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I. INTRODUCTION AND MOTIVATION

The use of unmanned aerial vehicles (UAVs) as flying based
stations has emerged as a key approach for boosting the coverage
and capacity of existing wireless cellular or ad hoc networks.
UAV-based wireless communications can effectively provide fast,
reliable and cost-effective connectivity to areas which are either
congested (e.g. hotspots) or poorly covered by terrestrial networks
[1]–[3]. Despite the several benefits and real applications of
using UAVs as aerial base stations, one must address many
technical challenges such as performance analysis, deployment,
user association, and flight time optimization.

In particular, the flight time duration of the UAVs presents a
unique design challenge for UAV-based communication systems
[4]. More specifically, the performance of such systems signifi-
cantly depends on the hover time of each UAV, which is defined
as the flight time during which the UAV must stay over a given
area for providing wireless service to ground users. In fact, with
a higher hover time of the UAV, the ground users can receive
wireless service for a longer period. Thus, by increasing the hover
time, the UAV is able to meet higher load requirements and serve
a larger area. However, the hover time of the UAV is naturally
limited due to the insufficient battery-provided, on-board energy.
Hence, while analyzing the UAV-based communication systems,
the hover time constrains of the UAVs must be taken into account.

The main contribution of this work is to propose a novel
framework for optimized UAV-to-ground communications while
considering the UAV’s hover time constraints. In particular, we
consider a scenario in which a single UAV is used to serve ground
users with any arbitrary spatial distribution over the target area.
Here, given the maximum possible hover time of the UAV at
some pre-defined locations known as stop points, we maximize
the average amount of data transmitted (service) to the users by
finding optimal cell partitions associated to the stop points. In
this case, using the powerful mathematical framework of optimal
transport theory [5], we optimally partition the geographical area
based on the users’ distribution, hover time at each stop point,
and locations of the flying UAV. Our results show the tradeoff
between total amount of service and fairness among the users.
Moreover, our proposed cell partitioning approach leads to a
significantly higher fairness among the users compared to the
weighted Voronoi diagram, while having similar performance in
terms of total service.

II. SYSTEM MODEL

Consider a geographical area D ⊂ R2 within which a number
of wireless users are spatially distributed following a given
distribution f(x, y) in the two-dimensional plane. Within this
area, as shown in Figure 1, a single UAV is used as an aerial
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Fig. 1: Network model.

base station in order to provide wireless service for the ground
users. In this model, we consider a set M of M stop points at
which the flying UAV stops and serves the ground users. Let
si = (xi, yi, hi) be the three-dimensional coordinate of each
stop point i ∈ M. At each stop point i, hi corresponds to the
altitude of the UAV. We consider a downlink scenario in which
the UAV, at each stop point, adopts a frequency division multiple
access (FDMA) technique to service the ground users. The total
bandwidth and transmit power of the UAV are denoted by B and
Pt. Moreover, we use Ai to represent the area (cell) partition in
which the ground users are served by the UAV located at stop
point i. Hence, the geographical area is divided into M disjoint
partitions each of which is associated with one of the stop points.
Note that, in our model, all the users located at each cell partition
Ai will be served simultaneously. Let τi be the hover time of the
UAV located at stop point i. The hover time at each stop point
is the time duration that the UAV must spend for servicing the
ground users located at the corresponding cell partition. Clearly,
if a given UAV can use a larger hover time, then it can provide
more service time to its users. Hence, the amount of service to
each user depends on two resources, the bandwidth allocated to
the user and the hover time of the UAV. Clearly, the throughput
of a user located at (x, y) connecting to the UAV at stop point i
is given by:

Ci(x, y) = B(x, y) log2 (1 + γi(x, y)), (1)

where B(x, y) is the bandwidth allocated to the user at (x, y),
and γi(x, y) is the received SNR. Subsequently, the total service
for the user provided by the UAV will be Li(x, y) = τiCi(x, y),
where τi is the hover time, and Li(x, y) is the total number of
bits transmitted to the user located at (x, y). Note that, the total
service offered to the ground users depends on a number of key
parameters such as the locations of the users and the stop points,
the bandwidth allocated to the users, the hover times, and the cell
partitions associated to the stop points.

