV trajectory optimization focused
on three aspects: control and navigation, localization [121],
and wireless communications. In particular, in the existing
works on UAV communications, trajectory optimization was
performed with respect to energy consumption, rate, and
reliability.

2) Representative Result: One representative result on tra-
jectory optimization can be found in our work in [7]. In par-
ticular, we considered a drone-assisted IoT network scenario
in which 5 drones are used to collect data from ground IoT
devices. A set of 500 IoT devices are uniformly distributed
within a geographical size of 1 km × 1 km. We considered
a time-varying IoT network in which the set of active IoT
devices changes over time, based on a beta distribution [122].
Hence, to effectively serve the IoT devices, the drones must
update their locations according to the locations of active
devices. In this model, we considered some pre-defined time
slots during which the drones collect data from active IoT
devices. At the end of each time slot (i.e., update time),
the drones’ update their locations based on the activation
pattern of IoT devices. Given such a time-varying network,
our goal is to find the optimal trajectory of drones such
that they can update their locations with a minimum energy

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

Number of updates

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
of

 d
ro

ne
s 

(k
J)

 

 
Pre−defined path planning
Optimal path planning

Fig. 10: Total energy consumption of drones on mobility vs.
number of updates.

consumption. Therefore, while serving IoT devices, the drones
move within optimal paths so as to minimize their mobility
energy consumption.

Figure 10 shows the total energy consumption of drones as
a function of the number of updates. As expected, a higher
number of updates requires more mobility of the drones thus
more energy consumption. We compare the performance of
the optimal path planning with a case that drones update their
locations following pre-defined paths. As we can see, by using
optimal path planning, the average total energy consumption
of drones decreases by 74% compared to the non-optimal case.

In fact, to effectively use UAVs in wireless networks, the
trajectory of UAVs needs to be optimized with respect to wire-
less metrics such as throughput and coverage as well as energy
constraints of UAVs. While jointly optimizing trajectory and
communication is a challenging task, it can significantly
improve the performance of UAV-enabled wireless networks.

D. Performance Analysis of UAV-Enabled Wireless Networks

1) Challenges: A fundamental analysis of the performance
of UAV-enabled wireless systems is required in order to
evaluate the impact of each design parameter on the overall
system performance [10], [123]. In particular, the performance
of the UAV systems must analyzed in terms of the key QoS
metrics such as coverage probability , throughput, delay, or
reliability (e.g., for cellular-connected drones). Such perfor-
mance evaluations can also reveal the inherent tradeoffs that
one faces when designing UAV-based systems.

Clearly, while designing UAV-based communication sys-
tems, a fundamental performance analysis needs to be done
in order to evaluate the impact of design parameters on the
overall system performance. Naturally, devising a fundamen-
tal analysis of the wireless performance of a UAV-based
wireless system will substantially differ from conventional
ground networks due to the altitude and potential mobility
of UAVs as well as their different channel characteristics. The
stringent energy limitations of UAVs also introduce unique
challenges. In fact, the limited available on-board energy of
UAVs which leads to the short flight duration is a major
factor impacting the performance of wireless communications



using UAVs. Indeed, analyzing the performance of a com-
plex heterogeneous aerial-terrestrial wireless network that is
composed of flying and ground base stations is a challenging
task. In fact, there is a need for a comprehensive performance
analysis of UAV-enabled wireless networks while capturing
various aspects of UAVs including mobility, and specific A2G
channel characteristics in coexistence with terrestrial networks.
Moreover, performance characterization of cellular-connected
drone networks with flying users and base stations has its own
complexity due to the mobile and highly dynamic nature of
the networks.

2) State of the Art: Prior to our seminal work in this area
in [10], most of the existing works focused on performance
analysis of UAVs acting as relays, or in ad hoc networks
[120], [124–126]. For instance, the work in [124] evaluated the
performance of a UAV ad hoc network in terms of achievable
transmission rate and end-to-end delay. In [125], the authors
studied the use of macro UAV relays to enhance the throughput
of the cellular networks. The work in [120], derived the
probability of successful connectivity among ground devices in
a UAV-assisted ad hoc network. In [126], the authors analyzed
the performance of UAVs acting as relays for ground devices
in a wireless network. In particular, the authors derived closed-
form expressions for signal-to-noise-ratio (SNR) distribution
and ergodic capacity of UAV-ground devices links. In contrast,
in [10], we considered the use of UAVs as stand-alone aerial
base stations. In particular, we investigated the downlink
coverage and rate performance of a single UAV that co-exists
with a device-to-device communication network.

Following our work in [10], the authors in [127] derived
an exact expression for downlink coverage probability for
ground receivers which are served by multiple UAVs. In
particular, using tools from stochastic geometry, the work in
[127] provided the coverage analysis in a finite UAV network
considering a Nakagami-m fading channel for UAV-to-user
communications. In [98], the performance of a single drone-
based communication system in terms of outage probability,
bit error rate, and outage capacity is investigated. The work in
[128], analyzed the coverage and throughput for a network
with UAVs and underlaid traditional cellular networks. In
this work, using 3D and 2D Poisson point processes (PPP),
the downlink coverage probability and rate expressions are
derived. In [129], the authors evaluated the performance of
using UAVs for overload and outage compensation in cellular
networks. Clearly, such fundamental performance analysis
is needed to provide various key design insights for UAV
communication systems.

3) Representative Result: As per our work in [10], we
considered a circular area with in which a number of users
are spatiality distributed according to a PPP [130], and a
UAV-mounted aerial base station is used to serve a subset of
those users. In the considered network, there are two types of
users: downlink users and D2D users. Here, we consider the
downlink scenario for the UAV while the D2D users operate
in an underlay fashion. Moreover, we assume that a D2D
receiver connects to its corresponding D2D transmitter located
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Fig. 11: Average sum-rate in a UAV-D2D network vs. UAVs
altitude.

at a fixed distance away from it [131]. Hence, a D2D receiver
receives its desired signal from the D2D transmitter pair, and
interference from the UAV and other D2D transmitters. The
received signals at a downlink user include the desired signal
from the UAV and interference from all the D2D transmitters.

For this UAV-D2D network, we derived tractable analytical
expressions for the coverage and rate analysis for both static
and mobile UAV scenarios (see [10]). In Figure 11, we show
the average sum-rate versus the UAV altitude for different
values of the fixed distance, d0, between a D2D transmit-
ter/receiver pair. As we can see from this figure, the average
sum-rate is maximized when the UAV’s altitude are around
300 m for d0 = 20 m. From Figure 11, we can see that for for
altitude above 1300 m, the average sum-rate starts increasing.
This is due to the fact that, as the UAV’s altitude exceeds
a certain value, downlink users cannot be served while the
interference on D2D users decreases thus increasing the sum-
rate. Moreover, for altitudes within a range 300m to 1300m,
the sum-rate performance decreases due to the impact of LoS
interference from the UAV on the D2D users. Note that, the
optimal UAV’s altitude depends on d0, as shown in Figure 11.
For instance, the sum-rate is maximized at an 400 m altitude
when d0 = 30m.

We note that, in the literature, there are also additional
insightful results on the performance of UAV communication
systems. For instance, the work in [127] showed the downlink
coverage probability varies as a function of SIR threshold in a
network of multiple UAV-BSs. In [34], the authors presented
the impact of the UAV’s altitude on the minimum required
transmit power of UAV that ensures ground coverage. In [128],
the network throughput of a UAVs-assisted cellular network
is determined as a function of the number of base stations.

E. Cellular Network Planning and Provisioning with UAVs

1) Challenges: Network planning involves addressing a
number of key problems such as base station positioning, traf-
fic estimation, frequency allocation, cell association, backhaul
management, signaling, and interference mitigation. Network
planning with UAVs is particularly important when UAVs are
used for coverage and capacity enhancement.



In a UAV-assisted cellular network, network planning be-
comes more challenging due to the various properties of UAVs
including mobility, LoS interference, energy constraints, and
wireless backhaul connectivity. In particular, to effectively op-
erate UAVs over cellular networks, there is a need for dynamic
bandwidth allocation, user association, and backhaul access
according to traffic distribution. For example, joint radio and
backhaul designs and deployment are needed during network
planning with UAVs [132]. Furthermore, network planning
in presence of flying drone-UEs requires new considerations.
On the one hand, LoS interference stemming from a poten-
tially massive number of drone-UEs in uplink significantly
impacts network planning. On the other hand, ground base
stations must be equipped with appropriate types of antennas
(considering e.g., radiation pattern and beam tilting) so as
to serve drone-UEs in downlink. Another difference between
network planning for traditional cellular networks and UAV
systems is the amount of signaling and overhead. Unlike
static terrestrial networks, in the UAV case, there is a need
for dynamic signaling to continuously track the location and
number of UAVs in the network. Such dynamic signaling may
also be needed to register the various UAVs as users or base
stations in the cellular system. Clearly, handling such signaling
and overhead must be taken into account in cellular network
planning with UAVs.

2) State of the Art: Recent studies on UAV communica-
tions have addressed various problems pertaining to network
planning. For example, in [133], the authors investigated
the optimal user-UAV assignment for capacity enhancement
in UAV-assisted heterogeneous wireless networks. In [95],
the authors jointly optimized the locations and number of
UAVs for maximizing wireless coverage. The work in [134]
optimized the deployment and cell association of UAVs for
meeting the users’ rate requirements while using a minimum
UAVs’ transmit power. In [135], a delay-optimal optimal cell
planning is proposed for a UAV-assisted cellular network. In
[102], the authors proposed a backhaul aware optimal drone-
BS placement algorithm that maximizes the number of the
served users as well as the sum-rate for the users. The work
in [136] provided an analytical expression for the probability
of backhaul connectivity for UAVs that can use either an
LTE or a millimeter-wave backhaul. In [74], a framework for
the use of UAVs as an aerial backhaul network for ground
base stations is proposed. In fact, the previous studies on
UAV network planning primarily analyzed problems related
to user association, 3D placement, backhaul connectivity, and
optimizing the number of UAVs that must be deployed in the
network. Also, there does not exist any concrete work focusing
on the signaling angles.

3) Representative Result: In terms of network planning, in
[135], we studied the problem of optimal cell association for
delay minimization in a UAV-assisted cellular network. In par-
ticular, we considered a geographical area of size 4 km×4 km
in which 4 UAVs (as aerial base stations) and 2 ground macro
base stations are deployed according to a traditional grid-based
deployment. Within this area, ground users are distributed
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Fig. 12: Average network delay per 1Mb data transmission.

according to a truncated Gaussian distribution with a standard
deviation σo, which is suitable to model a hotspot area. Here,
our main performance metric is transmission delay, which is
the time needed for transmitting a given number of bits to
ground users. Our goal is to provide an optimal cell planning
(e.g., cell association) for which the average network delay is
minimized.

In Figure 12, we compare the delay performance of our
proposed cell association with the classical SNR-based asso-
ciation. For users’ spatial distribution, we consider a truncated
Gaussian distribution with a center (1300 m, 1300 m), and
a standard deviation σo that varies from 200 m to 1200 m.
Lower values of σo correspond to cases in which users are
more congested around a hotspot center. This figure shows
that the proposed cell association significantly outperforms the
SNR-based association and yields up to a 72% lower average
delay. This is due to the fact that, in the proposed approach,
the impact of network congestion is taken into consideration.
In fact, unlike the SNR-based cell association, the proposed
approach avoid creating highly loaded cells that cause delay in
the network. Hence, compared to the SNR-based association
case, our approach is more robust against network congestion,
and it significantly reduces the average network delay.

Clearly, the performance of UAV-enabled wireless networks
significantly depends on the network planning. In general,
network planning impacts several key metrics of UAV net-
works such as throughput, delay (as also shown in Figure 12),
operational cost, and energy consumption.

F. Resource Management and Energy Efficiency

1) Challenges: Resource management and energy effi-
ciency require significant attention when operating UAVs in
key scenarios such as IoT, public safety, and UAV-assisted
cellular wireless networks. While resource management is
a major challenge for cellular networks [129], [137], [138],
UAVs introduce unique challenges due to: 1) Interplay be-
tween the UAVs’ flight time, energy, path plan, and spectral
efficiency, 2) Stringent energy and flight limitations for UAVs,
3) LoS interference stemming from A2G and air-to-air links,
and 4) Unique mobility of UAVs. Hence, there is a need
for optimizing and managing resource allocation in com-
plex wireless UAV-assisted wireless networks operating over



heterogeneous spectrum bands and co-existing with ground
networks. In fact, resource management and spectrum sharing
[139] processes must properly handle the inherent dynamics of
wireless networks such as time-varying interference, varying
traffic patterns, mobility, and energy constraints of the UAVs.

Naturally, flying drones have a limited amount of on-
board energy which must be used for transmission, mobil-
ity, control, data processing, and payloads purposes [140].
Consequently, the flight duration of drones is typically short
and insufficient for providing a long-term, continuous wireless
coverage. The energy consumption of the UAV also depends
on the role/mission of the UAV, weather conditions, and the
navigation path. Such energy constraints, in turn, lead to
limited flight and hover time durations. Hence, while designing
UAV communication systems, the energy and flight constraints
of UAVs need to be explicitly taken into account. Therefore,
the energy efficiency of UAVs requires careful consideration as
it significantly impact the performance of UAV-communication
systems. In fact, the limited on-board energy of UAVs is a key
constraint for deployment and mobility of UAVs in various
applications.

2) State of the Art: Energy efficiency and resource man-
agement in UAV-based wireless communication systems have
been studied from various perspectives. For instance, the work
in [141] provided an analytical framework for minimizing
the energy consumption of a fixed-wing UAV by determining
the optimal trajectory of the UAV. In [142], the authors
proposed an energy-efficient scheduling framework for coop-
erative UAVs communications. In [143], the authors studied
the energy efficiency of drones in target tracking scenarios
by adjusting the number of active drones. Energy harvesting
from vibrations and solar sources for small UAVs was inves-
tigated in [144]. The work in [145] proposed a framework for
optimizing transmission times in user-UAV communications
that maximizes the minimum throughput of the users. The
authors in [146] studied the use of antenna array on UAVs for
improving the SNR and consequently for reducing the required
transmit power. The work in [147] investigated an optimal
resource allocation scheme for an energy harvesting flying
access point. In [38], the problem of bandwidth and flight time
optimization of UAVs that services ground users is studied.
The work in [148] proposed a resource allocation framework
for enabling cache-enabled UAVs to effectively service users
over licensed and unlicensed bands.

Clearly, energy efficiency and resource management re-
quires careful consideration as they significantly impact the
performance of UAV-communication systems in terms of
throughput, latency, and coverage duration.

3) Representative Result: In [38], we studied the resource
management problem with a focus on optimal bandwidth
allocation in UAV-enabled wireless networks. In particular, we
considered a scenario in which 5 UAVs are deployed as aerial
base stations over a rectangular area of size 1 km × 1 km
in order to provide service for 50 ground users. These UAVs
must fly (or hover) over the area until all the users receive their
desired service (in terms of number of bits) in the downlink.
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Fig. 13: Average flight time vs. bandwidth.

Our goal is to optimally share the total available bandwidth
between the users such that the total flight time that the UAVs
need to service the users is minimized. Note that the flight
time is directly related to the energy consumption of UAVs.
Hence, minimizing the flight time of UAVs will effectively
improve their energy-efficiency.

Figure 13 shows the average total flight time of UAVs
versus the transmission bandwidth. Here, the total flight time
represents the time needed to provide service to all ground
users, each of which requires a 100 Mb data. We consider
two bandwidth allocation schemes, the optimal bandwidth
allocation, and an equal bandwidth allocation. Clearly, by
increasing the bandwidth, the total flight time that the UAVs
require to service their users decreases. Naturally, a higher
bandwidth can provide a higher the transmission rate and, thus,
users can be served within a shorter time duration. From Figure
13, we can observe that the optimal bandwidth allocation
scheme can lead to a 51% shorter flight time compared to the
equal bandwidth allocation case. This is because, by optimally
allocating the bandwidth to each user based on its load and
location, the total flight time of UAVs can be minimized.

In Figure 14, we show the total hovering energy consump-
tion of the UAVs as a function of number of UAVs. This result
corresponds to the interference-free scenario in which the
UAVs operate on different frequency bands. Hence, the total
bandwidth usage linearly increases by increasing the number
of UAVs. Clearly, the total energy consumption decreases as
the number of UAVs increases. A higher number of UAVs
corresponds to a higher number of cell partitions. Therefore,
the size of each cell partition decreases and the users will
have a shorter distance to the UAVs. Increasing the number of
UAVs leads to a higher transmission rate thus shorter hover
time and energy consumption. For instance, Figure 14 shows
that when the number of UAVs increases from 2 ot 6, the total
energy consumption of UAVs decreases by 53%. Nevertheless,
deploying more UAVs in interference-free scenario requires
using more bandwidth. Hence, there is a fundamental tradeoff
between the energy consumption of UAVs for hovering and
bandwidth efficiency.