Given this model, our goal is to maximize the average amount
of service to the users under a fair resource (bandwidth and hover
time) sharing policy by optimal partitioning of the area. In this
case, the geographical area is optimally partitioned based on the



hover time of the UAV as well as the spatial distribution of users.

III. OPTIMAL CELL PARTITIONING

Here, we find the optimal cell partitions for which the average
service, under a fair resource allocation policy, is maximized.
In this case, each cell partition is assigned to one stop point
in order to be serviced by the UAV. Clearly, the optimal cell
partitions depend on the hover time at each stop point, and the
spatial distribution of the users. Let τi be the hover time at stop
point i in which the UAV provides service for the users in the
corresponding cell partition, Ai. Under a fair time and frequency
allocation policy, we have:

τiB∫
Ai
f(x, y)dxdy

=
τjB∫

Aj
f(x, y)dxdy

, ∀i 6= j ∈M, (2)

Then, considering
M∑
k=1

∫
Ak
f(x, y)dxdy = 1, we have:∫

Ai

f(x, y)dxdy =
τi

M∑
k=1

τk

, ∀i ∈M, (3)

Next, we present the proposed optimization problem that is
used to maximize the average service by optimally partitioning
the target area. The service maximization problem is given by:

max
Ai, i∈M

M∑
i=1

∫
Ai

log2 (1 + γi(x, y)) f(x, y)dxdy, (4)

s.t.
∫
Ai

f(x, y)dxdy =
τi

M∑
k=1

τk

, ∀i ∈M, (5)

Al ∩Am = ∅, ∀l 6= m ∈M, (6)⋃
i∈M

Ai = D, (7)

where (5) is a constraint on the load of each cell partition. Also,
(6) and (7) ensure that the cell partitions are disjoint and their
union covers the entire target area D.

Solving (4) is challenging and intractable due to various
reasons. First, the optimization variables Ai, ∀i ∈M, are sets of
continuous mutually dependent partitions which must satisfy (5).
Second, f(x, y) can be any generic function of x and y that leads
to the complexity of the given two-fold integrations. To solve the
optimization problem in (4), we model the problem by exploiting
optimal transport theory [5]. In particular, we first transform (4)
into a semi-discrete optimal transport problem. Then, using the
Kantorovich duality theorem [5], we propose an algorithm to
find the optimal mapping between ground users and the stop
points. Finally, given the optimal transport maps, we determine
the optimal cell partitions corresponding to the target area. More
details of our proposed solution are found in [6]. Next, we present
our results obtained by solving the optimization problem in (4).

Fig. 2 compares the performance of our proposed cell parti-
tioning with the classical weighted Voronoi partitioning in terms
total service and fairness. In this case, we consider a truncated
Gaussian distribution of users with a standard deviation σ and
Jain’s index for fairness. Fig. 2a shows that the average service
to the users obtained by the proposed approach is very close
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(b) Fairness index.
Fig. 2: Proposed cell partitioning vs. weighted Voronoi diagram.
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Fig. 3: Cell partitions associated with stop points given the spatial

distribution of users.

to the weighted Voronoi which is the optimal diagram in terms
of the average service. In particular, for high values of σ the
performance of our proposed approach coincides with the one
for the weighted Voronoi diagram. From Fig. 2b, we can see that
the Jain’s index corresponding to the proposed cell partitioning
method is above 0.96. However, in the weighted Voronoi case,
it can decrease to 0.3 for a high non-uniform distribution of
users. This is due to the fact that, in the Voronoi case, users
located in highly congested partitions receive lower service than
the partitions with low number of users. In the proposed approach,
however, the resources (time and bandwidth) are fairly shared
between the users thus leading to a higher fairness index.

Fig. 3, shows the proposed optimal cell partitions, obtained by
solving (4), and weighted Voronoi for 5 stop points. In Fig. 3,
areas shown by a lighter color have a higher population density.
Fig. 3b shows that the cell partitions associated with stop points
4 and 5 have significantly more users than cell partition 1.
Therefore, given the limited hover at time the stop points, users
located at cell partitions 4 and 5 cannot be fairly served by
UAVs. However, in the proposed optimal cell partitioning case,
the cell partitions change such that the average service under a
fair resource allocation constraint is maximized.
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