In summary, to efficiently employ UAVs for wireless net-
working applications, one must efficiently manage the use
of available resources such as energy, bandwidth, and time.
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Fig. 14: UAV energy consumption (due to hover time) and
spectrum tradeoff.

In fact, the performance of UAV-communication systems is
significantly affected by resource allocation strategies and
energy constraints of UAVs.

G. Drone-UEs in Wireless Networks

1) Challenges: Beyond the use of drones as aerial base
stations, they can also act as flying users as part of cellular net-
works. In particular, drone-UEs play key roles in air delivery
applications, such as Amazon prime air and in surveillance ap-
plications. Another important application of drone-UEs is vir-
tual reality (VR) [149–151] where drones capture any desired
information about a specific area and transmit it to remote VR
users. However, current cellular networks have been primarily
designed for supporting terrestrial devices whose character-
istics are significantly different from drone-UEs. Naturally,
classical wireless challenges such as performance analysis,
interference management, mobility management, and energy
and spectrum efficiency, will be further exacerbated by the use
of drone-UEs due to their relatively high altitude, stringent on-
board energy limitations, dynamic roles, potentially massive
deployment, and their nearly unconstrained mobility. In partic-
ular, incorporating drone-UEs in cellular networks introduces
unique challenges such as uplink interference management due
to massive deployment of drone-UEs, ground-to-air channel
modeling for BSs-to-drones communications, and designing
suitable BS’s antennas that can support high altitude (i.e., high
elevation angle) drones. In addition, drone-UEs will require
ultra-reliable, low latency communications (URLLC) so as
to swiftly control their operations, and ensure their safe and
effective navigation. Clearly, such a need for URLLC also
leads to new wireless networking challenges.

2) State of the Art: While the use case of UAV-BSs has
been widely studied in the literature, there are only a handful
of studies on drone-UEs scenarios. For example, the work in
[152] analyzed the coexistence of aerial and ground users in
cellular networks. In particular, the authors in [152] propose
a framework for characterizing the downlink coverage perfor-
mance in a network that includes drone-UEs and terrestrial-
UEs. In [153], the authors derived an exact expression for
coverage probability of drone-UEs which are served by ground
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Fig. 15: Impact of drone-UEs on connectivity of ground users.

BSs. The work in [41] analyzed the impact of both drone-
BSs and drone-UEs on uplink and downlink performance of
an LTE network. In [154], the authors studied the feasibility
of wireless connectivity for drone-UEs via LTE networks.
Moreover, in [154], propagation characteristics of BSs-to-
drones communications was studied using measurements and
ray tracing simulations. The work in [155] developed an
interference-aware path planning scheme for drone-UEs that
yields a minimum communication latency of drones as well
as their interference on ground users.

3) Representative Result: Here, we show how uplink in-
terference stemming from drone-UEs impact the connectivity
of ground users. We consider a number of flying drone-UEs
which are uniformly deployed on a disk of radius 1000 m at
an altitude 100 m over a given geographical area. Meanwhile,
ground users attempt to connect to a ground base station
located at the center of the area. Figure 15 shows the uplink
connectivity probability of ground users (at a given radius from
the base station) as the number of drone-UEs varies. Clearly,
the connectivity of ground users decreases as the number
of drones increases. This is due to the significant dominant
LoS interference caused by the drone-UEs. For instance, the
connectivity probability at a 150 m radius decreases by 18%
when the number of drone-UEs increases from 5 to 15. Our
result in Figure 15 highlights the need for adopting effective
interference management techniques in drone-UEs scenarios
[7], [10], [156–158].

IV. OPEN PROBLEMS AND FUTURE OPPORTUNITIES FOR
UAV-BASED WIRELESS COMMUNICATION AND

NETWORKING

In the previous section, we have outlined the general re-
search directions and challenges of wireless communications
with UAVs. The next natural step is to discuss open research
problems in each one of the covered areas, in order to shed
light on future opportunities, as done in this section. Despite a
considerable number of studies on UAV communications, there
are still many key open problems that must be investigated.

A. UAV Channel Modeling
For air-to-ground channel modeling, there are several key

open problems. First and foremost, there is a need for more



Table III: Challenges, open problems and tools for designing UAV-enabled wireless networks.
Research Directions Key References Challenges and Open Problems Mathematical Tools and Techniques

Channel Modeling
[11], [28], [42], [86],
[87], [89–94], [100],

[159], [160]

• Air-to-ground path loss. • Ray-tracing techniques.
• Air-to-air channel modeling. • Machine learning.
• Small scale fading. • Extensive measurements.

Deployment
[11–13], [15], [16],

[31], [32], [95], [97],
[101], [104–106], [125]

• Deployment in presence of terrestrial networks. • Centralized optimization theory.
• Energy-aware deployment. • Facility location theory.
• Joint 3D deployment and resource allocation.

Performance
Analysis

[10], [12], [98], [120],
[126–129]

• Analyzing heterogeneous aerial-terrestrial networks. • Probability theory.
• Performance analysis under mobility considerations. • Stochastic geometry.
• Capturing spatial and temporal correlations. • Information theory

Cellular Network
Planning with UAVs

[95], [102], [133],
[134], [136]

• Backhaul-aware cell planning. • Centralized optimization theory.
• Optimizing number of UAVs. • Facility location theory.
• Traffic-based cell association. • Optimal transport theory.
• Analysis of signaling and overhead.

Resource Management
and Energy Efficiency

[140–144], [146],
[147], [161]

• Bandwidth and flight time optimization. • Centralized optimization theory.
• Joint trajectory and transmit power optimization. • Optimal transport theory.
• Spectrum sharing with cellular networks. • Game theory and machine learning.
• Multi-dimensional resource management.

Trajectory
Optimization [33], [109–120], [162]

• Energy-efficient trajectory optimization. • Centralized optimization theory.
• Joint trajectory and delay optimization. • Machine learning.
• Reliable communication with path planning.

Cellular Connected
UAV-UEs [41], [152–155]

• Low latency control. • Centralized optimization theory.
• Interference management. • Machine learning.
• Handover management. • Optimal transport theory.
• Ground-to-air channel modeling. • Game theory.
• Ultra reliable, low latency communications. • Stochastic geometry.

realistic channel models that stem from real-world measure-
ments [42]. While efforts in this regard already started, most
of them remain limited to a single UAV or to very specific
environments. A broader campaign of channel measurements
that can cut across urban and rural areas, as well as various
operational environments (e.g., weather conditions) is needed.
Such experimental work can complement the existing, mostly
ray tracing simulation based results. Moreover, the simulation
results can also be expanded to model small-scale fading
A2G communications. In addition, as UAVs become more
commonly used as flying base stations, drone-UEs, or even for
backhaul support, one must have more insights on air-to-air
channel modeling. In particular, there is a need for an accurate
UAV-to-UAV channel model that can capture time-variation
of channel and Doppler effect due to mobility of UAVs.
Furthermore, multipath fading in air-to-air communications
needs to be characterized while considering UAVs’ altitude
as well as antennas’ movement.

B. UAV Deployment

In terms of open problems for UAV deployment, there is
a need for new solutions to optimal 3D placement of UAVs
while accounting for their unique features. For instance, one of
the key open problems is the optimal 3D placement of UAVs in
presence of terrestrial networks. For instance, there is a need to
study how UAVs must be deployed in coexistence with cellular
networks while considering mutual interference between such
aerial and terrestrial systems. Other key open problems in
deployment include: 1) joint optimization of deployment and
bandwidth allocation for low latency communications, 2) joint
optimal 3D placement and cell association for flight time
minimization, and 3) obstacle aware deployment of UAVs for
maximizing wireless coverage.

C. Performance Analysis

For performance analysis, there are numerous problems that
can still be studied. For instance, one must completely charac-
terize the performance of UAV-enabled wireless networks, that
consist of both aerial and terrestrial users and base stations, in
terms of coverage and capacity. In particular, there is a need
for tractable expressions for coverage probability and spectral
efficiency in heterogeneous aerial-terrestrial networks. More-
over, fundamental performance analysis needs to be done to
capture inherent tradeoffs between spectral efficiency and and
energy efficiency in UAV networks. Another open problem is
to evaluate the performance of UAV-enabled wireless networks
while incorporating the mobility of UAVs. The fundamental
analysis of such mobile wireless networks involves capturing
the spatial and temporal variations of various performance
metrics in the network. For instance, there is a need to study
how the trajectory of UAVs impacts their performance in
terms of throughput, latency, and energy efficiency. Finally,
the effect of dynamic scheduling on the performance of UAV
communication systems needs to be analyzed.

D. Planning Cellular Networks with UAVs

An efficient network planning with UAVs requires address-
ing a number of key problems. For example, what is the
minimum number of UAVs needed to provide a full coverage
for given a geographical area that is partially covered by
ground base stations. Solving such problems is particularity
challenging when the geographical area of interest does not
have a regular geometric shape (e.g., disk or square). Another
design problem is the backhaul-aware deployment of UAVs
while using them as aerial base stations. In this case, while
deploying UAV-BSs, one must consider both the backhaul



connectivity of UAVs and their users’ quality-of-service. Other
important open problems include: 1) performing efficient
frequency planning when both ground and aerial BSs and users
exist, 2) developing new approaches to dynamically provision
UAVs on the fly whenever they join network, and 3) designing
robust and adaptive network planning techniques that can
account for highly mobile drone-UEs. Last but not least, it
is imperative to analyze the signaling overhead associated
with the deployment of both UAV-BSs and UAV-UEs, while
characterizing how that overhead can affect performance.

E. Resource Management in UAV Networks

Resource management is another key research problem in
UAV-based communication systems. In particular, there is a
need for a framework that can dynamically manage various
resources including bandwidth, energy, transmit power, UAV’s
flight time, and number of UAVs, among others. For instance,
how to adaptively adjust the transmit power and trajectory of
a flying UAV that serves ground users. In this case, a key
problem is to provide optimal bandwidth allocation mecha-
nisms that can capture the impact of UAVs’ locations, mobility,
LoS interference, and traffic distribution of ground users. Also,
there is a need for designing efficient scheduling techniques
to mitigate interference between aerial and terrestrial base
stations in a UAV-assisted cellular network. In addition, one
must analyze dynamic spectrum sharing in a heterogeneous
network of both flying and ground base stations. Finally,
adopting suitable frequency bands (e.g., WiFi, LTE bands) for
UAV operations is of important design problems.

F. UAV Trajectory Optimization

While the potential mobility of UAVs provides promising
opportunities, it introduces new challenges and technical prob-
lems. In a UAV-assisted wireless network, the trajectory of
UAVs needs be optimized with respect to key performance
metrics such as in throughput, energy and spectral efficiency,
and delay. Furthermore, trajectory optimization problems must
account for the dynamic aspects and type of UAVs. The open
problems in UAV trajectory optimization include: 1) UAV tra-
jectory optimization under the goal of jointly optimizing com-
munication throughput and the UAV’s energy consumption,
2) joint optimization of multiuser communication scheduling
and UAV trajectory for minimizing delay, 3) trajectory opti-
mization for maximizing reliability in UAV-enabled wireless
networks, and 4) joint control, communication, and trajectory
optimization of UAVs for flight time minimization.

G. Drone-UEs Scenarios

Naturally, flying drones that act as users within cellular
networks can introduce new design challenges. In particular,
while using drone-UEs in wireless networks, one must ac-
count for mobility, LoS interference, handover, energy con-
straints, and low-latency control of drones. In this regard,
key open problems in drone-UEs communications include: 1)
developing robust interference mitigation techniques for mas-
sive drone-UEs deployment scenarios, 2) designing dynamic

handover mechanisms to manage frequent handovers due to
mobility, 3) providing accurate ground-to-air channel models
for BSs-to-drone communications, 4) proposing new schedul-
ing schemes while considering battery limitations of drones,
5) designing effective solutions that allow meeting URLLC
requirements for drone-UEs, and 6) Analyzing application-
specific quality-of-service measures.

V. ANALYTICAL FRAMEWORKS TO ENABLE UAV-BASED
COMMUNICATIONS

Having identified the research directions and their associated
challenges and open problems, next, we turn our attention
to the analytical frameworks needed to design, analyze, and
optimize the use of UAVs for wireless networking purposes.
Indeed, this research area is highly interdisciplinary and it
will require drawing on tools from conventional fields such
as communication theory, optimization theory, and network
design, as well as emerging fields such as stochastic geometry,
machine learning, and game theory, as listed in Figure 16.

A. Centralized Optimization Theory for UAV Communication

During the first phase of deployment of UAVs as flying
base stations, despite their inherent autonomy, we envision
that UAVs will initially rely on centralized control. This is
particularly important for applications such as cellular network
capacity enhancement, in which cellular operators may not
be willing to relinquish control of their network, particularly
during the early trials of a technology such as UAVs. In such
scenarios, many of the identified research problems will very
naturally involve the need to formulate and solve challenging
centralized optimization problems. Such problems can be run
at the level of a cloud (e.g., as is done in a cloud-assisted radio
access network) [163] or at the level of a ground macrocell
base station that is capable to control some of the UAVs.

It is worth noting that lessons learned from conventional
terrestrial cellular network optimization problem can prove to
be very handy in UAV communication. For example, classical
approaches such as successive convex optimization [164] can
be used for optimizing 3D location and trajectory of UAVs.
However, many of the problems identified here will require
more advanced optimization techniques. For example, when
analyzing user association problems, one will naturally end
up with challenging mixed integer programming problems,
that cannot be solved using traditional algorithms, such as
those used for convex optimization. In this regard, advanced
mathematical tools such as optimal transport theory [165] can
provide tractable solutions for a wide range of cell association
problems that seek to optimize UAV’s flight time, throughput,
and energy-efficiency of UAV-enabled wireless networks.

B. Optimal Transport Theory for UAV Networks

Optimal transport theory [165] can enable deriving tractable
solutions for the notoriously difficult optimization problems
that accompany the problems of user association, resource al-
location, and flight time optimization in UAV-enabled wireless
networks. By exploiting new ideas from probability theory and



statistics, optimal transport theory enables capturing generic
distributions of wireless devices, which, in turn, allows a
much deeper fundamental analysis of network performance
optimization than existing heuristic works. Optimal transport
is a field in mathematics that studies scenarios in which goods
are transported between various locations.

One popular example is the so-called ore mining problem.
In this illustrative example, we are given a collection of mines
mining iron ore, and a collection of factories which consume
the iron ore that the mines produce. The goal is to find the
optimal way to transport (move) the ore from the mines to
the factories, to minimize a certain cost function that captures
key factors such as the costs of transportation, the location of
the mines, and the productivity of the factories, among others.
comment. Optimal transport theory aims to find an optimal
mapping between any two arbitrary probability measures. In
particular, in a semi-discrete optimal transport problem, a
continuous probability density function must be mapped to
a discrete probability measure.

Remarkably, such mathematical framework can be used to
solve a number of complex problems in UAV communications.
For instance, in a semi-discrete optimal transport case, the
optimal transport map will optimally partition the continuous
distribution and assign each partition to one point in the
discrete probability measure. Clearly, such optimal partitions
can be considered as optimal cell association in UAV-to-user
(in UAV base station scenario) and BS-to-UAV (in drone-
UE case) communications. Therefore, within the framework
of optimal transport theory, one can address cell association
problems for any general spatial distribution of users. In fact,
optimal transport theory enables the derivation of tractable
solutions to variety of user association resource allocation,
energy management, and flight optimization problems in UAV-
enabled wireless networks. In particular, given any spatial
distribution of ground users (that can be estimated using UAV-
based aerial imaging), one can exploit optimal transport theory
to derive the optimal cell association and resource management
schemes that lead to the maximum system performance in
terms of energy efficiency, throughput, and delay under explicit
flight time constraints of UAVs [38], [135].

C. Performance Analysis using Stochastic Geometry

Stochastic geometry techniques have emerged as powerful
tools for performance analysis of ad-hoc and cellular networks
[130]. The key principle is to endow the locations devices,
e.g., users and base stations, as a point process, and then
evaluate key performance metrics such as coverage, rate,
throughput, or delay. While stochastic geometry have been
utilized for the analysis of two-dimensional heterogeneous
cellular networks, it can be potentially adopted to characterize
the performance of 3D UAV networks [127]. Nevertheless,
one must use tractable and realistic point processes to model
the locations of UAVs. For instance, Binomial point process
and Poisson cluster process [166] are more suitable when
UAVs are deployed at user hotspots, and the goal is to serve a
massive number of users in a specific area. The processes with

repulsion between points, e.g., Matern hard core process [130],
is more suitable for the a case in which UAVs are not allowed
to be closer than a certain distance. Therefore, by exploiting
tools from stochastic geometry and adopting suitable point
process, the performance of UAV-enabled wireless networks
can be characterized. This, in turn, can reveal the key design
insights and inherent tradeoffs in UAV communications.

D. Machine Learning

Machine learning enables systems to improve their per-
formance by automatically learning from their environment
and their past experience. Machine learning can be poten-
tially leveraged to design and optimize UAV-based wireless
communication systems [167]. For instance, using reinforce-
ment learning algorithms, drones can dynamically adjust their
positions, flight directions, and motion control to service
their ground users. In this case, drones are able to rapidly
adapt to dynamic environments in a self-organizing way,
and autonomously optimize their trajectory. In addition, by
leveraging neural networks techniques and performing data
analytics, one can predict the ground users’ behavior and
effectively deploy and operate drones. For example, machine
learning tools enable predicting users’ mobility and their load
distribution that can be used to perform optimal deployment
and path planning of drones. Such information about users’
mobility pattern and traffic distribution is particularity useful in
designing cache-enabled drone systems. Machine learning can
also be used to learn the radio environment maps and to build a
3D channel model using UAVs. Such radio environment maps
can be subsequently used to optimally deploy and operate UAV
communication systems.

E. Game Theory

Distributed decision making will be an integral component
of UAV networks. As such, along with the use of machine
learning, game theory [168], [169] will provide important
foundations for distributed decision making in UAV-based
wireless networks. Game theory is a natural tool to analyze
resource management and trajectory optimization problems
in which the decision is done at the level of each UAV. In
such cases, each UAV will have its own, individual objective
function that captures its own QoS. Here, the inherent cou-
pling of the UAVs objective functions due to factors such as
interference or collisions, strongly motivate the use of game-
theoretic analysis for resource management. In a UAV-enabled
network, distributed resource management problems will now
involve different types of players (UAVs, BSs, UEs), as
well as multi-dimensional strategy spaces that include energy,
spectrum, hover/flight times, and 3D locations. This, in turn,
will motivate the use of advanced game-theoretic mechanisms,
such as the emerging notion of a multi-game [170], that
go beyond classical game-theoretic constructs that are used
for conventional terrestrial resource management problems. In
particular, multi-games allow capturing the fact that, in a UAV
network, multiple games may co-exist, such as a game among
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UAVs and a game among terrestrial BSs, and, as such, analysis
of such multi-game scenarios is needed.

Moreover, when UAVs are supposed to operate au-
tonomously, it is imperative to jointly optimize their com-
munication and control systems. Such an optimization must
be distributed and done at the level of each individual, au-
tonomous UAV, thus again motivating the use of game theory.
Here, stochastic differential games [171] will be an important
tool since they can naturally integrate both communication and
control, whereby communication objectives can be included
in utility functions while the control system dynamics can
be posed as differential equation constraints. Moreover, the
sheer scale of ultra dense cellular networks with a massive
number of UAVs will require tools to analyze the asymptotic
performance of the system. To this end, tools from mean-
field game theory [172–174] are useful to perform such large-
system analysis and gain insights on how energy efficiency,
spectrum efficiency, and the overall network QoS can scale
with the number of users. Moreover, cooperative behavior is
another important aspect of UAV communications.

For instance, how to dynamically form swarms of UAVs
and enable their coordination is an important open problem.
To address it, one can leverage tools from coalitional game
theory, such as those developed in [175–177] for wireless
networks, in general, and in [103], [178], for UAV systems, in
particular. Other relevant game-theoretic tools include contract
theory [179], to design incentive mechanisms and matching
theory [180] to study network planning problems. In addition,
multiple synergies between machine learning, optimal trans-
port theory, and game theory can be built and analyzed for a
variety of problems in UAV communication systems.

Finally, in Table III, we summarize the key challenges, open
problems, important references, and analytical tools to analyze,
optimize, and design UAV-enabled wireless networks.

VI. CONCLUDING REMARKS

In this tutorial, we have provided a comprehensive study on
the use of UAVs in wireless networks. We have investigated
two main use cases of UAVs, namely, aerial base stations and
cellular-connected users, i.e., UAV-UEs. For each use case
of UAVs, we have explored key challenges, applications, and

fundamental open problems. Moreover, we have presented the
major state of art pertaining to challenges in UAV-enabled
wireless networks, along with insightful representative re-
sults. Meanwhile, we have described mathematical tools and
techniques needed for meeting UAV challenges as well as
analyzing UAV-enabled wireless networks. Such an in-depth
study on UAV communication and networking provides unique
guidelines for optimizing, designing, and operating UAV-based
wireless communication systems.

REFERENCES

[1] K. P. Valavanis and G. J. Vachtsevanos, Handbook of unmanned aerial
vehicles. Springer Publishing Company, Incorporated, 2014.

[2] R. Austin, Unmanned aircraft systems: UAVS design, development and
deployment. John Wiley & Sons, 2011, vol. 54.

[3] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and
practice. Princeton university press, 2012.

[4] M. Asadpour, B. V. den Bergh, D. Giustiniano, K. A. Hummel,
S. Pollin, and B. Plattner, “Micro aerial vehicle networks: an exper-
imental analysis of challenges and opportunities,” IEEE Communica-
tions Magazine, vol. 52, no. 7, pp. 141–149, July 2014.

[5] R. S. Stansbury, M. A. Vyas, and T. A. Wilson, “A survey of uas
technologies for command, control, and communication (C3),” in
Unmanned Aircraft Systems. Springer, 2008, pp. 61–78.

[6] A. Puri, “A survey of unmanned aerial vehicles (UAV) for traffic
surveillance,” Department of computer science and engineering, Uni-
versity of South Florida, 2005.

[7] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient Internet of Things commu-
nications,” IEEE Transactions on Wireless Communications, vol. 16,
no. 11, pp. 7574–7589, Nov. 2017.

[8] R. Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D place-
ment of an aerial base station in next generation cellular networks,”
in Proc. of IEEE International Conference on Communications (ICC),
Kuala Lumpur, Malaysia, May. 2016.

[9] I. Bucaille, S. Hethuin, A. Munari, R. Hermenier, T. Rasheed, and
S. Allsopp, “Rapidly deployable network for tactical applications:
Aerial base station with opportunistic links for unattended and tem-
porary events absolute example,” in Proc. of IEEE Military Communi-
cations Conference (MILCOM), San Diego, CA, USA, Nov. 2013.

[10] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned
aerial vehicle with underlaid device-to-device communications: Perfor-
mance and tradeoffs,” IEEE Transactions on Wireless Communications,
vol. 15, no. 6, pp. 3949–3963, June 2016.

[11] A. Hourani, K. Sithamparanathan, and S. Lardner, “Optimal LAP alti-
tude for maximum coverage,” IEEE Wireless Communication Letters,
vol. 3, no. 6, pp. 569–572, Dec. 2014.

[12] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small
cells in the clouds: Design, deployment and performance analysis,”
in Proc. of IEEE Global Communications Conference (GLOBECOM),
San Diego, CA, USA, Dec. 2015.

[13] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient de-
ployment of multiple unmanned aerial vehicles for optimal wireless
coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–
1650, Aug. 2016.

[14] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Com-
munications Magazine, vol. 54, no. 5, pp. 36–42, May 2016.

[15] I. Bor-Yaliniz and H. Yanikomeroglu, “The new frontier in ran het-
erogeneity: Multi-tier drone-cells,” IEEE Communications Magazine,
vol. 54, no. 11, pp. 48–55, 2016.

[16] S. Rohde and C. Wietfeld, “Interference aware positioning of aerial
relays for cell overload and outage compensation,” in Proc. of IEEE
Vehicular Technology Conference (VTC), Quebec, QC, Canada, Sept.
2012.

[17] Facebook, “Connecting the world from the sky,” Facebook Technical
Report, 2014.



[18] K. Kamnani and C. Suratkar, “A review paper on Google Loon tech-
nique,” International Journal of Research In Science & Engineering,
vol. 1, no. 1, pp. 167–171, 2015.

[19] Q. Wu, J. Xu, and R. Zhang, “UAV-enabled aerial base station (BS)
III/III: Capacity characterization of UAV-enabled two-user broadcast
channel,” available online: arxiv.org/abs/1801.00443, 2018.

[20] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” available online:
arxiv.org/abs/1801.00444, 2018.

[21] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutori-
als, vol. 17, no. 4, pp. 2347–2376, 2015.

[22] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate
in the internet of things: Finite resources and heterogeneity,” IEEE
Access, vol. 4, Nov. 2016.

[23] H. S. Dhillon, H. Huang, and H. Viswanathan, “Wide-area wireless
communication challenges for the Internet of Things,” IEEE Commu-
nications Magazine, vol. 55, no. 2, pp. 168–174, Feb. 2017.

[24] A. Ferdowsi and W. Saad, “Deep learning-based dynamic watermarking
for secure signal authentication in the Internet of Things,” available
online: arxiv.org/abs/1711.01306, 2017.

[25] G. Ding, Q. Wu, L. Zhang, Y. Lin, T. A. Tsiftsis, and Y. D. Yao, “An
amateur drone surveillance system based on the cognitive Internet of
Things,” IEEE Communications Magazine, vol. 56, no. 1, pp. 29–35,
Jan. 2018.

[26] “Paving the path to 5G: Optimizing commercial LTE
networks for drone communication,” available online:
https://www.qualcomm.com/news/onq/2016/09/06/paving-path-5g-
optimizing-commercial-lte-networks-drone-communication.

[27] J. Stewart, “Google tests drone deliveries in project wing trials,” BBC
World Service Radio, 2014.

[28] A. Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground
path loss for low altitude platforms in urban environments,” in Proc. of
IEEE Global Telecommunications Conference (GLOBECOM), Austin,
TX, USA, Dec. 2014.

[29] D. Gettinger and A. H. Michel, “Drone sightings and close encounters:
An analysis,” Center for the Study of the Drone, Bard College,
Annandale-on-Hudson, NY, USA, 2015.

[30] S. Chandrasekharan, K. Gomez, A. Al-Hourani, S. Kandeepan,
T. Rasheed, L. Goratti, L. Reynaud, D. Grace, I. Bucaille, T. Wirth, and
S. Allsopp, “Designing and implementing future aerial communication
networks,” IEEE Communications Magazine, vol. 54, no. 5, pp. 26–34,
May 2016.

[31] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D
placement of an unmanned aerial vehicle base station (UAV-BS) for
energy-efficient maximal coverage,” IEEE Wireless Communications
Letters, vol. 6, no. 4, pp. 434–437, Aug. 2017.

[32] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3-D placement of an
unmanned aerial vehicle base station for maximum coverage of users
with different QoS requirements,” IEEE Wireless Communications
Letters, vol. 7, no. 1, pp. 38–41, Feb. 2018.

[33] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-uav enabled wireless networks,” IEEE Transactions
on Wireless Communications, Early access, 2018.

[34] A. M. Hayajneh, S. A. R. Zaidi, D. C. McLernon, and M. Ghogho,
“Drone empowered small cellular disaster recovery networks for re-
silient smart cities,” in Proc. of IEEE International Conference on
Sensing, Communication and Networking (SECON Workshops), June
2016.

[35] V. Sharma, R. Sabatini, and S. Ramasamy, “UAVs assisted delay opti-
mization in heterogeneous wireless networks,” IEEE Communications
Letters, vol. 20, no. 12, pp. 2526–2529, Dec. 2016.

[36] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization of
UAV-mounted mobile base stations,” IEEE Communications Letters,
vol. 21, no. 3, pp. 604–607, March 2017.

[37] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via
a UAV-mounted cloudlet: Optimal bit allocation and path planning,”
IEEE Transactions on Vehicular Technology, Early access, 2017.

[38] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Wireless com-
munication using unmanned aerial vehicles (UAVs): Optimal transport

theory for hover time optimization,” IEEE Transactions on Wireless
Communications, vol. 16, no. 12, pp. 8052–8066, Dec. 2017.

[39] Y. Zeng, X. Xu, and R. Zhang, “Trajectory optimization for completion
time minimization in UAV-enabled multicasting,” available online:
arxiv.org/abs/1708.06478, 2017.

[40] P. Yang, X. Cao, C. Yin, Z. Xiao, X. Xi, and D. Wu, “Proactive
drone-cell deployment: Overload relief for a cellular network under
flash crowd traffic,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 10, pp. 2877–2892, Oct. 2017.

[41] B. V. D. Bergh, A. Chiumento, and S. Pollin, “LTE in the sky: trading
off propagation benefits with interference costs for aerial nodes,” IEEE
Communications Magazine, vol. 54, no. 5, pp. 44–50, May 2016.

[42] W. Khawaja, I. Guvenc, D. Matolak, U.-C. Fiebig, and N. Schnecken-
berger, “A survey of air-to-ground propagation channel modeling for
unmanned aerial vehicles,” available online: arxiv.org/abs/1801.01656,
2018.

[43] S. Samarakoon, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho,
“Ultra dense small cell networks: Turning density into energy effi-
ciency,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 5, pp. 1267–1280, May 2016.

[44] O. Semiari, W. Saad, M. Bennis, and Z. Dawy, “Inter-operator resource
management for millimeter wave multi-hop backhaul networks,” IEEE
Transactions on Wireless Communications, vol. 16, no. 8, pp. 5258–
5272, Aug. 2017.

[45] O. Semiari, W. Saad, and M. Bennis, “Joint millimeter wave and mi-
crowave resources allocation in cellular networks with dual-mode base
stations,” IEEE Transactions on Wireless Communications, vol. 16,
no. 7, pp. 4802–4816, July 2017.

[46] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, “Contract-based
incentive mechanisms for device-to-device communications in cellu-
lar networks,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 10, pp. 2144–2155, Oct. 2015.

[47] O. Semiari, W. Saad, S. Valentin, M. Bennis, and H. V. Poor, “Context-
aware small cell networks: How social metrics improve wireless
resource allocation,” IEEE Transactions on Wireless Communications,
vol. 14, no. 11, pp. 5927–5940, Nov. 2015.

[48] “AT&T detail network testing of drones in football stadiums,” available
online: https://www.androidheadlines.com/2016/09/att-detail-network-
testing-of-drones-in-football-stadiums.html.

[49] K. Gomez, A. Hourani, L. Goratti, R. Riggio, S. Kandeepan, and I. Bu-
caille, “Capacity evaluation of aerial LTE base-stations for public safety
communications,” in Proc. IEEE European Conference on Networks
and Communications (EuCNC), June 2015.

[50] G. Baldini, S. Karanasios, D. Allen, and F. Vergari, “Survey of wireless
communication technologies for public safety,” IEEE Communications
Surveys Tutorials, vol. 16, no. 2, pp. 619–641, Second 2014.

[51] A. Merwaday and I. Guvenc, “UAV assisted heterogeneous networks
for public safety communications,” in Proc. of IEEE Wireless Commu-
nications and Networking Conference Workshops (WCNCW), March
2015.

[52] A. Orsino, A. Ometov, G. Fodor, D. Moltchanov, L. Militano, S. An-
dreev, O. N. Yilmaz, T. Tirronen, J. Torsner, G. Araniti et al., “Effects
of heterogeneous mobility on D2D-and drone-assisted mission-critical
MTC in 5G,” IEEE Communications Magazine, vol. 55, no. 2, pp.
79–87, 2017.

[53] Y. H. Nam, B. L. Ng, K. Sayana, Y. Li, J. Zhang, Y. Kim, and
J. Lee, “Full-dimension mimo (fd-mimo) for next generation cellular
technology,” IEEE Communications Magazine, vol. 51, no. 6, pp. 172–
179, June 2013.

[54] 3GPP, “Study on elevation beamforming/full-dimension (FD) MIMO
for LTE,” TR 36.897, May 2017.

[55] W. Lee, S.-R. Lee, H.-B. Kong, and I. Lee, “3D beamforming designs
for single user MISO systems,” in Proc. of IEEE Global Communica-
tions Conference (GLOBECOM), 2013, pp. 3914–3919.

[56] Y.-H. Nam, M. S. Rahman, Y. Li, G. Xu, E. Onggosanusi, J. Zhang,
and J.-Y. Seol, “Full dimension MIMO for LTE-advanced and 5G.”

[57] M. Shafi, M. Zhang, P. J. Smith, A. L. Moustakas, and A. F. Molisch,
“The impact of elevation angle on mimo capacity,” in Proc. of IEEE
International Conference on Communications, vol. 9. IEEE, 2006,
pp. 4155–4160.

[58] X. Cheng, B. Yu, L. Yang, J. Zhang, G. Liu, Y. Wu, and L. Wan,



“Communicating in the real world: 3D MIMO,” IEEE Wireless Com-
munications magazine, vol. 21, no. 4, pp. 136–144, 2014.

[59] Y. Li, X. Ji, D. Liang, and Y. Li, “Dynamic beamforming for three-
dimensional MIMO technique in LTE-advanced networks,” Interna-
tional Journal of Antennas and Propagation, vol. 2013, 2013.

[60] 3GPP, “Enhanced LTE support for aerial vehicles,” TR 36.777, May
2017.

[61] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Communications
and control for wireless drone-based antenna array,” available online:
arxiv.org/abs/1712.10291, 2017.

[62] 3GPP, “Study on elevation beamforming/full-dimension (FD) MIMO
for LTE,” TR 38.811, Jan. 2018.

[63] N. Rupasinghe, Y. Yapici, I. Guvenc, and Y. Kakishima, “Non-
orthogonal multiple access for mmWave drones with multi-antenna
transmission,” available online: arxiv.org/abs/1711.10050, 2017.

[64] E. Torkildson, H. Zhang, and U. Madhow, “Channel modeling for mil-
limeter wave MIMO,” in Proc. of Information Theory and Applications
Workshop (ITA), 2010. IEEE, 2010, pp. 1–8.

[65] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future generation computer systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[66] Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, “To-
ward massive machine type cellular communications,” IEEE Wireless
Communications, vol. 24, no. 1, pp. 120–128, Feb. 2017.

[67] S.-Y. Lien, K.-C. Chen, and Y. Lin, “Toward ubiquitous massive
accesses in 3gpp machine-to-machine communications,” IEEECommu-
nications Magazine, vol. 49, no. 4, pp. 66–74, April. 2011.

[68] Y. Pang, Y. Zhang, Y. Gu, M. Pan, Z. Han, and P. Li, “Efficient data
collection for wireless rechargeable sensor clusters in harsh terrains
using UAVs,” in Proc. of IEEE Global Communications Conference
(GLOBECOM), Austin, TX, USA, Dec. 2014.

[69] M. N. Soorki, M. Mozaffari, W. Saad, M. H. Manshaei, and H. Saidi,
“Resource allocation for machine-to-machine communications with un-
manned aerial vehicles,” in IEEE Globecom Workshops (GC Wkshps),
Dec. 2016.

[70] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damn-
janovic, R. T. Sukhavasi, C. Patel, and S. Geirhofer, “Network den-
sification: the dominant theme for wireless evolution into 5G,” IEEE
Communications Magazine, vol. 52, no. 2, pp. 82–89, Feb. 2014.

[71] X. Ge, S. Tu, G. Mao, C. X. Wang, and T. Han, “5G ultra-dense cellular
networks,” IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79,
Feb. 2016.

[72] Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir,
“Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-
dense network,” IEEE Wireless Communications, vol. 22, no. 5, pp.
13–21, Oct. 2015.

[73] U. Siddique, H. Tabassum, E. Hossain, and D. I. Kim, “Wireless
backhauling of 5G small cells: challenges and solution approaches,”
IEEE Wireless Communications, vol. 22, no. 5, pp. 22–31, Oct. 2015.

[74] U. Challita and W. Saad, “Network formation in the Sky: Unmanned
aerial vehicles for multi-hop wireless backhauling,” in Proc. of IEEE
Global Telecommunications Conference (GLOBECOM), Singapore,
Dec. 2017.

[75] J. Qiao, Y. He, and S. Shen, “Proactive caching for mobile video
streaming in millimeter wave 5G networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 10, pp. 7187–7198, Oct. 2016.

[76] T. X. Tran and D. Pompili, “Octopus: A cooperative hierarchical
caching strategy for cloud radio access networks,” in Proc. of IEEE
International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), Brasilia, Brazil, Oct. 2016, pp. 154–162.

[77] Y. Guo, L. Duan, and R. Zhang, “Cooperative local caching under het-
erogeneous file preferences,” IEEE Transactions on Communications,
vol. 65, no. 1, pp. 444–457, Jan. 2017.

[78] E. Bastug, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled
small cell networks: Modeling and tradeoffs,” EURASIP J. Wireless
Commun. Netw.,Special Issue Tech. Adv. Design Deployment Future
Heterogeneous Netw., vol. 2015, no. 1, Feb 2015.

[79] Z. Ye, C. Pan, H. Zhu, and J. Wang, “Tradeoff caching strategy
of outage probability and fronthaul usage in Cloud-RAN,” available
online: arxiv.org/abs/1611.02660, Nov. 2016.

[80] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong,
“Caching in the sky: Proactive deployment of cache-enabled unmanned
aerial vehicles for optimized quality-of-experience,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 5, pp. 1046–1061, May
2017.

[81] H. Wang, G. Ding, F. Gao, J. Chen, J. Wang, and L. Wang, “Power con-
trol in UAV-supported ultra dense networks: Communications, caching,
and energy transfer,” available online: arxiv.org/abs/1712.05004, 2017.

[82] D. Bamburry, “Drones: Designed for product delivery,” Design Man-
agement Review, vol. 26, no. 1, pp. 40–48, 2015.

[83] A. Ferdowsi, W. Saad, and N. B. Mandayam, “Colonel blotto game
for secure state estimation in interdependent critical infrastructure,”
available online: arxiv.org/abs/1709.09768, 2017.

[84] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-
aided wireless networks: A segmented regression approach,” in Proc.
of IEEE International Conference on Communications (ICC), Paris,
France, May 2017.
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[109] K. Doğançay, “UAV path planning for passive emitter localization,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 2,
pp. 1150–1166, 2012.

[110] A. Rucco, A. P. Aguiar, and J. Hauser, “Trajectory optimization for
constrained UAVs: A virtual target vehicle approach,” in Proc. IEEE
International Conference on Unmanned Aircraft Systems (ICUAS), June
2015.

[111] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How, “Co-
operative path planning for multiple UAVs in dynamic and uncertain
environments,” in Proc. IEEE Conference on Decision and Control,
Dec. 2002.

[112] J. How, Y. Kuwata, and E. King, “Flight demonstrations of cooperative
control for UAV teams,” in AIAA 3rd” Unmanned Unlimited” Technical
Conference, Workshop and Exhibit, 2004, p. 6490.

[113] J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous UAV path planning
and estimation,” IEEE Robotics Automation Magazine, vol. 16, no. 2,
pp. 35–42, June 2009.

[114] P. Chandler, S. Rasmussen, and M. Pachter, “UAV cooperative path
planning,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2000, p. 4370.

[115] F. Jiang and A. L. Swindlehurst, “Optimization of UAV heading
for the ground-to-air uplink,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 5, pp. 993–1005, June 2012.

[116] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-
enabled mobile relaying systems,” IEEE Transactions on Communica-
tions, vol. 64, no. 12, pp. 4983–4996, Dec. 2016.

[117] C. D. Franco and G. Buttazzo, “Energy-aware coverage path planning
of UAVs,” in Proc. of IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), Vila Real, Portugal, April
2015, pp. 111–117.

[118] E. I. Grøtli and T. A. Johansen, “Path planning for UAVs under
communication constraints using splat! and milp,” Journal of Intelligent
& Robotic Systems, vol. 65, no. 1-4, pp. 265–282, 2012.

[119] J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous UAV path planning
and estimation,” IEEE Robotics & Automation Magazine, vol. 16, no. 2,
pp. 35–42, 2009.

[120] Z. Han, A. L. Swindlehurst, and K. Liu, “Optimization of MANET
connectivity via smart deployment/movement of unmanned air vehi-
cles,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp.
3533–3546, Dec. 2009.

[121] M. Mozaffari, A. Broumandan, K. O’Keefe, and G. Lachapelle, “Weak

GPS signal acquisition using antenna diversity,” Navigation, vol. 62,
no. 3, pp. 205–218, 2015.

[122] 3GPP, “Study on RAN improvements for machine type communica-
tion,” TR 37.868, Sept. 2011.

[123] P. G. Sudheesh, M. Mozaffari, M. Magarini, W. Saad, and P. Muthuchi-
dambaranathan, “Sum-rate analysis for high altitude platform (HAP)
drones with tethered balloon relay,” IEEE Communications Letters,
Early access, 2017.

[124] A. I. Alshbatat and L. Dong, “Performance analysis of mobile ad
hoc unmanned aerial vehicle communication networks with directional
antennas,” International Journal of Aerospace Engineering, vol. 2010,
2011.

[125] W. Guo, C. Devine, and S. Wang, “Performance analysis of micro
unmanned airborne communication relays for cellular networks,” in
Proc. of IEEE International Symposium on Communication Systems,
Networks & Digital Signal Processing (CSNDSP), Manchester, UK,
July 2014, pp. 658–663.

[126] P. Zhan, K. Yu, and A. L. Swindlehurst, “Wireless relay communica-
tions with unmanned aerial vehicles: Performance and optimization,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3,
pp. 2068–2085, July 2011.

[127] V. V. Chetlur and H. S. Dhillon, “Downlink coverage analysis for
a finite 3-D wireless network of unmanned aerial vehicles,” IEEE
Transactions on Communications, vol. 65, no. 10, pp. 4543–4558, Oct.
2017.

[128] C. Zhang and W. Zhang, “Spectrum sharing for drone networks,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 1, pp. 136–
144, Jan. 2017.

[129] S. Mumtaz, S. Huq, K. Mohammed, A. Radwan, J. Rodriguez, and
R. L. Aguiar, “Energy efficient interference-aware resource allocation
in LTE-D2D communication,” in Proc. of IEEE International Confer-
ence on Communications (ICC), Sydney, Australia, June. 2014.

[130] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[131] N. Lee, X. Lin, J. G. Andrews, and R. Heath, “Power control for D2D
underlaid cellular networks: Modeling, algorithms, and analysis,” IEEE
Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 1–13,
Feb. 2015.

[132] X. Xu, W. Saad, X. Zhang, X. Xu, and S. Zhou, “Joint deployment of
small cells and wireless backhaul links in next-generation networks,”
IEEE Communications Letters, vol. 19, no. 12, pp. 2250–2253, Dec.
2015.

[133] V. Sharma, M. Bennis, and R. Kumar, “UAV-assisted heterogeneous
networks for capacity enhancement,” IEEE Communications Letters,
vol. 20, no. 6, pp. 1207–1210, June 2016.

[134] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Optimal transport
theory for power-efficient deployment of unmanned aerial vehicles,” in
Proc. of IEEE International Conference on Communications (ICC),
May 2016.

[135] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Optimal transport
theory for cell association in UAV-enabled cellular networks,” IEEE
Communications Letters, vol. 21, no. 9, pp. 2053–2056, Sep. 2017.

[136] B. Galkin, J. Kibiłda, and L. A. DaSilva, “Backhaul for low-altitude
UAVs in urban environments,” May 2018.

[137] A. Taleb Zadeh Kasgari, W. Saad, and M. Debbah, “Brain-aware
wireless networks: Learning and resource management,” in Proc. of
IEEE Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, USA, Nov. 2017.

[138] A. Taleb Zadeh Kasgari and W. Saad, “Stochastic optimization and
control framework for 5G network slicing with effective isolation,”
in Proc. of Annual Conference on Information Sciences and Systems
(CISS), Princeton, USA, Mar. 2018.

[139] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “Spectrum leasing
as an incentive towards uplink macrocell and femtocell cooperation,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 3,
pp. 617–630, April 2012.

[140] B. Uragun, “Energy efficiency for unmanned aerial vehicles,” in Proc.
of IEEE 10th International Conference on Machine Learning and
Applications and Workshops (ICMLA), vol. 2, Honolulu, HI, USA, Dec.
2011, pp. 316–320.



[141] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with tra-
jectory optimization,” IEEE Transactions on Wireless Communications,
to appear 2017.

[142] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical
caching in 5G cloud radio access networks,” IEEE Network, vol. 31,
no. 4, pp. 35–41, July 2017.

[143] D. Zorbas, T. Razafindralambo, F. Guerriero et al., “Energy efficient
mobile target tracking using flying drones,” Procedia Computer Sci-
ence, vol. 19, pp. 80–87, June. 2013.

[144] S. R. Anton and D. J. Inman, “Performance modeling of unmanned
aerial vehicles with on-board energy harvesting,” in SPIE Smart
Structures and Materials+ Nondestructive Evaluation and Health Mon-
itoring. International Society for Optics and Photonics, 2011, pp.
79 771H–79 771H.

[145] J. Lyu, Y. Zeng, and R. Zhang, “Cyclical multiple access in UAV-
aided communications: A throughput-delay tradeoff,” available online:
arxiv.org/abs/1608.03180, 2016.

[146] M. S. Sharawi, D. N. Aloi, O. Rawashdeh et al., “Design and
implementation of embedded printed antenna arrays in small UAV wing
structures,” IEEE Transactions on Antennas and Propagation, vol. 58,
no. 8, pp. 2531–2538, 2010.

[147] E. T. Ceran, T. Erkilic, E. Uysal-Biyikoglu, T. Girici, and K. Leblebi-
cioglu, “Optimal energy allocation policies for a high altitude flying
wireless access point,” Transactions on Emerging Telecommunications
Technologies, vol. 28, no. 4, 2017.

[148] M. Chen, W. Saad, and C. Yin, “Liquid state machine learning for
resource allocation in a network of cache-enabled LTE-U UAVs,” in
Proc. of Global Communications Conference (GLOBECOM), Singa-
pore, Dec. 2017.

[149] M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless networks:
quality-of-service model and learning-based resource management,”
available online: arxiv.org/abs/1703.04209, 2017.

[150] J. Chakareski, “Aerial UAV-IoT sensing for ubiquitous immersive com-
munication and virtual human teleportation,” in 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), May
2017, pp. 718–723.

[151] M. Chen, W. Saad, and C. Yin, “Echo state learning for wireless
virtual reality resource allocation in UAV-enabled LTE-U networks,” in
Proc. of the IEEE International Conference on Communications (ICC),
Kansas city, USA, May 2018.

[152] M. M. Azari, F. Rosas, A. Chiumento, and S. Pollin, “Coexistence
of terrestrial and aerial users in cellular networks,” in Proc. of IEEE
Global Telecommunications Conference (GLOBECOM) Workshops,
Singapore, Dec. 2017.

[153] M. M. Azari, F. Rosas, and S. Pollin, “Reshaping cellular networks
for the sky: The major factors and feasibility,” available online:
arxiv.org/abs/1710.11404, 2017.

[154] X. Lin, V. Yajnanarayana, S. D. Muruganathan, S. Gao, H. As-
plund, H.-L. Maattanen, S. Euler, Y.-P. E. Wang et al., “The sky is
not the limit: LTE for unmanned aerial vehicles,” available online:
arxiv.org/abs/1707.07534, 2017.

[155] U. Challita, W. Saad, and C. Bettstetter, “Cellular-connected UAVs
over 5G: Deep reinforcement learning for interference management,”
available online: arxiv.org/abs/1801.05500, 2018.

[156] O. Semiari, W. Saad, S. Valentin, M. Bennis, and B. Maham, “Matching
theory for priority-based cell association in the downlink of wireless
small cell networks,” in Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
444–448.

[157] F. Pantisano, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho,
“Interference alignment for cooperative femtocell networks: A game-
theoretic approach,” IEEE Transactions on Mobile Computing, vol. 12,
no. 11, pp. 2233–2246, Nov. 2013.

[158] N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, and H. Sari,
“Caching uav assisted secure transmission in hyper-dense networks
based on interference alignment,” IEEE Transactions on Communica-
tions, Early access, 2018.

[159] Q. Feng, J. McGeehan, E. K. Tameh, and A. R. Nix, “Path loss
models for air-to-ground radio channels in urban environments,” in
Proc. of IEEE Vehicular Technology Conference (VTC), Melbourne,
Vic, Australia, May 2006.

[160] K. Daniel, M. Putzke, B. Dusza, and C. Wietfeld, “Three dimensional
channel characterization for low altitude aerial vehicles,” in Proc. of
IEEE International Symposium on Wireless Communication Systems
(ISWCS),, York, UK, Sep. 2010.

[161] P. J. Vincent, M. Tummala, and J. McEachen, “An energy-efficient
approach for information transfer from distributed wireless sensor
systems,” in Proc. of IEEE International Conference on System of
Systems Engineering (IEEE/SMC). IEEE, 2006, pp. 6–pp.

[162] H. Wang, G. Ren, J. Chen, G. Ding, and Y. Yang, “Unmanned aerial
vehicle-aided communications: Joint transmit power and trajectory
optimization,” IEEE Wireless Communications Letters, Early access,
2018.

[163] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,” IEEE Communications Surveys Tutorials, vol. 18, no. 3,
pp. 2282–2308, thirdquarter 2016.

[164] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential
unconstrained minimization techniques. Siam, 1990, vol. 4.

[165] C. Villani, Topics in optimal transportation. American Mathematical
Soc., 2003, no. 58.

[166] F. Baccelli, B. Błaszczyszyn et al., “Stochastic geometry and wire-
less networks: Volume ii applications,” Foundations and Trends R© in
Networking, vol. 4, no. 1–2, pp. 1–312, 2010.

[167] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine
learning for wireless networks with artificial intelligence: A tutorial on
neural networks,” available online: arxiv.org/abs/1710.02913, 2017.

[168] Z. Han, Game theory in wireless and communication networks: theory,
models, and applications. Cambridge University Press, 2012.

[169] G. Bacci, S. Lasaulce, W. Saad, and L. Sanguinetti, “Game theory
for networks: A tutorial on game-theoretic tools for emerging signal
processing applications,” IEEE Signal Processing Magazine, vol. 33,
no. 1, pp. 94–119, 2016.

[170] K. Hamidouche, W. Saad, and M. Debbah, “A multi-game framework
for harmonized LTE-U and WiFi coexistence over unlicensed bands,”
IEEE Wireless Communications, vol. 23, no. 6, pp. 62–69, 2016.
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